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STATISTICAL ANALYSIS OF STELLAR EVOLUTION1

By David A. van Dyk, Steven DeGennaro, Nathan Stein,

William H. Jefferys and Ted von Hippel

University of California, Irvine, University of Texas at Austin, Harvard

University, University of Vermont and University of Texas at Austin,

and Siena College and University of Miami

Color-Magnitude Diagrams (CMDs) are plots that compare the
magnitudes (luminosities) of stars in different wavelengths of light
(colors). High nonlinear correlations among the mass, color, and sur-
face temperature of newly formed stars induce a long narrow curved
point cloud in a CMD known as the main sequence. Aging stars form
new CMD groups of red giants and white dwarfs. The physical pro-
cesses that govern this evolution can be described with mathematical
models and explored using complex computer models. These calcula-
tions are designed to predict the plotted magnitudes as a function of
parameters of scientific interest, such as stellar age, mass, and metal-
licity. Here, we describe how we use the computer models as a com-
ponent of a complex likelihood function in a Bayesian analysis that
requires sophisticated computing, corrects for contamination of the
data by field stars, accounts for complications caused by unresolved
binary-star systems, and aims to compare competing physics-based
computer models of stellar evolution.

1. Introduction. For most of their lives, stars are powered by thermonu-
clear fusion in their cores. In this process multiple atomic particles join
together to form a heavier nucleus and energy is released as a byproduct.
As this process continues for millions or billions of years, depending on the
initial mass of the star, the composition of the star changes. When these
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changes become severe enough to significantly affect the physical processes
at the core, dramatic shifts in the color, spectrum, and density of the star
occur that have long been observed by astronomers. In the early twenti-
eth century two astronomers, Ejnar Hertzsprung and Henry Norris Russell,
produced plots comparing the luminosity (energy radiated per unit time)
and effective surface temperature of stars. Today generalizations of these
plots are commonly called Color-Magnitude Diagrams (CMDs) and can be
used to clearly separate out groups of stars powered by different physical
processes and at different stages of their lives. These groups include the
main sequence, so named for its dominant position in a CMD, the evolved
red giants, and the even older white dwarfs. Today the physical processes
that govern stellar formation and evolution are studied with complex com-
puter models that can be used to predict the plotted magnitudes on a set of
CMDs as a function of stellar parameters of interest, such as distance, stellar
age, initial mass, and metallicity (a measure of the abundance of elements
heaver than helium). Luminosity is a direct measurement of the amount of
energy an astronomical object radiates per unit time, while a magnitude is a
negative logarithmic transformation of luminosity; thus, smaller magnitudes
correspond to brighter objects. In this paper we describe how we use these
computer-based stellar evolution models as a component in a complex like-
lihood function and how we use Bayesian methods to fit the resulting statis-
tical model. Thus, our aim is to fit physically meaningful stellar parameters
and compare stellar evolution models by developing principled statistical
methods that directly incorporate the evolution models via state-of-the-art
complex computer models.

We focus on developing methods for the analysis of CMDs of the stars in a
so-called open cluster. Stars in these clusters were all formed from the same
molecular cloud at roughly the same time and reside as a physical cluster
in space. This simplifies statistical analysis because we expect the stars to
have nearly the same metallicity, age, and distance; only their masses differ.
Unfortunately, the data are contaminated with stars that are in the same
line of sight as the cluster but are not part of the cluster. These stars appear
to be in the same field of view and are called field stars. Because field stars
are generally of different ages, metallicities, and distances than the cluster
stars, we are unable to constrain the values of these parameters and, thus,
their coordinates on the CMDs are not well predicted from the computer
models. The solution is to treat the data as a mixture of cluster stars and
field stars, in which field stars are identified by their discordance with the
model for the cluster stars. A second complication arises from multi-star
systems in the cluster. These stars are the same age and have the same
metallicity as the cluster, but we typically cannot resolve the individual
stars in the system and thus observe only the sums of their luminosities in
different colors. This causes these systems to appear systematically offset
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from the main sequence in a CMD. Because the offset is informative as to
the individual stellar masses, however, we can formulate a statistical model
to identify the individual masses.

Owing to the complexity of the computer-based stellar evolution models,
the posterior distribution for the parameters of scientific interest under our
statistical model is highly irregular. There are very strong and sometimes
highly nonlinear correlations among the parameters. Some two-dimensional
marginal distributions appear to be degenerate, with their probability mass
lying completely on a one-dimensional curve. Sophisticated Markov chain
Monte Carlo (MCMC) methods are required to explore these distributions.
Our strategy involves dynamically transforming the parameters with the
aim of reducing correlations. We use initial runs of the MCMC sampler to
diagnose the correlations and automatically construct transformations that
are used in a second run allowing the modified MCMC sampler to explore
the posterior distribution. We are also developing methods to evaluate our
statistical model and its underlying stellar evolution models with the ulti-
mate goal of comparing and evaluating the physics-based computer models
of stellar evolution.

Our use of principled statistical models and methods stands in contrast
to the more ad-hoc methods that are often employed. A typical strategy for
arriving at values for stellar parameters using the computer-based stellar
evolution models involves over-plotting the data with the model evaluated
at a set of parameter values and manually adjusting the values in order to
visually improve the correspondence between the model and the data [e.g.,
Caputo et al. (1990); Montgomery, Marschall and Janes (1993); Dinescu
et al. (1995); Chaboyer, Demarque and Sarajedini (1996); Rosvick and Van-
denberg (1998); Sarajedini et al. (1999); VandenBerg and Stetson (2004)].
Experience leads to intuition as to which parameter should be adjusted in
what way to correct for a particular discrepancy between the data and the
model. Nonetheless, it is difficult to be sure one has found the optimal fit
or to access the statistical error in the fit. To compare competing models,
some researchers simulate data sets under each model with stellar param-
eters fit in this way. The simulated data sets are then compared with the
actual data by comparing star counts in each bin of a grid superimposed
on the CMD [e.g., Gallart et al. (1999); Cignoni et al. (2006)]. Other re-
searchers have calculated the marginal distributions of stars on both axes
of the CMD, comparing observed and simulated distributions in color and
luminosity [e.g., Tosi et al. (1991, 2007)]. We are aware of one other group
[Hernandez and Valls-Gabaud (2008)] applying an approach broadly similar
to ours, though their technical approach and their scientific goals are mean-
ingfully different than ours; see DeGennaro et al. (2008). Compared to the
classical eyeball fitting of model to the data and compared to the statisti-
cal techniques developed to date, we believe that our principled statistical
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methods offer a more precise and reliable exploration of the parameters of
stellar evolution.

The remainder of the paper is organized into five sections. We begin in
Section 2 by outlining the relevant scientific background on stellar evolution
models, their computational implementations, and the data available for fit-
ting the models. Section 3 describes our formulation of a statistical model
that incorporates the computer models while accounting for measurement
error, binary-star systems, and field-star contamination. Statistical compu-
tation is discussed in Section 4, including our dynamic methods for im-
proving efficiency. Analysis of the Hyades cluster is described in Section 5,
followed by discussion in Section 6.

