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Testing velocity-dependent CPT -violating gravitational forces with radio pulsars

Lijing Shao1, 2, ∗ and Quentin G. Bailey3, †
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2Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

3Department of Physics and Astronomy, Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
(Dated: October 16, 2018)

In the spirit of effective field theory, the Standard-Model Extension (SME) provides a comprehensive frame-
work to systematically probe the possibility of Lorentz/CPT violation. In the pure gravity sector, operators
with mass dimension larger than 4, while in general being advantageous to short-range experiments, are hard
to investigate with systems of astronomical size. However, there is exception if the leading-order effects are
CPT-violating and velocity-dependent. Here we study the lowest-order operators in the pure gravity sector that
violate the CPT symmetry with carefully chosen relativistic binary pulsar systems. Applying the existing an-
alytical results to the dynamics of a binary orbit, we put constraints on various coefficients for Lorentz/CPT
violation with mass dimension 5. These constraints, being derived from the post-Newtonian dynamics for the
first time, are complementary to those obtained from the kinematics in the propagation of gravitational waves.

PACS numbers: 04.80.Cc, 11.30.Cp, 11.30.Er, 95.30.Sf, 97.60.Gb

I. INTRODUCTION

There is a great deal of theoretical interest to probe new
physics beyond the Standard Model of particle physics, and
the General Relativity (GR) theory of gravitation [1–4]. Most
of them stem from the need for a theory of quantum gravity,
namely, to unify quantum field theories and GR, or in other
words, to describe the four fundamental forces within a sin-
gle mathematical setting [5–7]. Up to now, although there are
achievements at different levels, not one proposal has been
singled out as the widely accepted final theory for quantum
gravity. On the other hand, observational evidence that was
accumulated during the past decades — with intriguing puz-
zles from dark matter, dark energy, and inflationary cosmol-
ogy, just to name a few — points to the need going beyond the
current paradigm of modern theoretical physics [8–10].

Broadly speaking, there are two ways to investigate new
physics beyond our current understanding: theory specific
and theory agnostic. Effective field theory (EFT) is a natu-
ral candidate framework for the latter [6, 11]. In the spirit
of EFT, Kostelecký and collaborators have developed a com-
prehensive framework, dubbed the Standard-Model Extension
(SME), to catalogue all possible operators that are gauge in-
variant, Lorentz covariant, and energy-momentum conserv-
ing [5, 12–17]. In general, a violation in CPT implies a vi-
olation in the Lorentz symmetry [18]. In a practical way, we
will collectively call the coefficients of new operators beyond
the Standard Model and GR coefficients for Lorentz/CPT vi-
olation [19]. During the past decades, the SME has been
successfully applied in various experiments, and many con-
straints were set on the coefficients for Lorentz/CPT viola-
tion [19–21]. No statistically convincing violation has been
found yet [19].

We here focus on the pure gravity sector of SME [14,
15, 17, 22–25]. The general framework for Riemann-Cartan

∗ lshao@pku.edu.cn
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spacetime was described in Ref. [14]. To be mathematically
compatible with the Riemann-Cartan geometry, Lorentz/CPT
breaking can be considered to be spontaneous, instead of ex-
plicit [26]. Extra dynamical fields in the framework obtain
their vacuum expectation values through symmetry breaking
cosmologically, in analog with the Higgs mechanism in the
Standard Model. However in SME these fields are not nec-
essarily to be scalar fields, but can take on nontrivial space-
time indices and therefore have tensorial nature. Therefore,
after symmetry breaking, the effective Lagrangian is observer
Lorentz invariant, but particle Lorentz violating [10, 14, 15].
To be fully compatible with geometrical requirements at de-
sired orders, the underlying fluctuating Nambu-Goldstone
modes that arise from the symmetry breaking need to be
propoerly accounted for [14, 15]. In Ref. [15] the post-
Newtonian behaviours from the pure-gravity sector of SME
for operators with mass dimension up to 4 were studied. The
leading-order post-Newtonian effects are described by a ten-
sor field, s̄µν, where the “bar” indicates that it is the vac-
uum expectation value of the underlying dynamical field sµν.
Different experiments, including lunar laser ranging [27, 28],
atom interferometers [29–31], cosmic rays [32], pulsar tim-
ing [33–38], planetary orbital dynamics [39], and gravita-
tional waves [40, 41] were used to constrain s̄µν (see Hees
et al. [20] for a review).

Recently, higher-dimensional operators with mass dimen-
sion larger than 4 in the gravity sector of SME were in-
vestigated, and short-range gravity experiments in laboratory
were identified to be the best to constrain these terms due to
the extra powers in 1/r for the gravitational forces derived
from these operators [22, 23, 42, 43]. However, there is an
exception. Bailey and Havert [25] found that the leading-
order CPT-violating operators with mass dimension 5 produce
a gravitational force, between two objects a and b, propor-
tional to (va − vb) /r3. For short-range gravity experiments,
(va − vb) /c is very close to zero, thus these experiments are
very hard, if ever possible, to probe these terms. Estimated
sensitivities of different experiments to these new operators
were tabulated (see Table III in Ref. [25]), where binary pul-
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sars turn out to be among the most sensitive probes. This mo-
tivates us to take a closer look at these new operators, and to
collect the best binary pulsars in order to derive constraints on
the coefficients for Lorentz/CPT violation.

The paper is organized as follows. In the next section, we
review the structure of the gravity sector of SME at leading
orders, and give the expressions for secular changes for el-
ements of a binary orbit [15, 25]. Then in section III we
carefully choose the binary pulsars that are suitable for the
test, and discuss our approach to evade difficulties related to
observationally unknown angles and the consistency in using
timing parameters with a priori unknown component masses.
Our direct constraints are summarised in Table IV, and they
are properly converted to constraints on the coefficients in the
Lagrangian in Tables V and VI. In the last section we point
out the perturbative nature of SME and the post-Newtonian
approach, thus we should keep caveats in mind when deal-
ing with strongly self-gravitating bodies like neutron stars
(NSs) [44, 45]. Throughout the paper, unless explicitly stated,
we use units where ~ = c = 1.