2. Stellar evolution.

2.1. Basic evolutionary model and color-magnitude diagrams. Stars are
believed to be formed when the dense parts of a molecular cloud collapse into
a ball of plasma. If the mass of the resulting protostar exceeds about 10%
of the mass of the Sun, M⊙, its core will ignite in a thermonuclear reaction
that is powered by the fusion of hydrogen into helium. This reaction at the
star’s core can continue for millions or billions of years depending on the
original mass and composition of the star. More massive stars are denser,
and thus hotter, and burn their fuel more quickly. When the hydrogen at the
core has been mostly converted into helium, the core collapses and the inner
temperature of the star increases. This ignites the same nuclear reaction
higher in the star in regions surrounding the core. At the same time, the
diameter of the star increases enormously and its surface temperature cools,
resulting in a red giant star. This phase in a star’s life is relatively short,
lasting about one tenth as long as the initial phase. As the newly formed
helium falls to the core, the core continues to collapse and its temperature
increases. For more massive stars, eventually the core becomes hot enough
to fuse helium into carbon, oxygen, and, if there is sufficient mass, neon,
and possibly heavier elements. During this period the star undergoes mass
loss due to the low gravity in the higher altitudes of the star. This leads to
the formation of a very short lived planetary nebula (about 10,000 years);
see Figures 1 and 2 of the online supplement [van Dyk et al. (2009)].

In stars with initial mass less than about 8M⊙, the dense core eventually
reaches a new equilibrium (a degenerate electron gas) that prevents further
collapse even in the absence of a thermonuclear reaction. As the outer layers
of the star blow away, eventually only a stable core composed of helium,
carbon, and oxygen remains. These white dwarf stars are typically smaller
than the Earth, are very dense (about one ton per cubic centimeter), and
cool extremely slowly. Their lifetimes are measured in gigayears. For stars
with an initial mass greater than 8M⊙, the degenerate electron gas does
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Fig. 1. Schematic HR Diagram. The plot shows a schematic Hertzsprung–Russell (HR)
diagram. The main sequence stars, red giants, and white dwarfs are all easily recognizable.
The main sequence is broader than we would expect in a star cluster and more like we would
expect to see with a star population that includes stars of different ages and metallicities.

not prevent further collapse of the core. The continued collapse leads to
higher and higher temperatures and the thermonuclear synthesis of progres-
sively heavier elements. Eventually only degenerate neutron pressure stops
the collapse, but not before the electrons of the atoms are forced into the
atomic nuclei where they combine with protons to form neutrons and thus
a neutron star. Matter falling into the newly formed neutron star sets off
a shock wave that dramatically blows off the outer layers of the star in a
supernova explosion; see Figure 3 and 4 of the online supplement [van Dyk
et al. (2009)]. For even more massive stars, not even the degenerate neutron
pressure can halt the collapse of the core. This leads to indefinite collapse
and the formation of a black hole.

As a star evolves, its luminosity at different wavelengths of light changes.
A Color-Magnitude Diagram (CMD) can be used to exploit this to identify
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stars at different stages of their lives. The original version of these diagrams,
named for their inventors, are called Hertzsprung–Russell diagrams (HR di-
agram) and plot absolute luminosity on the vertical axis and stellar surface
temperature on the horizontal axis. The absolute luminosity is the luminos-
ity that the star would have if it were 10 parsecs (32.6 light years) away
as opposed to the apparent luminosity it has when viewed from Earth. It is
only possible to compute absolute luminosity of objects that are a known
distance from Earth. A schematic example of an HR diagram appears in
Figure 1. The stars labeled “Main Sequence” are stars in their initial phase
of life when they have a hydrogen-burning core. There is a continuum of
stars in this group that can be indexed by their initial masses. Stars to the
upper left are more massive, hotter, and brighter.2 These stars tend to burn
their hydrogen more quickly, are shorter lived, and are the first to migrate
to the group of stars labeled “Red Giants.” Notice that the red giants are
both cooler and more luminous. Their cooler temperatures make them ap-
pear redder while their massive sizes increase their luminosity. Finally, after
a star loses its upper layers and its thermonuclear reaction fails, it migrates
to the faint “White Dwarf” group at the bottom of the HR diagram.

HR diagrams are the oldest type of CMD, but there are many others. All
CMDs are designed to use magnitudes in different color bands or photometric

magnitudes to identify the evolutionary stages in the lives of stars. We gen-
erally simply refer to the set of photometric magnitudes as the magnitudes
of a star. Because we focus on stellar clusters which consist of stars that are
all nearly the same distance from Earth, we can use apparent luminosity in
place of absolute luminosity and avoid the tedious task of determining the
distance of each star. Second, the surface temperature of a star is highly
correlated with the ratio of the star’s luminosities in (nearly any) two op-
tical color bands. (This corresponds to a difference in magnitudes, since
magnitude is a logarithmic transformation of luminosity.) Thus, we need
not directly determine the temperature of each star. Figure 2 illustrates the
type of CMD we focus on. The data are from the Hyades cluster discussed in
Section 5 and the plot compares the difference in apparent magnitudes (rel-
ative apparent luminosity) in the B band (“blue” containing violet, indigo,
and blue light) and the V band (“visual” band containing cyan, green, and
yellow light) on the horizontal axis with the apparent luminosity in the V
band on the vertical axis. Just as in the HR diagram, the main sequence and
white dwarfs are clearly visible. There are only a few giants at the top of the
diagram. This is expected because stars spend a relatively short period of

2This relationship stems from the Stefan–Boltzman law for blackbodies (i.e., perfect
radiators), which serves as a very good approximation for stellar radiation. The law says
that absolute luminosity is proportional to radius squared times temperature to the fourth
power.
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their lives as giants. Thus, the CMD has the same utility as the HR diagram
in identifying the evolutionary groups, but without the absolute calibration.

We have seen that the initial mass of a star influences its location on
the CMD. Initial composition is also important. Metallicity is a measure
of the abundance of elements heaver than helium. These heavier elements
tend to absorb light at the blue end of the spectrum and inhibit thermal
(heat) radiation. Thus, stars with higher metallicity have a somewhat dif-
ferent set of colors and photometric magnitudes. Similarly, stars with more
helium at their cores tend to have a less efficient thermonuclear reaction,
simply because the hydrogen fuel is less pure. To compensate for this, the
cores of these stars tend to be somewhat smaller, denser, and hotter. This
in turn causes the stars to be more luminous and shorter lived, and again
affects their colors and magnitudes. Two other variables affect the apparent
magnitudes. A portion of the light from a star is absorbed by interstellar ma-
terial. The more absorption and the farther a star is away, the less luminous
it appears from Earth. Thus, six parameters, the initial mass, the metal-
licity, the helium abundance, the distance, the absorption, and the age of
the star, determine a star’s placement on the CMD. Exactly where it lands,
however, requires complex physical calculations that are accomplished using
sophisticated computer models.

2.2. Computer-based stellar evolution models. The computer-based stel-
lar evolution models that we use to predict a star’s placement on the CMD
are a combination of several component computer models. In particular,
there are a number of different computational implementations of computer
models for main sequence and red giant stars. For this initial phase of stel-
lar evolution, we use the state-of-the-art models by Girardi et al. (2000),
by the Yale–Yonsei group [Yi et al. (2001)], and of the Dartmouth Stellar
Evolution Database [Dotter et al. (2008)]. These models take the six pa-
rameters discussed in Section 2.1 as inputs and predict the placement of
main sequence and red giant stars on the CMD. (Some of the models do not
depend on helium abundance and thus have only five input parameters.)
The main sequence/red giant models vary subtly in their implementation of
the underlying physics and give somewhat different predictions. One of our
primary goals is to compare these models empirically and to examine which,
if any of them, adequately predict the observed data.

Unfortunately, all of these models break down in the turbulent last stage
of red giants as they fuse progressively heavier elements at different shells of
their interior, begin to pulsate, contracting and expanding, finally lose their
outer layers in planetary nebulae and form white dwarfs. This transition
is physically very complex and dominated by chaotic terms. Other com-
puter models are used for white dwarfs. We use the white dwarf evolution
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Fig. 2. The Haydes CMD. The plot shows a Color-Magnitude Diagram (CMD) of stars
in the Haydes cluster that we analyze in Section 5. Rather than artificially coloring the
individual stars as in Figure 1, we plot all but one of them in black. The one yellow star
is a binary star called vB022 that we discuss in Section 5. Each star is plotted with 95%
intervals representing the measurement errors in B − V and V . The star groups are less
readily apparent than in Figure 1, largely because field stars contaminate the diagram. The
swarm of stars below and to the left of the main sequence are field stars. These stars are
mostly more distant and hence apparently fainter than the main-sequence stars. A small
number of red giants appear in the upper center of the CMD. The units on the vertical axis
are magnitudes, which are on a log scale with lower numbers indicating brighter sources.
The units of the horizontal axis are differences in magnitudes. The blue and yellow lines
are the fitted (Yale–Yonsei) main sequence and white dwarfs models.

models of Wood (1992) and the white dwarf atmosphere models of Berg-
eron, Wesemael and Beauchamp (1995) to convert the surface luminosity
and temperature into magnitudes. Finally, to bridge the main sequence/red
giant computer models with the white dwarf model, we use an empirical
mapping that links the initial mass of the main sequence star with the mass
of the resulting white dwarf [Weidemann (2000)]; this is the so-called initial-

final mass relation. The combination of these several computer models for
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various stages of stellar evolution into one comprehensive stellar evolution
model3 was proposed by von Hippel et al. (2006).

Thus, our stellar evolution model combines (i) the main sequence and red
giant models with (ii) the initial-final mass relation, and (iii) white dwarf
cooling models, to create a model we call the stellar evolution model, as it is
meant to depict stars in all of the main phases of stellar evolution. (We ignore
exotic objects such as neutron stars and black holes and short-lived objects
such as supernovae, as the former objects do not radiate substantially in
visible light and the latter objects are too short-lived to model sensibly from
the color-magnitude diagram.) Here we avoid the details of the physics used
in the computer-based stellar evolution model. Instead we refer interested
readers to the basic description given in the online supplement to this paper
[van Dyk et al. (2009)] and to the more detailed discussion that can be found
in the many papers cited here and in the online supplement.

2.3. Empirical exploration. Our primary goal is to develop principled
statistical methods that allow us to use observed data to fit the parameters of
the stellar evolution models and to evaluate the empirical fit of these models.
We focus on data that can easily be collected simultaneously on each star
in a large field, in particular, on the intensity of each star’s electromagnetic
radiation in each of several wide wavelength bands, which we refer to as the
star’s magnitudes. We typically use two or three magnitudes for each star
in our analysis, but could use ten or more. The number of stars in the data
set can vary substantially, as few as 50 or as many as 50,000 are possible.4

Currently we focus on data sets with fewer than 500 stars.
At least the brighter stars of most of the clusters we are studying are ob-

servable with small 1m-class telescopes. These instruments are common, are
typically located in the desert southwest of the United States or in north-
ern Chile, and can be equipped with cameras that focus approximately one
square degree of the sky onto a charge coupled device (CCD) detector. The
detector is sensitive to light with wavelengths of less than about one mi-
cron (infrared light) and either the detector or the atmosphere precludes
sensitivity below about 350 nm (shortest wavelength of visible light). CCD
detectors provide no information on the wavelength of this light, and so

3Our use of “stellar evolution model” is somewhat different than is in common use in
the astronomical literature, where it generally refers to a model for the evolution of the
main sequence and red giants. We use it to refer to a more comprehensive model that
includes the transition to and evolution of white dwarfs.

4Open clusters are groups of up to a few thousand stars inside a galaxy that are loosely
bound by gravity. Globular clusters, on the other hand, are tightly bound by gravity,
composed of hundreds of thousands of stars, and are external satellites to a galaxy. Our
current work focuses on open clusters which may have 50–500 stars cataloged in a data
set.
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observations are made through filters that only allow wavelengths in a (typ-
ically) 100–200 nm band to be observed. Taking separate images through
several filters allows us to observe several photometric magnitudes. For the
faintest stars of interest, particularly the white dwarfs, we often need to
employ the same techniques, but with 4–8 m class telescopes or with the
Hubble Space Telescope.

Other types of observations are available to astronomers, but are typically
more costly. For example, the metallicity of a star can be determined by
careful analysis of a high-resolution spectrum, which is essentially thousands
of photometric magnitudes recorded in very narrow wavelength bands for
one star. The metallicity of a cluster can be determined by repeating this on
ten or so stars in the cluster and comparing and combining the results. This
requires much higher quality data than we are using. The results of previous
analyses of this sort, however, can be used to formulate informative prior
distributions for the metallicity parameter. Another example is the use of
proper motion to determine which stars belong to a cluster. Proper motion
is due to the relative motion of stars and our Solar System as they orbit
the Galaxy and its measurement typically requires deep imaging that spans
at least a decade. Only two dimensions of motion can be measured this
way. Measuring an object’s velocity along the line of sight (radial velocity)
requires high-resolution spectral analysis. The electromagnetic waves from
objects moving away from Earth are elongated, causing features in the visible
spectrum to move toward the red end of the spectrum. The shift is known
as the Doppler shift and can be measured for known spectral features and
used to accurately measure radial velocity. A final example is the measure of
distance using parallax. Objects that are relatively close to the Earth appear
to make small movements on the sky as the Earth orbits the Sun. Precise
knowledge of the diameter of the Earth’s orbit along with simple geometry
can be used to deduce the distance to the object. This method has been
used to measure the distance to the stars in the Hyades cluster discussed in
Section 5.

Although we typically observe several magnitudes for each star, the stel-
lar evolution models are highly parameterized with five or six parameters
for each star. Unfortunately, it is typically not possible to fit all of these
parameters with useful accuracy using only a small number of magnitudes.
To simplify the parameter space, we focus on stellar clusters. Not only do
cluster stars possess nearly the same age, distance, metallicity, and helium
abundance, but since the stars are moving through the galaxy as a group,
their reddenings are also roughly the same. (Interstellar absorption is wave-
length dependent and tends to absorb less red light, and hence reddens the
appearance of the stars. The degree of reddening depends on the interstellar
material, and hence the amount of absorption.) Thus, only the mass varies
among the stars in a cluster and all other parameters are common to the
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cluster as a whole. As we shall see, this large reduction in the dimension
of the parameter space makes it possible for us to satisfactorily fit stellar
parameters.

Stellar surveys suggest that between one third and one half of all stars are
actually binary or multi-star systems in orbit around their common center
of mass. The stars in the majority of these systems are not directly distin-
guishable. For such systems, the observed luminosities are the sum of the lu-
minosities of the component stars. (Magnitudes are on a log-luminosity scale
and so must be transformed to luminosities before being added.) The added
luminosity of the stellar companion tends to shift the star system up on the
CMD, the larger the companion the greater the shift. If we do not properly
account for this systematic distortion of the data, and, in particular, the
location of the main sequence, it can bias the fitted stellar parameters. The
fact that magnitudes of binaries are systematically different from nonbina-
ries and that the degree of this difference depends on the relative masses of
the component stars, however, enables us to identify the component masses
in a statistical model. Thus, we propose a model that accounts for unre-
solved multi-star systems. (Because what appears to be a star may actually
be a multi-star system, we sometime use the words “star system” or simply
“system.” When there is no potential confusion, however, we continue to use
the word “star” for these possibly multi-star systems.)