II. THEORY

At present there are two approaches to the gravity sector
of the SME. The first is a general coordinate invariant ver-
sion [14], while the second focuses on a spacetime that can
be expanded around a Minkowski metric [17]. These two ap-
proaches have distinct underlying methodology, but are inter-
related. We use the latter in this work. We restrict ourselves
to the discussion of the part of spacetime where, after fixing
the gauge (say, the harmonic gauge), linearized gravity is a
good approximation. The metric is decomposed into a flat-
spacetime metric, ηµν ≡ diag {−,+,+,+}, and a perturbation,
hµν,

gµν = ηµν + hµν , (1)

where
∣∣∣hµν∣∣∣ � 1. With this assumption, it is possible to write

down the generic Lagrangian density for a spin-2 massless
particle, organized by the order of the mass dimension of the
coupling coefficients [14, 15, 25, 42, 46],

L = LGR +L
(4)
SME +L

(5)
SME + · · · , (2)

where the GR terms are,

LGR = −
1

32πG
hµνGµν +

1
2

hµνT
µν
matter , (3)

with Gµν the linearized Einstein tensor, and T µν
matter the matters’

energy-momentum tensor.

The leading-order corrections in Eq. (2) are [25],

L
(4)
SME =

1
32πG

s̄µκhνλGµνκλ , (4)

L
(5)
SME = −

1
128πG

hµνqµρανβσγ∂βRρασγ , (5)

where Rρασγ is the linearized Riemann curvature tensor, and
Gµνκλ is its double dual; s̄µκ and qµρανβσγ are coefficients for
Lorentz/CPT violation. Components of s̄µκ are dimensionless,
while those of qµρανβσγ have the dimension of the length (or
the inverse mass). In the operational counting in SME [14],
L

(4)
SME breaks the Lorentz symmetry, but preserves the CPT

symmetry, while L(5)
SME breaks both Lorentz and CPT symme-

tries [14]. s̄µκ is a symmetric, traceless tensor, thus it has 9
independent components. The first three indices of qµρανβσγ

are completely antisymmetric, while the last four have the
symmetry of the Riemann tensor. Thus, there are 60 inde-
pendent coefficients in qµρανβσγ [25, 46]. Because s̄µκ has
already been discussed in various literature [14, 15, 19], we
will focus on qµρανβσγ in this paper. The contributions from
s̄µκ are kept in some expressions in the text, only for inter-
ested readers for convenient comparisons; all numerical cal-
culations in this paper have set s̄µκ = 0. As mentioned by
Bailey and Havert [25], some specific models have direct or
indirect mappings to the Lagrangian in Eqs. (4) and (5), like
the vector field models with a potential term driving sponta-
neous Lorentz/diffeomorphism breaking [47] and those with
additional beyond-Maxwell kinetic terms [48], noncommuta-
tive geometry [49], quantum gravity [50], and so on.

Neglecting higher-order terms, the field equation derived
from Eq. (2) reads [25],

Gµν = 8πGT µν
matter + s̄κλGµκνλ −

1
4

qρα(µν)βσγ∂βRρασγ , (6)

where (·) denotes the symmetrization of indices.

With post-Newtonian techniques [51], one can derive the
leading-order Lagrangian for two bodies a and b [15, 25],

L =
1
2

(
mav

2
a + mbv

2
b

)
+

Gmamb

r

(
1 +

3
2

s̄00 +
1
2

s̄ jkn̂ jn̂k
)

+
Gmamb

2r

[
3s̄0 j

(
v

j
a + v

j
b

)
+ s̄0 jn̂ j

(
vk

a + vk
b

)
n̂k

]
−

3Gmamb

2r2 v
j
ab

(
K jklmn̂kn̂ln̂m − K jkkln̂l

)
, (7)

where ma and mb are masses, va and vb are velocities (a bold- face indicates vectors), r ≡ ra − rb is the relative separation,
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and n̂ ≡ r/r with r ≡ |r|, vab ≡ va − vb. As can be seen from
the second line of the equation, while the s̄µν terms depend

on the “absolute” velocities of bodies, the K jklm terms (to be
introduced below) only depend on the relative velocity of two
bodies. When s̄µν = 0, the Lagrangian reduces to,

L =
1
2

(
mav

2
a + mbv

2
b

)
+

Gmamb

r
−

3Gmamb

2r2 v
j
ab

(
K jklmn̂kn̂ln̂m − K jkkln̂l

)
. (8)

In Eq. (7) we have defined,

K jklm ≡ −
1
6

(
q0 jk0l0m + qn0knl jm + qn jknl0m + permutations

)
,

(9)

which is the linear combination of qµρανβσγ that enters the
post-Newtonian scheme at leading order [25]; “permutations”
here mean all symmetric permutations in the last three indices
klm. While the post-Newtonian limit contains all 9 indepen-
dent coefficients in s̄µν, there are only 15 independent combi-

nations of 30 irreducible pieces (out of 60) in qµρανβσγ appear-
ing [25]. This is similar for the Lorentz-violating effects on
the gravitational-wave propagation in SME, where a subset of
16 of these coefficients appear at leading order [46].