Field stars form a second type of contamination. As viewed from Earth,
these stars are behind or in front of the stellar cluster, and thus are moving
in a different direction as they orbit the Galaxy. Although careful measure-
ments of proper motion and radial velocities can be used to determine if
a star is moving with the cluster and thus help to distinguish cluster stars
from field stars, such calculations have not been performed on all stars and
are not always conclusive. Thus, we must build field star contamination into
our statistical model.

3. A statistical model.

3.1. Basic likelihood. For a given set of stellar parameters, the stellar
evolution model predicts a set of magnitudes. The observed magnitudes,
however, are recorded with errors. Thus, we use the stellar evolution model
to compute the mean structure used in a likelihood function and the dis-
tribution of the measurement error to model the variability. In particular,
suppose we observe each of N stars in each of n filters. We denote the N ×n
matrix of observed magnitudes by X, with typical element xij representing
the magnitude observed for star i using filter j. We assume that the mea-
surement errors follow a Gaussian distribution, xij ∼ N(µij, σ

2
ij), where µij

is the predicted magnitude under the stellar evolution model and σ2
ij is the
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Table 1

Stellar parameters

Astrophysical

Parameter notation Value

θage T log10 age in log10 years
θ[Fe/H] [Fe/H] Metallicity, log10 of the ratio of iron and hydrogen

atomsa

θ[He/H] [He/H] Helium abundance, log10 of the ratio of helium and hy-
drogen atoms

θm−MV
m−MV The difference between apparent and absolute

magnitudeb

θAV
AV Absorption in the V filter in magnitudesc

Mi1 M Mass of the more massive star in binary-star system i
Mi2 M Mass of the less massive star in binary-star system i

aIron is used as a proxy for all atoms heavier than helium because it is relatively easy to
identify in spectral analysis. [Fe/H] is recentered using solar metallicity, so that a value of
one means 10 time more iron relative to hydrogen than the Sun.
bThe parameter m − MV is known as the distance modulus. Magnitude is a logarithmic
measure of brightness, with smaller numbers corresponding to brighter objects. The dif-
ference between apparent and absolute magnitude depends on distance, which can be
readily computed from the distance modulus. In particular, in the absence of absorption,
θm−MV

= 5 log10(d)− 5, where d is the distance measured in parsecs.
cThe apparent magnitude in the V filter, mV , can by computed from the absolute mag-
nitude in the V filter, MV , and AV via mV = MV + AV − 5 log10(d) + 5, where d is the
distance in parsecs.

variance of the measurement error, both for star i using filter j. The means
and variances also form N × n matrices, which we label µ and Σ.

While the components of Σ are assumed to be known from calibration
of the data collection device, the components of µ depend on the stellar
parameters of interest via the stellar evolution model. Table 1 lists the model
parameters. The first five rows in Table 1 list the stellar parameters that
are common to all stars in the cluster and we refer to them as the cluster

parameters. The only parameters that vary among the stars are their initial
masses, M1 = (M11, . . . ,MN1)

⊤, where the subscript 1 indicates that we
are assuming for the moment that the possibly multi-star systems are all
unitary systems; see Section 3.2. If Θ = (θage, θ[Fe/H], θ[He/H], θm−MV

, θAV
) is

the vector of cluster parameters, then the expected magnitudes for star i
can be expressed as

µi = G(Mi1,Θ),(1)

where µi is row i of µ and G is the 1×n vector-valued output from the stellar
evolution model, with Gj(Mi1,Θ) the expected magnitude using filter j. For
clarity, we refer to G as the stellar evolution model, and to the combination
of the likelihood function and the prior distributions as the statistical model.
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We can now write a preliminary likelihood function as

Lp(M1,Θ|X,Σ) =
N∏

i=1

(
n∏

j=1

[
1√

2πσ2
ij

exp

(
−

(xij −Gj(Mi1,Θ))2

2σ2
ij

)])
.(2)

This likelihood was proposed by von Hippel et al. (2006) and we refer to it
as the preliminary likelihood, using a ‘p’ in the subscript, because it does
not account for binary-star systems or field star contamination, the subjects
of the next two sections; see also DeGennaro et al. (2008). Although the
Gaussian form of (2) is simple, the complex nonlinear function G cannot be
expressed in closed form and complicates inference and computation.

One of our scientific goals is to compare and empirically evaluate individ-
ual and competing stellar evolution models. Thus, we may swap out G with
a competing evolution model, say, µi = H(Mi1,Θ) in (1) and (2).

3.2. Binary stars. For unresolved binary-star systems the observed lumi-
nosities are the sums of the luminosities from the two component stars. Be-
cause the relative masses of the component stars affect the observed magni-
tudes in a systematic way, it is possible to statistically identify both masses.
Thus, we can construct a more sophisticated likelihood function that ac-
counts for binary systems. In principle, the same is true of multi-star systems
with more than two stars. Because these systems are significantly rarer than
binary systems, and in the interest of parsimony, we confine our attention
to binary systems.

We assume each star system has a primary and a secondary mass. The
primary mass is the mass of the more massive component star and the
secondary mass is zero if the system has only one star. Thus, let M be
a N × 2 matrix with typical row Mi− = (Mi1,Mi2) representing the pri-
mary and secondary mass of star system i, respectively. Because the ob-
served luminosities are simply the sum of the luminosities of the component
stars, it is easy to modify the likelihood. Note, however, that the Lp is writ-
ten in terms of magnitudes, which are on an inverted log-luminosity scale:
magnitude = −2.5 log10(luminosity). Thus, we simply replace (1) with

µi = −2.5 log10[10
−G(Mi1,Θ)/2.5 + 10−G(Mi2,Θ)/2.5](3)

and make a similar substitution in (2).
Because binary systems involving white dwarfs undergo a more compli-

cated evolutionary history than we are able to model, we do not allow such
binary systems in our model.

3.3. Field star contamination. Some of the stars in the observed field are
not cluster members and, thus, their magnitudes are not well predicted by G

evaluated at the cluster parameters. Each of these stars has its own value of
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Θ and we have no statistical power to identify all of these parameters. Thus,
we assume a simple model for the magnitudes of the field stars that does
not involve any parameters of scientific interest. In particular, we propose
a uniform distribution on each of the magnitudes over a finite range that
corresponds to the range of the data,

pfield(Xi) = c for min
j

≤ xij ≤ max
j

for j = 1, . . . , n,(4)

and zero elsewhere, where Xi is row i of X and contains the observed mag-
nitudes for star i, (minj ,maxj) is the range of values for magnitude j, and
c = [

∏n
j=1(maxj −minj)]

−1. Of course, a more sophisticated model could be
used for the magnitudes of the field stars. For example, we could construct
a nonparametric model using a wider field of stars, none of which are part
of the cluster of interest. For our purposes, however, we find that this simple
model does a good job of separating out stars that differ systematically from
the cluster stars.

To construct the likelihood, we simply note that the observed data is
a mixture of cluster stars and field stars, and use a two-component finite
mixture distribution. In particular, we set Z = (Z1, . . . ,ZN ), with Zi equal
to one if star i is a cluster member and zero if it is a field star. Thus, our
final likelihood is

L(M,Θ,Z|X,Σ)

=
N∏

i=1

n∏

j=1

[
Zi√
2πσ2

ij

× exp
(
−({xij + 2.5 log10[10

−Gj(Mi1,Θ)/2.5(5)

+ 10−Gj(Mi2,Θ)/2.5]}2)(2σ2
ij)

−1
)

+ (1−Zi)pfield(Xi)

]
.