Using the Euler-Lagrange equation,

d
dt

∂L
∂va
−
∂L
∂ra

= 0 , (10)

we can obtain from Eq. (7) the acceleration of body a [25],

d2r j
a

dt2 = −
Gmb

r2

[(
1 +

3
2

s̄00

)
n̂ j − s̄ jkn̂k +

3
2

s̄kln̂kn̂ln̂ j
]

+
2Gmb

r2

(
s̄0 jv

kn̂k − s̄0kv
kn̂ j

)
+

Gmb

r2 s̄0kv
l
b

[
2δ j(kn̂l) − 3δkln̂ j − 3n̂ jn̂kn̂l

]
+

Gmbv
k

r3

(
15n̂ln̂mn̂nn̂[ jKk]lmn + 9n̂ln̂mK[ jk]lm − 9n̂[ jKk]llmn̂m − 3K[ jk]ll

)
, (11)

where [·] denotes the anti-symmetrization of indices. The ac-
celeration for body b can be obtained by interchanging the

body indices a ↔ b. Again, when s̄µν = 0, the equation re-
duces to,

d2r j
a

dt2 = −
Gmb

r2 n̂ j +
Gmbv

k

r3

(
15n̂ln̂mn̂nn̂[ jKk]lmn + 9n̂ln̂mK[ jk]lm − 9n̂[ jKk]llmn̂m − 3K[ jk]ll

)
. (12)

The second term ∝ v/r3 of the above equation provides us with
a nonstatic (namely velocity-dependent) inverse cubic force
between two masses. The behaviour of this term is vastly dif-
ferent from what occurs in GR and other Lorentz-violating
terms that preserve the CPT symmetry [22, 42]. There is no
self-acceleration term in (12), which is consistent with the fact
that SME is based on an action principle with energy and mo-
mentum conservation [21].

Now we discuss the secular changes for a bound orbit with
the accleration (12). For an elliptical binary orbit, we use the
notations in Damour and Taylor [52]. In particular, the co-
ordinate systems

(
Î, Ĵ, K̂

)
and

(
â, b̂, ĉ

)
are defined in Figure 1.

Notations are the same as that in Refs. [35, 36], but differ from
Refs. [15, 25] where

(
~P, ~Q,~k

)
≡

(
â, b̂, ĉ

)
was used. To connect

the spatial frame
(
â, b̂, ĉ

)
with the cannonical Sun-centered

celestial-equatorial frame, (X̂, Ŷ, Ẑ), one needs a spatial rota-
tion, R, to align the axes,1 â

b̂
ĉ

 = R

 X̂
Ŷ
Ẑ

 . (13)

With the help of (Î, Ĵ, K̂) in Figure 1, one can decompose the

1 We neglect the boost between these two frames, which is small, with
v/c ≈ O

(
10−3

)
, where v is the systematic velocity of the binary pulsar

with respect to the Solar System [15, 36].
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FIG. 1. An illustration of coordinate systems [36]. The frame
(Î, Ĵ, K̂) is comoving with the pulsar system, with K̂ pointing along
the line of sight to the pulsar from the Earth, while (Î, Ĵ) constitutes
the sky plane with Î to east and Ĵ to north. The spatial frame (â, b̂, ĉ)
is centered at the pulsar system with â pointing from the center of
mass to the periastron, ĉ along the orbital angular momentum, and
b̂ ≡ ĉ × â. The frames, (Î, Ĵ, K̂) and (â, b̂, ĉ), are related through
rotation matrices, R(Ω), R(i), and R(ω).

full rotation into five simple parts, characterized by parame-
ters in celestial mechanics [15, 35, 36],

R = R(ω)R(i)R(Ω)R(δ)R(α) , (14)

where

R(α) =

 − sinα cosα 0
− cosα − sinα 0

0 0 1

 , (15)

R(δ) =

 1 0 0
0 sin δ cos δ
0 − cos δ sin δ

 , (16)

R(Ω) =

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 , (17)

R(i) =

 1 0 0
0 cos i sin i
0 − sin i cos i

 , (18)

R(ω) =

 cosω sinω 0
− sinω cosω 0

0 0 1

 . (19)

In the rotation matrix, α and δ are the right ascension and
declination of the binary pulsar, i is the orbital inclination, ω
is the longitude of the periastron, and Ω is the longitude of the
ascending node (see Figure 1).

Using the techniques of osculating elements, Bailey and
Havert [25] obtained the secular changes of orbital elements

after averaging over the orbital-period timescale,〈
da
dt

〉
= 0 , (20)〈

de
dt

〉
= 0 , (21)〈

dω
dt

〉
= −

n2
b

4
(
1 − e2)3/2 {2K1 + cot i [K2 cosω + K3 sinω]} ,

(22)〈
di
dt

〉
=

n2
b

4
(
1 − e2)3/2 [K3 cosω − K2 sinω] , (23)〈

dΩ

dt

〉
=

n2
b

4
(
1 − e2)3/2 csc i [K2 cosω + K3 sinω] , (24)

where a is the semimajor axis, e is the orbital eccentricity, and
nb ≡ 2π/Pb with Pb the orbital period. In above equations,
K1, K2, K3 are defined by [25],

K1 ≡ 3Kâââb̂ + Kâb̂b̂b̂ + 6K[âb̂]ĉĉ , (25)

K2 ≡ 3Kâb̂b̂ĉ − 3Kâââĉ − 4Kâĉĉĉ − 6Kb̂âb̂ĉ , (26)
K3 ≡ 6Kââb̂ĉ + 4Kb̂ĉĉĉ − 3Kb̂ââĉ + 3Kb̂b̂b̂ĉ , (27)

where the indices on the right hand sides denote the projection
of K jklm in Eq. (9) onto the

(
â, b̂, ĉ

)
directions. More details

can be found in Ref. [25].

III. BINARY PULSARS

Our starting point to put constraints on the SME coefficients
with binary pulsars will be using the secular changes in or-
bital elements. In general, pulsar timing is insensitive to the
longitude of the ascending node Ω, unless the binary is very
nearby [64, 65]. Thus, the secular changes in the orbital incli-
nation and the longitude of the periastron are the most relevant
to our tests. A nonzero 〈di/dt〉 will be reflected in the accu-
rately measured, projected semimajor axis of the pulsar orbit,
xp ≡ ap sin i/c, where ap ' m2a/ (m1 + m2) is the semimajor
axis of the pulsar orbit.2 From Eq. (23), one has,〈

ẋp

xp

〉
=

n2
b cot i

4
(
1 − e2)3/2 [K3 cosω − K2 sinω] . (28)

In the following, we will make use of Eqs. (22) and (28),
naming them as the ω̇-test and the ẋp-test respectively, to put
bounds on the coefficients for Lorentz/CPT violation. It is ap-
parent from Eqs. (22) and (28) that binary pulsars with small
orbits will provide tight constraints. Besides the smallness of
the orbit, there are other criteria to meet for binary pulsars,
that will become clear later. According to the needs for the ω̇-
test and/or the ẋp-test, we carefully pick 11 well-timed binary
pulsars with relativistic orbits. We categorize them into three
groups:

2 We hereafter use m1 and m2 to denote the masses of the pulsar and its
companion, respectively.
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TABLE I. Relevant timing parameters for PSRs B1913+16 [53], B1534+12 [54], B2127+11C [48], and J0737−3039A [55]. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. Estimated parameters are marked with “♠”.

PSR B1913+16 PSR B1534+12 PSR B2127+11C PSR J0737−3039A
Observational span, Tobs (year) ∼ 31 ∼ 22 ∼ 12 ∼ 2.7
Right ascension, α (J2000) 19h15m27.s99942(3) 15h37m09.s961730(3) 21h30m01.s2042(1) 07h37m51.s24927(3)
Declination, δ (J2000) 16◦06′27.′′3868(5) 11◦55′55.′′43387(6) 12◦10′38.′′209(4) −30◦39′40.′′7195(5)
Orbital period, Pb (day) 0.322997448918(3) 0.420737298879(2) 0.33528204828(5) 0.10225156248(5)
Eccentricity, e 0.6171340(4) 0.27367752(7) 0.681395(2) 0.0877775(9)
Pulsar’s projected semimajor axis, xp (lt-s) 2.341776(2) 3.7294636(6) 2.51845(6) 1.415032(1)
Longitude of periastron, ω (deg) 292.54450(8) 283.306012(12) 345.3069(5) 87.0331(8)
Epoch of periastron, T0 (MJD) 52144.90097849(3) 52076.827113263(11) 50000.0643452(3) 53155.9074280(2)
Advance of periastron, ω̇ (deg yr−1) 4.226585(4) 1.7557950(19) 4.4644(1) 16.89947(68)
Time derivative of xp, ẋp −1.4(9) × 10−14

∣∣∣ẋp

∣∣∣ < 3.0 × 10−15 ♠
∣∣∣ẋp

∣∣∣ < 5.5 × 10−13 ♠
∣∣∣ẋp

∣∣∣ < 4.1 × 10−14 ♠

Parameters used to derive masses γ & Ṗb γ & s γ & Ṗb R & s
Pulsar mass, m1 (M�) 1.435(2) 1.364(20) 1.36(4) 1.339(3)
Companion mass, m2 (M�) 1.390(1) 1.356(7) 1.36(2) 1.250(2)
Excess of ω̇, ω̇ − ω̇GR (deg yr−1) 0.003(3) −0.018(12) 0.00(6) −0.01(2)

TABLE II. Relevant timing parameters for PSRs J0348+0432 [56], J1738+0333 [57], and J1012+5307 [58]. Parenthesized numbers represent
the 1-σ uncertainty in the last digits quoted. The listed Laplace-Lagrange parameter, η, is the intrinsic value, after subtraction of the contribution
from the Shapiro delay [59]. Masses are derived from the combination of optical and radio observations, and they are independent of the
underlying gravity theory [21, 60]. Estimated parameters are marked with “♠”.

PSR J0348+0432 PSR J1738+0333 PSR J1012+5307
Observational span, Tobs (year) ∼ 3.7 ∼ 10.0 ∼ 15.0
Right ascension, α (J2000) 03h48m43.s639000(4) 17h38m53.s9658386(7) 10h12m33.s4341010(99)
Declination, δ (J2000) 04◦32′11.′′4580(2) 03◦33′10.′′86667(3) 53◦07′02.′′60070(13)
Orbital period, Pb (day) 0.102424062722(7) 0.3547907398724(13) 0.60467271355(3)
Pulsar’s projected semimajor axis, xp (lt-s) 0.14097938(7) 0.343429130(17) 0.5818172(2)
η ≡ e sinω (1.9 ± 1.0) × 10−6 (−1.4 ± 1.1) × 10−7 (−1.4 ± 3.4) × 10−7

κ ≡ e cosω (1.4 ± 1.0) × 10−6 (3.1 ± 1.1) × 10−7 (0.6 ± 3.1) × 10−7

Time derivative of xp, ẋp

∣∣∣ẋp

∣∣∣ < 2.1 × 10−15 ♠ (0.7 ± 0.5) × 10−15 (2.3 ± 0.8) × 10−15

Pulsar mass, m1 (M�) 2.01(4) 1.46+0.06
−0.05 1.64(22)

Companion mass, m2 (M�) 0.172(3) 0.181+0.008
−0.007 0.16(2)

TABLE III. Relevant timing parameters for PSRs J0751+1807 [61], J1802−2124 [62], J1909−3744 [61], and J2043+1711 [63]. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. Estimated parameters are marked with “♠”.