Our treatment of Z as a model parameter in the likelihood function is a
departure from the standard practice of marginalizing (5) over Z in a finite
mixture distribution. In a Bayesian analysis, however, it is natural to treat all
unknown quantities in the same manner and, from a scientific point of view,
we are sometimes interested in a particular star’s cluster/field classification.
Thus, we proceed with Z an argument of the likelihood function.

3.4. Prior distributions. We focus on a Bayesian analysis of this model
at least in part because it allows us to directly incorporate prior information
regarding the stellar parameters. We aim to accurately represent and quan-
tify astronomical knowledge of likely values for the various parameters. For
example, to reflect the fact that there are far more low mass stars than high
mass stars, we use a Gaussian prior distribution on the base 10 logarithm
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of the primary masses:

p(log10(Mi1)) ∝ exp

(
−

1

2

(
log(Mi1) + 1.02

0.677

)2)
,(6)

truncated to the range 0.1M⊙ and 8M⊙, where the constants are from the
fit derived by Miller and Scalo (1979). (Note protostars with mass less than
about 0.1M⊙ will not initiate a thermonuclear reaction and, for the clusters
that we are interested in, stars with a mass greater than approximately 8M⊙

would have long ago evolved into a neutron star or a black hole, and thus
would not be included in our data.) We use a uniform prior distribution on
the unit interval for the mass ratio of the secondary mass over the primary
mass. We need not truncate the secondary mass at 0.1M⊙ because low mass
secondaries are taken as evidence for unitary systems.

Since the stars in a stellar cluster tend to move together, we can use
proper motion, radial velocities, and, for nearby stars, parallax to help dis-
tinguish between cluster and field stars. For a well studied cluster such as
the Hyades, these measurements are available for many stars and can be
used to formulate prior probabilities for cluster membership; see Section 5.
For less studied clusters, we may use a common prior probability based on
the expected number of cluster stars. This can be estimated by simply com-
paring the number of stars per unit area in the cluster to areas nearby the
cluster.

Turning to the cluster parameters, we use a uniform prior distribution
between θage = 8.0 and θage = 9.7 for the log10 of age. This corresponds to a
power law prior distribution on the age with exponent −1. We believe this
distribution adequately reflects the observation that younger clusters are
more common than older clusters. The remaining cluster parameters require
cluster-specific prior distributions. We generally recommend putting Gaus-
sian prior distributions on θ[Fe/H], θ[He/H], θm−MV

, and log(θAV
). Informative

prior distributions, however, require reasonable knowledge of the values and
uncertainties of these parameters for a given cluster prior to analyzing the
color-magnitude data. In our experience, informative prior distributions are
not required for the cluster parameters [von Hippel et al. (2006); DeGen-
naro et al. (2008)]. Although in some cases narrow prior distributions help
us better determine the likely values of the cluster parameters, we often find
they are not needed for precise results.

4. Statistical computation.

4.1. Basic MCMC strategy. To fit the statistical model, we use an MCMC
strategy. Each parameter is updated one-at-a-time in a Gibbs sampler. This
is an ambitious strategy, given that there are 3N + 5 free parameters in
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(M,Θ,Z) and strong linear and nonlinear correlations in the posterior dis-
tribution.

Owing to the complex form of the stellar evolution model, G, none of
the complete conditional distributions of M or Θ are standard distributions
or even available in closed form. Thus, each of these parameters is updated
using a Metropolis rule with a uniform jumping rule, centered at the current
value of the parameter being updated. Even this strategy is quite demanding
because simply evaluating G, and thus the target posterior distribution, is
computationally very expensive.

To avoid evaluating G at every parameter update within each iteration,
we use a tabulated version of G that is constructed before the MCMC run.
The table has four dimensions corresponding to three of the dimensions of Θ

plus initial mass; absorption and distance modulus are handled differently.
(Recall some models for main-sequence stellar evolution only require four
cluster parameters. When we use these models the table is only three di-
mensional.) Each cell in the table records a vector of length n, corresponding
to the expected magnitudes in each of the observed color bands. These are
expected absolute magnitudes with no absorption, but can easily be con-
verted to expected apparent magnitudes that account for absorption using
the current values of θm−MV

and θAV
. A typical table will include eight

metallicity values, 50 ages, and about 190 initial masses. The values of these
parameters are not evenly spaced and are chosen to capture the complexity
of the underlying function. In fact, the number of mass entries may vary
with age and metallicity depending on how complex the magnitudes are as
a function of the initial mass. When evaluating the likelihood in the MCMC
run, we use linear interpolation within the table to evaluate G.

In one case we must extrapolate beyond the table. Unfortunately, the
models for stellar evolution of the main sequence do not extend to masses
less than 0.13−0.4M⊙, depending on the stellar evolution model, metallicity,
and age. This is an issue only for low mass companions, which are not the
focus of our work. Moreover, for all but the smallest main sequence primary
stars, a companion with mass less than 0.4M⊙ makes little difference to
the photometry of the system. Thus, we expect the relative accuracy of the
extrapolation to be of little consequence for our overall fitted model. We do,
however, want to allow for very small secondary stars, because many stars
are in fact unitary. Thus, we extrapolate outside the tabulated model but
do not trust the fitted masses or their error bars for small secondary stars,
believing many of these systems to be simple unitary systems.

Overall, the use of a tabulated version of G substantially improves the
computational performance of our sampler. One direct evaluation of G, de-
pending on the evolutionary state of the star, takes at least seconds on a
modern desktop computer and could take more than an hour, while inter-
polating in 3 or 4 dimensions takes only a fraction of a second. With a table
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of high enough resolution, we gain a substantial amount computationally
without significantly affecting the results.

In addition to simply evaluating the likelihood, there are a number of chal-
lenges in constructing the MCMC sampler so that its autocorrelations are
not prohibitively high. For example, the posterior distributions of the stellar
masses are highly dependent on whether a star is classified as a field star or a
cluster star. In particular, the posterior distributions of the masses are much
narrower for cluster stars, making it difficult for the sampler to change the
field/cluster classifications when conditioning on the masses. We are able
to reduce this correlation by using an alternative prior distribution on the
masses of the field stars. Since these are nuisance parameters, this change
has no substantive consequences. There are a number of other high linear
and nonlinear posterior correlations among the continuous parameters. We
eliminate these using a combination of static and dynamic transformations.
These issues are discussed in the next three sections.

4.2. Correlation reduction with an alternative prior specification. As dis-
cussed in Section 3.3, because the values of the cluster parameters do not
apply to the field stars, we are unable to constrain their masses using the
stellar evolution model. Inspection of (5) reveals that p(X|M,Θ,Σ,Z) does
not depend on the rows of M that correspond to stars classified as field
stars. Put another way, if we condition on Zi = 0 (i.e., star i is a field star)
for some subset of stars, the likelihood is not a function of the masses of
those stars. Thus, for stars classified as field stars, the complete conditional
distribution of their masses is simply the corresponding conditional distri-
bution of the prior distribution. For stars classified as cluster stars, on the
other hand, the likelihood can be very informative as to the masses and
the complete conditional distribution of the masses may look very different.
Simply stated,

p(Mi1,Mi2|X,Θ,Σ,Z)

is highly dependent on Zi and equal to p(Mi1,Mi2|Θ,Σ,Z) when Zi = 0.
This dependence leads to intractable autocorrelations in the sampling

chain. When the mass of a star that is classified as a field star is updated,
it is unlikely to be valued in the range associated with cluster membership,
even if the particular star has a substantial marginal posterior probability
of cluster membership. Given enough iterations, the mass may migrate to
the range associated with cluster membership, but the posterior relationship
between Z and M nonetheless hampers efficient sampling.