PSR J0751+1807 PSR J1802−2124 PSR J1909−3744 PSR J2043+1711
Observational span, Tobs (year) ∼ 17.6 ∼ 6.4 ∼ 9.4 ∼ 4.5
Right ascension, α (J2000) 07h51m09.s155331(13) 18h02m05.s335576(5) 19h09m47.s4335737(7) 20h43m20.s881730(1)
Declination, δ (J2000) 18◦07′38.′′4864(10) −21◦24′03.′′649(2) −37◦44′14.′′51561(3) 17◦11′28.′′91265(3)
Orbital period, Pb (day) 0.263144270792(7) 0.698889243381(5) 1.533449474329(13) 1.482290786394(15)
Pulsar’s projected semimajor axis, xp (lt-s) 0.3966158(3) 3.7188533(5) 1.89799099(6) 1.62395834(15)
η ≡ e sinω (3.3 ± 0.5) × 10−6 (8.6 ± 0.9) × 10−7 (0 ± 1.9) × 10−8 (−4.07 ± 0.07) × 10−6

κ ≡ e cosω (3.8 ± 5.0) × 10−7 (2.32 ± 0.04) × 10−6 (−1.22 ± 0.11) × 10−7 (−2.67 ± 0.05) × 10−6

Time derivative of xp, ẋp (−4.9 ± 0.9) × 10−15
∣∣∣ẋp

∣∣∣ < 8.5 × 10−15 ♠ (0.6 ± 1.7) × 10−16
∣∣∣ẋp

∣∣∣ < 3.7 × 10−15 ♠

Parameters used to derive masses Ṗb & ζ r & s r & s h3 & ζ

Pulsar mass, m1 (M�) 1.64(15) 1.24(11) 1.540(27) 1.38+0.12
−0.13

Companion mass, m2 (M�) 0.16(1) 0.78(4) 0.2130(24) 0.173(10)
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TABLE IV. Constraints on Ki (i = 1, 2, 3) from binary pulsars. No-
tice that the definition of Ki depends on the geometry of the binary
through projections in Eqs. (25–27).

Pulsar Test 1-σ constraint
PSR J0348+0432 ẋp |0.81K2 − 0.59K3| < 30 m
PSR J0737−3039A ẋp |0.99K2 − 0.13K3| < 2.0 km

ω̇ |2K1 + 0.03K3| < 26 km
PSR J0751+1807 ẋp |0.99K2 − 0.11K3| < 81 m
PSR J1012+5307 ẋp |0.92K2 + 0.39K3| < 140 m
PSR B1534+12 ẋp |0.97K2 + 0.24K3| < 132 m

ω̇ |2K1 + 0.05K2 − 0.21K3| < 240 km
PSR J1738+0333 ẋp |0.41K2 + 0.91K3| < 27 m
PSR J1802−2124 ẋp |0.35K2 − 0.94K3| < 1.8 km
PSR J1909−3744 ẋp |K3| < 670 m
PSR B1913+16 ẋp |0.99K2 − 0.16K3| < 48 m

ω̇ |2K1 − 0.15K2 − 0.92K3| < 19 km
PSR J2043+1711 ẋp |0.84K2 − 0.55K3| < 8.6 km
PSR B2127+11C ẋp |0.29K2 + 0.96K3| < 2.6 km

ω̇ |2K1 + 0.80K2 − 0.25K3| < 330 km

1. Group I: relativistic double NS binaries with or-
bital period smaller than 1 day. We pick 4 bi-
nary pulsars: PSRs B1913+16 [53], B1534+12 [54],
B2127+11C [48], and J0737−3039A [55]. Relevant
timing parameters for our tests are listed in Table I.

2. Group II: relativistic neutron-star–white-dwarf (NS-
WD) binaries with orbital period smaller than 1
day, and whose WD companions were well studied
with optical observations. We pick 3 binary pul-
sars: PSRs J0348+0432 [56], J1738+0333 [57], and
J1012+5307 [58]. Relevant timing parameters for our
tests are listed in Table II.

3. Group III: relativistic NS-WD binaries with or-
bital period smaller than 2 days, and whose
Shapiro delays were also identified in the tim-
ing observations. We pick 4 binary pulsars:
PSRs J0751+1807 [61], J1802−2124 [62],
J1909−3744 [61], and J2043+1711 [63]. Rele-
vant timing parameters for our tests are listed in
Table III.

These 11 binary pulsars all have been monitored for years,
most of which were regularly observed within the pulsar-
timing-array projects, including the Parks Pulsar Timing Ar-
ray (PPTA) [66], the European Pulsar Timing Array (EPTA)
[67], and the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) [68]. To successfully
achieve the proposed ω̇-test and/or ẋp-test, we address the fol-
lowing concerns:

• Because ẋp was not always fitted for in deriving the tim-
ing solution of binary pulsars, wherever it is inaccessi-
ble, we conservatively estimate a 1-σ upper limit from
the uncertainty of xp, as

∣∣∣ẋp

∣∣∣upper
=
√

12σxp/Tobs [35],

where Tobs is the time span used in deriving the timing
solution. The prefactor “

√
12” was inspired by a linear-

in-time evolution. Actually as was already noticed for
PSR B1534+12, this is a quite good estimation [35]. In
addition, PSR B1913+16 was estimated by Shao [35]
to have

∣∣∣ẋp

∣∣∣upper
= 1.3× 10−14 using the results of Weis-

berg et al. [69] where ẋp was not reported. Recently,
Weisberg and Huang [53] fitted for ẋp, and obtained
ẋp = (−1.4 ± 0.9) × 10−14 in excellent agreement with
the estimation. This further gives us confidence in using
the estimation formula. Estimated ẋp’s are decorated
with “♠” in Tables I, II, and III.

• Sometimes for nearby binary pulsars, there is a contri-
bution to ẋp from the proper motion of the binary [64],(

ẋp

xp

)PM

= (−µα sin Ω + µδ cos Ω) cot i , (29)

where µα and µδ are proper motions in α and δ direc-
tions respectively [65]. It could produce a nonzero ẋp,
as was measured for several binary pulsars. Assuming
GR as the theory of gravity, this piece of information
can be used to constrain Ω. Here we do not assume
GR and stay agnostic about the longitude of ascending
node. We randomly distribute it uniformly in the range
Ω ∈ [0, 360◦); thus the net effect from Eq. (29) after
averaging over Ω vanishes. For these pulsars with re-
ported ẋp’s, we take the uncertainty of the observed ẋp
as an estimate for its upper limit.

• Usually, for double NS binaries in Group I, the total
mass of the binary is calculated from the very well mea-
sured ω̇ [65]. For consistency, the ω̇-test is invalid if
masses were derived from the observed ω̇ by assuming
GR. Therefore, we need to re-calculate masses with-
out using the measured ω̇. We performed such calcu-
lations for PSRs B1913+16, B1534+12, B2127+11C,
and J0737−3039A. Results are listed in Table I. By us-
ing these ω̇-independent masses, we recalculate the pe-
riastron advance rate with GR, and obtain the excess of
ω̇ by substracting it from the observed value. By do-
ing so, we obtain a “clean” ω̇-test. The uncertainties in
the excess of ω̇ are dominated by the uncertainties of
the masses, and as a cost the clean ω̇-test usually gives
much worse limits than those from ẋp (see Table IV).
This will be the bottleneck for our global analysis (see
below).

• One caution in directly using the secular change of ω
in Lorentz-violating theories was pointed out by Wex
and Kramer [70], that a large ω̇ can render the secu-
lar changes nonconstant. These effects cannot be too
large based on the fact that all binaries were well fitted
with simple timing models. In our samples, the biggest
change in ω is ∼ 100◦ for PSR B1913+16 [53]. There-
fore, we consider it safe to use time-averaged values for
ω-related quantities as a rough approximation at cur-



7

TABLE V. Limits on different components of qµρανβσγ, assuming only one of them is nonzero. Components qXYZXYZT and qXYZXZYT do not
enter the tests from binary pulsars, thus they remain unconstrained.

Coefficient 1-σ limit [m] Coefficient 1-σ limit [m] Coefficient 1-σ limit [m]
qTXYTXTX 22 qTXYTXTY 11 qTXYTXTZ 12
qTXYTYTY 10 qTXYTYTZ 5.7 qTXYTZTZ 9.7
qTXYXYXY 8.0 qTXYXYXZ 8.3 qTXYXYYZ 6.2
qTXYXZXZ 8.3 qTXYXZYZ 3.7 qTXYYZYZ 5.3
qTXZTXTX 24 qTXZTXTY 10 qTXZTXTZ 11
qTXZTYTY 6.2 qTXZTYTZ 4.8 qTXZTZTZ 18
qTXZXZXZ 27 qTXZXZYZ 11 qTXZYZYZ 6.5
qTYZYZYZ 8.8 qXYZXYXT 29 qXYZXYYT 14
qXYZXYZT — qXYZXZXT 13 qXYZXZYT —
qXYZXZZT 14 qXYZYZYT 13 qXYZYZZT 29

rent stage.3 For example, in Eqs. (22) and (28), we use
the ω value in the middle of the observational span. In
principle, a timing model with nonlinear-in-time evolu-
tion of ω would be perfect in addressing this issue [70],
which is rather complicated and it is beyond the scope
of this work (see Ref. [70] for a simplified version when
assuming an edge-on orbit, approximating the double
pulsar).

• As was pointed out several times, Ω is in general not
determined in pulsar timing. We will treat it a random
variable uniformly distributed in Ω ∈ [0, 360◦). This
choice makes our tests “probabilistic tests”.

• To perform the ω̇-test and the ẋp-test, component
masses of the binary are needed sometimes. We have
discussed the situation for double NS binaries in Group
I. For NS-WD binaries in Group II, we use the masses
derived from the optical observation of the WD. These
masses are independent of the gravity theories [21, 60]
(see Table II). For NS-WD binaries in Group III, we de-
rive masses from the measurement of the Shapiro delay
for PSRs J1802−2124, J1909−3744, and J2043+1711,
while for PSR J0751+1807, we also used the orbital de-
cay measurement for assistance (see Table III). These
calculation assumes that the deviations from GR are
small, in consistent with the observational results, as
well as the effective-field-theory framework. Neverthe-
less, we might overlook strong-field effects that arise in
some specific theories [44, 45, 72] (see section IV).

Taking the above considerations into account, we have de-
rived a set of independent limits on various linear combina-
tions of coefficients for Lorentz/CPT violation, making use
of 4 ω̇-tests and 11 ẋp-tests from the pulsars in Tables I,
II, and III. These results are tabulated in Table IV, and the
best ones are in agreement with the estimation by Bailey and
Havert [25]. Notice that, the results in Table IV should be di-
rectly compared with the estimated sensitivity in the Table 1
of Ref. [25]. The estimated sensitivities for other experiments,
namely the Solar system ephemeris, laser ranging, gravime-
ter, short-range gravity, and time delay, are expected to be
orders of magnitude weaker. Nevertheless, it would still be
valuable to work out the actual limits that these experiments
would cast; they might probe some components of qµρανβσγ

which binary pulsars are insensitive to study (see below).
The limits in Table IV are not of fundamental value. Ki’s

(i = 1, 2, 3) are system dependent through the projections de-
fined in Eqs. (25–27), where projections are given explicitly
in Eqs. (13–19) with various angles different for individual
pulsars. This is the power of many pulsar systems that are
in principle able to break any parameter degeneracy [35, 36].
In order to convert the limits in Table IV into limits on the
underlying Lorentz-violating coefficients qµρανβσγ in the La-
grangian (5), we use Eq. (9) to relate Ki jlm with qµρανβσγ.