To solve this problem, we take advantage of the fact that astronomers are
only interested in the masses of stars that are cluster stars or, more precisely,
in the conditional posterior distribution of mass given cluster membership.
If we condition on cluster membership, that is, Zi = 1 for each i, the choice
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of prior distribution for the masses of field stars is clearly irrelevant. Because
the field star model does not depend on any of the parameters, we can fur-
ther show that none of the posterior distributions of scientific interest are
affected by the choice of p(Mi1,Mi2|Zi = 0). Namely, neither p(Θ,Z|X,Σ),
p(Mi1,Mi2,Mj1,Mj2,Θ|Zi = 1,Zj = 1,X,Σ), nor similar posterior distribu-
tions depend on the choice of prior distribution for the field star masses; see
the appendix for details. Thus, how we sample the masses of field stars is
immaterial to the final scientific analysis. From a sampling point of view,
it would be ideal if the posterior distributions of the masses were identical
regardless of the current cluster/field star classification. Since we are at lib-
erty to set the conditional prior distributions of the mass given field star
classification without upsetting our scientific conclusions, our strategy is to
set this prior distribution so as to reduce the posterior relationship between
M and Z. The joint prior distribution can be factored via

p(M,Θ,Z) =
N∏

i=1

p(Mi1,Mi2|Zi)p(Z)p(Θ).

We continue to set the prior distributions p(Mi1,Mi2|Zi = 1) as in (6) and of
p(Z) and p(Θ) as described in Section 3.4. For p(Mi1,Mi2|Zj = 0), however,
we use an estimate of p(Mi1,Mi2|X,Zi = 1) based on its first two sample
moments computed in an initial phase of the MCMC sampler. The estimate
is parameterized as a t6-distribution. Notice that this strategy does not
mean that the complete conditional distributions of the components of M

do not depend on Z because these distributions also condition on Θ, but in
our experience the dependence is weak enough to allow stars to efficiently
switch from field to cluster and back.

A side effect of this prior specification affects the Metropolis acceptance
probability when updating each of the Zi. Because p(Mi1,Mi2|Zi) depends
on Zi, its values in the numerator and denominator of the acceptance prob-
ability will differ if the proposed value of Zi is different from the current
value. This requires us to properly normalize this prior distribution, which
can easily be accomplished analytically.

4.3. Correlation reduction via static and dynamic transformations. To
avoid sampling inefficiency caused by high posterior correlations among the
continuous parameters, we introduce a multivariate reparameterization. This
involves both a simple static reparameterization of the masses and a dynamic
reparameterization involving several parameters.

Since the total mass of the system is a principle determinant of the mag-
nitudes, we expect the primary and secondary mass of each system to be
negatively correlated. Preliminary analyses bore this out and suggested a
static transformation that largely eliminates the nonlinear correlation. In
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particular, we define Ri = Mi2/Mi1 and use the ratio of the secondary mass
to the primary mass in place of the secondary mass when constructing the
sampler. We emphasize that this transformation removes nonlinear corre-
lations: Mi1 and Ri exhibit linear correlation in some cases. Our dynamic
method for removing linear correlations is discussed below. When imple-
menting the Metropolis update for each Ri, we reflect at the boundaries of
the unit interval parameter space to maintain the symmetric jumping rule.

Preliminary analyses revealed a number of remaining strong linear corre-
lations among the parameters. To adjust for these, we introduce a parame-
terized linear transformation of the parameter that is dynamically tuned to
the strength of the correlation in a sequence of initial runs of the sampler.
The functional form of the transformation is determined using a combina-
tion of astrophysics-based intuition and observation of the behavior of the
sampler. Using a sequence of initial runs, we compute a mixture of condi-
tional and marginal linear regressions on the sampled parameters. This se-
quence is generated in an ad hoc manner using trial and error to construct a
transformation that is tuned to characteristics of the computer-based stellar
evolution model and eliminates the large correlations in the Markov chain.
The final transformation can be expressed as

Mi1 = Ui + βR,i(Ri − R̂i) + βage,i(θage − θ̂age) + β[Fe/H],i(θ[Fe/H] − θ̂[Fe/H])

+ βm−MV ,i(θm−MV
− θ̂m−MV

),

θAV
= V + γ[Fe/H](θ[Fe/H] − θ̂[Fe/H]) + γm−MV

(θm−MV
− θ̂m−MV

),

where hats denote approximate posterior means that are calculated in an
initial run for use in the transformation. The components of β and γ param-
eterize the transformation and are also computed during a sequence of initial
runs using a sequence of simple linear marginal and conditional regressions;
details are given in Section 4.4. The transformed variables, Ui and V , are the
residuals from these regressions. Thus, the MCMC sampler is run on the pa-
rameters {(U1,R1), . . . , (UN ,RN ), θage, θ[Fe/H], θ[He/H], θm−MV

, V }, which we
find significantly improves the convergence of the chain, as illustrated in the
following section.

4.4. Dynamic MCMC methods. We begin the MCMC run with a burn-in
period that is run with the transformed masses, but with the components of
β and γ all set to zero. That is, the burn-in is run without the dynamic linear
transformation. Upon completion of the burn-in, we implement a number
of initial runs that are designed to compute components of β and γ. Af-
ter each of these runs, we update the definition of the Ui or V with the

updated component of β or γ. Thus, we begin with β = 0 and U
(0)
i = Mi1

and regress U
(0)
i on (Ri − R̂i) to compute βR,i for each i. In this and all
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the regressions used to compute the dynamic transformations, the predictor
variables are recentered at zero by subtracting off their means. Using the
newly computed value of βR,i, but with the other components of β still set to

zero, we construct an updated transformation, U
(1)
i , that is used in place of

U
(0)
i in the second initial run. We continue in this way through the multiple

initial stages that are described in Table 2. Notice that, in the first runs, we
filter out stars that appear to be field stars and force the remaining stars
to be classified as cluster stars. This results in an MCMC sampler that is
more robust to poor starting values and poor choices of β and γ, and can
more easily find the posterior region of high mass. Once we have tuned the
transformation parameters, we allow cluster-field star jumping of all stars in
the data set and update all of the components of β and γ. Some of the re-
gressions are conditional and others are marginal. These choices were made
via trial and error, with the aim of improving the mixing of the sampler.
In some cases, when the fitted transformation parameters are small and not
statistically significant and/or have a sign that is at odds with astrophysical
intuition, we set the transformation parameter equal to zero. For example,
Mi1 and θage are highly correlated for white dwarfs and largely unrelated for
main-sequence stars. Thus, many of the βage,i coefficients are fixed at zero.

The acceptance rates for the Metropolis jumping rules are monitored
throughout the initial runs. If the acceptance rate among the previous 200
proposals falls below 20%, the width of the uniform jumping rule is de-
creased. If the rate grows above 30%, the width is increased. Initial run six
in Table 2 is a period when only the acceptance rates are monitored.

The number of draws in the burn-in period and each of the initial draws
can be set by the user. Currently we use 30 thousand draws in the burn-in
and 5 or 10 thousand draws in each of the initial runs. Regression analyses
are run using every fiftieth of the 5 or 10 thousand draws. This results in
substantial computing time (typically half to three quarters of the total)
being devoted to the burn-in and initial draws. As illustrated in Figure 3,
however, this is a good investment. We are able to obtain nearly uncorrelated
posterior samples and reliable summaries of a complex posterior distribution.

5. The Hyades. The Hyades is 151 light years away [Perryman et al.
(1998)] and is the nearest star cluster to our Solar System.5 The cluster

5The group of stars known as the Ursa Major Moving group is thought to be a dispersed
cluster of stars formed from the same molecular cloud. The stars appear to have similar
metallicity, age, and are moving as a group. At only 81 light years away and with its
dispersed nature, this group of stars is scattered across a large portion of the northern sky
and includes nearly all of the bright stars in the Big Dipper. The Sun is moving toward
these stars, but at ten times the age is not part of this grouping.
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Table 2

Sequence of initial runs used to compute correlation reducing transformation

In the initial burn-in period and in the first 6 initial runs each star’s cluster membership
status is held constant. That is, the Zi’s are not updated from the starting values input
by the user.

0. Burn-in period.
1. Compute each βR,i by regressing each U

(0)
i on Ri.

2. Compute each βage,i by regressing each U
(1)
i on θage. In this run θ[Fe/H], θ[He/H],

θm−MV
, and θAV

are fixed at our best estimate of their posterior means.

3. Compute each βm−MV ,i by regressing each U
(2)
i on θm−MV

. Compute γm−MV
by

regressing V (0) on θm−MV
.

4. Compute each β[Fe/H],i by regressing each U
(3)
i on θ[Fe/H]. Compute γ[Fe/H] by re-

gressing V (1) on θ[Fe/H].
5. Approximate the posterior mean and variance of Mi1 and Ri to construct the alter-

native prior distributions on the masses for field stars.
6. Fine tune step sizes used in the Metropolis proposals to optimize acceptance rates.

In a second set of 7 initial runs, the above runs are repeated (including a second burn-in
period), but this time the cluster memberships are sampled.

Step sizes for all parameters are adjusted continuously throughout all of the initial runs.
Predictor variables are recentered at zero in all regressions.

is visible to the unaided eye and forms the nose of Taurus the Bull. The
distance to the Hyades can be accurately computed using stellar parallax
of its constituent stars. The age of the cluster has also been measured and
is believed to be about 625± 50 million years [Perryman et al. (1998)]. This
estimate is based on the fact that as a cluster ages its most massive stars
are the first to evolve into red giants. These massive stars are at the upper
left of the main sequence, the first part of the main sequence to disappear
from a CMD. This so-called main sequence turn off can be used to estimate
the age of a cluster [e.g., Chaboyer, Demarque and Sarajedini (1996); Mont-
gomery, Marschall and Janes (1993); Sarajedini et al. (1999)]. Our primary
scientific goal is to compare these age estimates with age estimates deter-
mined primarily from the colors and magnitudes of white dwarf stars. Since
the cluster stars have a common age, we expect these age estimates to be
similar. Up until now for the Hyades, however, the best age estimate based
on white dwarfs [300 million years, Weidemann et al. (1992)] is about half
the best estimate based on the main sequence turn off [625 million years;
Perryman et al. (1998)]. Thus, the comparison is an opportunity to evaluate
the underlying physical models and analysis techniques. To focus our anal-
ysis on white dwarfs, we remove both the red giants and the stars in the
main sequence turn off from our data set.

More generally, we aim to evaluate our statistical method and the un-
derlying computer models by comparing existing measurements with those
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Fig. 3. Improving convergence with Dynamic Transformations. The plots in the left col-
umn show time series plots of the MCMC draws of the four cluster parameters (θage,
θ[Fe/H], θm−MV

, and θAV
, respectively) during the initial burn-in period. The plots repre-

sent a portion of the chain after it has reached the vicinity of the posterior mode but before
the dynamic transformations are implemented. The right column shows time series plots
of the same four parameters after the dynamic transformations have been computed and
implemented. The transformations significantly reduce the autocorrelations of the chains.

obtained with our likelihood-based fit of the stellar evolution model and to
compare the observed colors and magnitudes with those predicted by the

stellar evolution models. This investigation is the most sophisticated empir-
ical test of the computer-based stellar evolution models to date. Here we
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present only a sampling of our results. Detailed simulation studies under
the simplified model given in (2) appear in von Hippel et al. (2006). More
detailed comparisons of the stellar evolution models for the main sequence
and discussion of the ramifications for the differences on the fitted stellar
and cluster parameters appear in Jeffery et al. (2007) and DeGennaro et al.
(2008).

Figure 4 represents our fitted values for the log10 cluster age and clus-
ter metallicity, θage and θ[Fe/H]. The two plots give 67% posterior intervals
computed under the three stellar evolution models for the main sequence
and compare them with the most reliable parameter estimates based on the
main sequence turn off for age [Perryman et al. (1998)] and based on high-
resolution spectral analysis for metallicity [Taylor and Joner (2005)]. Such
best available estimates are used to formulate prior distributions for all clus-
ter parameters except age. Because age is the parameter of primary scientific
interest, we use a uniform prior distribution for θage; see DeGennaro et al.
(2008) for an analysis of the sensitivity to the choice of prior distribution.

Because our goal is to estimate the age of the Hyades based on the col-
ors and magnitudes of the white dwarf stars and because it is known that
the stellar evolution models are flawed for the faintest main sequence stars
(see the discrepancy between the observed magnitudes and the fitted Yale–
Yonsei main-sequence model at the lower right of Figure 2), we repeat our
analysis, leaving out stars with V magnitudes fainter than a series of given
thresholds. The horizontal axes of the two plots in Figure 4 are the magni-
tude of the faintest main sequence stars used in the analysis. It is apparent
from the plots that as we include fainter stars in the analysis, the posterior
distributions change considerably. It is also evident that the fitted values are
quite sensitive to the choice of stellar evolution model for the main sequence
stars. One of the primary aims of our study is to evaluate the reliability of
the physics-based stellar evolution models. Figure 4 makes it clear that none
of the models is reliable for the faintest stars.

Although our primary scientific goal is to determine θage based on white
dwarfs, some main sequence stars must be included to constrain the other
cluster and stellar parameters. These parameters depend much more heavily
on the main sequence data and models. Thus, in the left most fit in the lower
panel of Figure 4, where only white dwarfs are included in the data set, the
posterior and prior distributions for θ[Fe/H] coincide. As we include more
data, the posterior distribution for θ[Fe/H] changes substantially and becomes
more dependent on the choice of model. The cluster age, however, is far less
sensitive to the choice of model, at least for stars of magnitude about 8.5 and
brighter. Thus, despite the inaccuracies and/or approximations in the stellar
evolution models for the main sequence, we are able to reliably estimate the
age and for the first time produce a white-dwarf age estimate that agrees
with the most reliable age estimate based on the main sequence turn off.
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Fig. 4. Effect of Data Depth on Fitted Age and Metallicity. The two plots show the poste-
rior mean and one posterior standard deviation intervals for θage and θ[Fe/H], respectively.
The horizontal axis indicates the faintest magnitude of main sequence stars included in the
data; recall that higher magnitudes correspond to fainter stars. The fit is repeated using
each of the three stellar evolution models for main sequence stars. The model compiled
in the Dartmouth Stellar Evolution Database [Dotter et al. (2008)] is represented by blue
squares, the model of Girardi et al. (2000) by red circles, and the Yale–Yonsei model by
black triangles. The Yale–Yonsei model is replicated with two sets of starting values. The
black horizontal lines are the mean and one standard deviation intervals for the most re-
liable external estimate of the age and metallicity of the Hyades. This estimate was used
to quantify the Gaussian prior distribution on θ[Fe/H], while a flat prior distribution was
used on θage. The plots show that the stellar evolution models break down for the faintest
stars and under-represent uncertainty in the fits.