The limits in Table IV are limits on different linear com-
binations of qµρανβσγ. For a 1-σ limit “a”, we denote it as∣∣∣∣Xa

(
qµρανβσγ,Ωa

)∣∣∣∣ < Ca where the longitude of the ascending
node Ωa is unknown in general. To proceed practically, we
adopt the probabilistic density function,

P
(
qµρανβσγ

)
∝

∏
a

∫ 2π

0

1
√

2π
exp

−1
2

∣∣∣∣∣∣∣∣
Xa

(
qµρανβσγ,Ωa

)
Ca

∣∣∣∣∣∣∣∣
2 dΩa

2π
, (30)

3 This will not be valid for the (unpublished) new timing solution of the
double pulsar [55, 71] where, assuming GR, up to now a change in ω is

> 250◦ already.
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TABLE VI. Global constraints on the canonical set of 15 K jklm.

Symbol Definition 1-σ limit [106 m]

KXXXY
1
3

(
−qTXYTXTX + qTXYXYXY + qTXYXZXZ − qXYZXZXT

)
6.6

KXXXZ
1
3

(
qTXYXYXZ − qTXZTXTX + qTXZXZXZ + qXYZXYXT

)
3.1

KXXYY
1
3

(
−2qTXYTXTY + 2qTXYXZYZ + qXYZXYZT − 2qXYZXZYT

)
7.1

KXXYZ
1
6

(
−2qTXYTXTZ − 2qTXYXYYZ − 2qTXZTXTY + 2qTXZXZYZ + qXYZXYYT − qXYZXZZT

)
2.7

KXXZZ
1
3

(
−2qTXYXZYZ − 2qTXZTXTZ + 2qXYZXYZT − qXYZXZYT

)
8.1

KXYYY −qTXYTYTY + qTXYXYXY + qTXYYZYZ − qXYZYZYT 20

KXYYZ
1
3

(
−2qTXYTYTZ + 3qTXYXYXZ − qTXZTYTY + qTXZYZYZ − qXYZYZZT

)
3.1

KXYZZ
1
3

(
−qTXYTZTZ + 3qTXYXZXZ + qTXYYZYZ − 2qTXZTYTZ − qXYZYZYT

)
6.6

KXZZZ −qTXZTZTZ + qTXZXZXZ + qTXZYZYZ − qXYZYZZT 9.3

KYXXZ
1
3

(
3qTXYTXTZ + 3qTXYXYYZ − qTXZTXTY + qTXZXZYZ + qXYZXZZT

)
2.7

KYXYZ
1
6

(
4qTXYTYTZ − 2qTXYXYXZ − 2qTXZTYTY + 2qTXZYZYZ + qXYZXYXT + qXYZYZZT

)
3.1

KYXZZ
1
3

(
3qTXYTZTZ − qTXYXZXZ − 3qTXYYZYZ − 2qTXZTYTZ + qXYZXZXT

)
6.6

KYYYZ
1
3

(
qTXYXYYZ − qTXZTYTY + qTYZYZYZ + qXYZXYYT

)
2.7

KYYZZ
1
3

(
2qTXYXZYZ − 2qTXZTYTZ + qXYZXYZT + qXYZXZYT

)
4.0

KYZZZ −qTXZTZTZ + qTXZXZYZ + qTYZYZYZ + qXYZXZZT 8.0

where we have made assumptions on the Gaussianity of mea-
surements and that the limits on Ki’s in Table IV are mutually
independent. In Eq. (30) we have also marginalized over the
unknwon angles Ωa, as a nuisance parameter in the language
of Bayesian statistics [73].

As mentioned in section II, from Young tableaux it was
established that there are 60 independent coefficients for
qµρανβσγ, while only a subset of 30 (in the form of 15 indepen-
dent linear combinations) could appear in our pulsar tests [25].
We identify them explicitly. We find that, actually 2 of these
30 coefficients, qXYZXYZT and qXYZXZYT, do not show up. This
phenomenon was already met in other contexts of SME [74].
It tells us that binary-pulsar tests will not be able to constrain
these 2 components, and even if they are large, they can es-
cape from our tests. They need to be constrained with other
experiments. The conclusion is worked out through an ex-
plicit calculation, but we do not have a clear physical under-
standing why this particular set of coefficients are relevant to
binary pulsars. However, relaxing the assumptions (i.e., post-
Newtonian order O(v/c) beyond the Newtonian limit) and us-
ing spin-weighted spherical harmonics could reveal more pre-
cisely the underlying reasons for the combinations of coeffi-
cients appearing in this analysis [22, 75, 76]. We hope it stim-
ulates other groups to analyze their experiments, and obtain a

better understanding.
As a first attempt to constrain qµρανβσγ, we treat only one

of them as nonzero. The final limit comes from a properly
weighted combination of the 15 tests in Table IV. The re-
sults are listed in Table V. In the scenario where only one
of qµρανβσγ is nonzero, the constraint is derived predomi-
nantly from the tightest ones in Table IV. The coefficients for
Lorentz/CPT violation qµρανβσγ are limited to O (1–10 m), as
predicted by Bailey and Havert [25].

In addition, we perform a global test where all 15 indepen-
dent combinations of qµρανβσγ could be nonzero. In this case,
we use a set of 15 canonical K jklm to represent these linear
combinations. They are identified explicitly and are given in
terms of qµρανβσγ in the second column of Table VI. Since we
have 15 independent terms, we have to use all 15 tests given
in Table IV. As was done for s̄µν in Ref. [35], Monte Carlo
simulations are set up to properly account for the measure-
ments and the unknown Ω’s. Our results are given in Figure 2,
and the marginalized distributions are utilized to derive the 1-
σ constraints on the set of 15 canonical K jklm, and they are
given in the last column of Table VI. In this scenario we are
only able to constrain K jklm to the level O