The sensitivity of the fitted values both to the choice of stellar evolution
model and to the depth of data included in the analysis clearly indicate
that the posterior standard errors computed under any particular model are
underestimates of the actual uncertainty for the cluster parameters. This is
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true for θage as well as the other parameters. Systematic errors stemming
from apparent inaccuracies and/or approximations in the stellar evolution
models contribute substantially to the uncertainty. A synthesis of the in-
formation in Figure 4 into a best estimate of cluster parameter along with
a reliable estimate of uncertainty is of particular scientific interest to an
astronomer. A formal statistical approach might use model averaging to
combine the perspectives of the three stellar evolution models into a single
coherent analysis. One might expect the resulting posterior variance to be
larger under the mixed model than under any of the individual models. A
statistical analysis, however, is only as good as the model it is predicated
upon. Thus, a better long-run strategy is to explore the differences among
the stellar evolution models in light of the observed data, with the goal of
designing models that more reliably represent the underlying physical pro-
cesses and are better able to predict the observed data. For the time being,
we base our final parameter estimates on main sequence stars of magnitude
8.5 or brighter and conduct a simple ANOVA-type analysis that combines
the within-model and between-model uncertainty.

As a second evaluation of the underlying physical models, we compare
the posterior distribution of the primary and secondary masses of a known
binary star system called vB022 to an externally computed estimate. The
posterior distribution of the stellar masses computed using the Yale–Yonsei
main-sequence evolution model and using main sequence stars down to mag-
nitude 8.5 appears in Figure 5. The non-Gaussian character of the distribu-
tion is both striking and typical of many of the low dimensional marginal
distributions. This highlights an advantage of our Bayesian approach: We
are able to marginalize to the parameters of direct scientific interest in a
natural manner that avoids any Gaussian approximation to the likelihood
function.

To evaluate the underlying physical models, we compare the posterior dis-
tribution in Figure 5 to an external estimate of the stellar masses computed
using the radial velocities of the two component stars in the system [Peter-
son and Solensky (1988)]. These measurements are quite reliable and are
independent of the data and models that go into our estimates. Although
our estimate of the secondary mass is consistent with the external estimate,
the more reliable external estimate of the primary mass is about 5% larger
than our estimate. We attribute this to systematic errors in the underly-
ing physical models that we use. In Figure 2, vB022 is marked by a yellow
point, and its V magnitude is 8.5. This is right at the point where the stellar
evolution models begin to diverge in their fit; see Figure 4. This divergence
grows worse lower in the main sequence; see Figures 2 and 4.

6. Discussion. We have described a Bayesian model-based approach to
fitting the stellar and cluster parameters of physics-based computer models
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Fig. 5. The Joint Posterior Distribution for the Primary and Secondary Masses of the
Star vB022 in the Hyades. The scatter plot shows the Monte Carlo sample from the pos-
terior distribution under our analysis using the Yale–Yonsei model for main sequence
evolution. The star has a posterior probability of cluster membership equal to 99.955%
and the plot gives the conditional posterior distribution of the two masses given that the
binary system is a member of the cluster. This is compared with an external estimate of
the two masses that is indicated by the open circle with whiskers that correspond to 95%
marginal confidence intervals. Our estimate of the primary mass is about 5% lower than
the more reliable external estimate. This difference is attributed to systematic errors in
the underlying physical models. The masses are in units of M⊙.

for stellar evolution. Our method constitutes the first statistical attempt
to empirically evaluate and compare these models. Although initial results
point to some inadequacies in the underlying models, their predictions do
largely agree with the observed data. Thus, our white-dwarf based estimates
of the cluster parameters are the best estimates available to date of their
kind. That these estimates largely agree with the main sequence turn off
estimates validates both our estimates and our technique, and, to a certain
extent, the underlying computer models. In the future we hope that our
technique can be improved with an extension of our methods to include red
giants and main sequence stars at the turn off and by incorporating updated
computer models. The larger and more informative data sets should yield
even more precise estimates. Moreover, with more reliable computer models
in hand, more sophisticated techniques, such as Bayes factors and model
averaging, can be used to evaluate and compare the underlying physical
models.

APPENDIX

In this appendix we verify that the posterior distribution of scientific
interest is not affected by the choice of prior distribution for the stellar
masses conditional on a star being a field star, namely, p(Mi−|Zi = 0) for
i = 1, . . . ,N , with Mi− the pair of masses for star i. In the interest of brevity,
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we rewrite the likelihood given in (5) as

L(M,Θ,Z|X,Σ) =
N∏

i=1

[Zif1(Xi,Mi−,Θ) + (1−Zi)f0(Xi)],(7)

where Xi is the vector of magnitudes observed for star i, f1 is the joint dis-
tribution of the magnitudes for a cluster star, and f0 is the joint distribution
of the magnitudes for a field star. The joint posterior distribution can then
be written

p(M,Θ,Z|X,Σ) ∝
N∏

i=1

[Zif1(Xi,Mi−,Θ)p(Mi−|Zi)p(Zi)

(8)
+ (1−Zi)f0(Xi)p(Mi−|Zi)p(Zi)]p(Θ).

Expanding the product results in 2N terms of the form

p(Θ)
∏

i∈I1

Zif1(Xi,Mi−,Θ)p(Mi−|Zi)p(Zi)

(9)
×
∏

i∈I0

(1−Zi)f0(Xi)p(Mi−|Zi)p(Zi),

where I0 and I1 partition {1,2, . . . ,N}. (The 2N terms correspond to the
2N two-set partitions of {1,2, . . . ,N}.) Due to the leading factor in each
product, p(Mi−|Zi)p(Zi) is evaluated at Zi = 1 for i ∈ I1 and at Zi = 0 for
i ∈ I0.

To compute the marginal posterior distribution p(Θ,Z|X,Σ), we inte-
grate (8) over M, which corresponds to the sum of 2N integrals over terms
of the form given in (9). Because

∫
(1 − Zi)f0(Xi)p(Mi−|Zi)p(Zi)dMi− =

(1 − Zi)f0(Xi)p(Zi) for any proper choice of p(Mi−|Zi), however, each of
these integrals depends on p(Mi−|Zi) only if i ∈ I1. Thus, p(Θ,Z|X,Σ)
does not depend on the choice of p(Mi−|Zi = 0).

Using a similar argument, we can show, for example, that p(Θ,Mi−,Mj−|Zi =
Zj = 1,X,Σ) does not depend on the choice of p(Mi−|Zi = 0) for i = 1, . . . ,N .
If we integrate (8) over the masses of a subset of the stars, the resulting dis-
tribution does not depend on p(Mi−|Zi = 0) for the marginalized stars by the
same argument as outlined above. For the remaining stars, p(Mi−|Zi = 0)
again falls out when we condition on their cluster membership, for example,
Zi = Zj = 1.
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SUPPLEMENTARY MATERIAL

Statistical analysis of stellar evolution: online supplement

(DOI: 10.1214/08-AOAS219SUPP; .pdf). This supplement contains four
color figures and a description of the physics behind the computer-based
stellar evolution models. This material was originally intended to be in-
cluded in this article, but was removed for editorial reasons. The images are
visually impressive but not central to our statistical analysis. The section
on the computer model provides details for readers interested in the inner
workings of the likelihood function used in this article.
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