(
106 m

)
. The direct

limits in Table IV are quite heteroscedastic, spanning from
O (10 m) to O

(
105 m

)
. Because of this, the global analysis



9

−6
0
6

K
X

X
X

Z

−1
5

0
15

K
X

X
Y

Y

−5
0
5

K
X

X
Y

Z

−1
5
0

15

K
X

X
Z

Z

−4
0

0
40

K
X

Y
Y

Y

−6
0
6

K
X

Y
Y

Z

−1
5

0
15

K
X

Y
Z

Z

−2
0

0
20

K
X

Z
Z

Z

−5
0
5

K
Y

X
X

Z

−6
0
6

K
Y

X
Y

Z

−1
5

0
15

K
Y

X
Z

Z

−5
0
5

K
Y

Y
Y

Z

−8
0

8

K
Y

Y
Z

Z

−1
5 0 15
KXXXY

−1
5
0

15

K
Y

Z
Z

Z

−6 0 6
KXXXZ −1

5 0 15
KXXYY

−5 0 5
KXXYZ −1

5 0 15
KXXZZ −4

0 0 40
KXYYY

−6 0 6
KXYYZ −1

5 0 15
KXYZZ −2

0 0 20
KXZZZ

−5 0 5
KYXXZ

−6 0 6
KYXYZ −1

5 0 15
KYXZZ

−5 0 5
KYYYZ

−8 0 8
KYYZZ −1

5 0 15
KYZZZ

FIG. 2. Contours and histograms of the set of 15 independent K jklm’s in our simulation. Contours show the 68%, 90%, and 95% confidence
levels. The unit for K jklm is 106 m in this figure.

gives limits corresponding more or less to the worst limits in
Table IV with strong correlations between some coefficients
(see Figure 2). In future, more tests will tighten these limits.

Our results in Tables V and VI constitute the first set of
systematic limits from pulsar timing experiments on qµρανβσγ.
They are also the first set of constraints from the post-
Newtonian dynamics of binaries with CPT-violating operators
in SME for the gravity sector, complementary to the unique
limit obtained from the kinematics in the propagation of grav-

itational waves [46]. Because the SME is viewed as an ef-
fective field theory, the coefficients for Lorentz/CPT violation
are not fixed a priori [14, 15]. In general, specific theories
are needed to cast predictions for their values. We here under-
take an agnostic way, and let data decide the values they can
have and the constraints they should satisfy. Our results can
be mapped to theory parameters if a theory is specified.
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IV. DISCUSSIONS

Searching for new physics beyond the current paradigm is
a rewarding task. Up to now, no violation in Lorentz and CPT
symmetries has been convincingly found [9, 19, 21]. When
the deviation is perturbatively small, the effective-field-theory
framework of SME provides a practically useful platform to
systematically study these tiny deviations. Many new phe-
nomena were discovered in SME for the past decades. Here
we specifically study the pure gravity sector of SME in the
presence of CPT-violating leading-order operators with mass
dimension 5. These operators are interesting in the following
manner. While being of higher mass dimension than those of
GR and the leading-order Lorentz-violating operators which
are of mass dimension 4, they can be better probed with astro-
nomical observations instead of short-range experiments [25].
The insensitivity of short-range laboratory experiments is due
to the nature of CPT violation where, an additional suppres-
sion factor, proportional to (va − vb) /c, is present. In order to
confine short-range experiments within laboratories for a long
duration for precision measurement, this factor appears enor-
mously small. In contrast, for relativistic binary pulsars with
Pb . 1 day, this factor can be as large as 10−3. Therefore,
binary pulsars become even more powerful than short-range
experiments to constrain these operators.

Motivated by this observation, in this paper we have utilized
binary pulsars to constrain these operators, using the analyti-
cal post-Newtonian results for a binary orbit from Bailey and
Havert [25]. By taking care of all caveats from observational
facts, we tailored the results into a form that can immediately
be used in analysing binary pulsars. Well-timed relativistic
binary pulsars turn out to be suitable for the tests, and we put
constraints on the coefficients for Lorentz/CPT violation to
O (10 m) when only one coefficient is allowed to be nonzero
(see Table V), and to O

(
106 m

)
when all coefficients can be

nonzero at the same time (see Table VI). They represent the
first set of observational constraints for CPT-violating gravity
in SME from the post-Newtonian dynamics, complementing
the kinematic constraints from gravitational waves [46].

Since the SME is based on the perturbative nature of effec-
tive field theories [14] and in particular here we have used the
linearized gravity [17, 25], our limits on qµρανβσγ cannot probe
nonperturbative effects that might arise with the strong grav-

itational fields of NSs, like the “scalarization” phenomenon
in scalar-tensor theories [44, 45, 57, 72]. Strictly speaking,
our limits are effective limits for the strong-field counterparts
of qµρανβσγ. Nevertheless, usually the strong-field limits are
more restricting than their weak-field counterparts. Thus, our
results are actually conservative in this respect. The constancy
of qµρανβσγ in our work is an assumption that is required for
the energy-momentum conservation of the Lagrangian [14].
It does not leave out the possibility of variations in these co-
efficients on timescales longer than those in which the Sun-
centered frame is approximately inertial, i.e., a few hundreds
of years. In more general cases, for example, when consid-
ering the strong-field effects from NSs, one might get body-
dependent, or in some cases even position-dependent coef-
ficients for Lorentz/CPT violation (e.g., a term similar to
the Whitehead’s term in the parameterized post-Newtonian
framework [77–80]). But this will need some specific theo-
retic inputs and is beyond the scope of this work.

Pulsar timing in the future will further improve the mea-
surements of binary orbits, and provide better limits on pos-
sible new physics. In our case, the measurement precisions
for ω̇ and ẋp both improve as T−3/2 [52] where T is the obser-
vational time span, even without improvements in the tele-
scopes. Nevertheless, we in addition have new telescopes
and technologies coming online. The upcoming observa-
tions at the Five-hundred-meter Aperture Spherical Telescope
(FAST) [81] and the Square Kilometre Array (SKA) [82, 83]
are guaranteed to boost the timing precision. Also, they will
discover more binary pulsars to perform the tests. Therefore,
the actual improvement in constraining the coefficients for
Lorentz/CPT violation will be significantly faster than T−3/2.
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