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Abstract: Underwater sensor networks (UWSNs) have witnessed significant R&D attention in both
academia and industry due to their growing application domains, such as border security, freight
via sea or river, natural petroleum production and the fishing industry. Considering the deep
underwater-oriented access constraints, energy-centric communication for the lifetime maximization
of tiny sensor nodes in UWSNs is one of the key research themes in this domain. Existing literature
on green UWSNs are majorly adapted from the existing techniques in traditional wireless sensor
network relying on geolocation and the quality of service-centric underwater relay node selection,
without paying much attention to the dynamic underwater network environments. To this end,
this paper presents an adapted whale and wolf optimization-based energy and delay-centric green
underwater networking framework (W-GUN). It focuses on exploiting dynamic underwater network
characteristics by effectively utilizing underwater whale-centric optimization in relay node selection.
Firstly, an underwater relay node optimization model is mathematically derived, focusing on
underwater whale dynamics for incorporating realistic underwater characteristics in networking.
Secondly, the optimization model is used to develop an adapted whale and grey wolf optimization
algorithm for selecting optimal and stable relay nodes for centric underwater communication
paths. Thirdly, a complete workflow of the W-GUN framework is presented with an optimization
flowchart. The comparative performance evaluation attests to the benefits of the proposed framework
and is compared to state-of-the-art techniques considering various metrics related to underwater
network environments.

Keywords: underwater sensor networks; green computing; whale optimization; sensor networks

1. Introduction

The widely growing application domains for underwater sensor networks (UWSNs) have attracted
potential attention in R&D from the Internet of Things (IoT)-oriented industries and academia [1–3].
The growing domains include border security-centric military applications [4,5], energy and cost-centric
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water-based transport applications [6,7], oil, and natural gas production applications [8,9], and
developing fishing-centric industries [10,11]. In underwater networking, tiny sensor nodes are
deployed underwater, as well as on the upper surface layer for monitoring the specific underwater
area [12]. These underwater nodes communicate with the surface nodes, acting as access points or cluster
heads for reaching the sink node of the network, which accumulates the information and communicates
with the cloud-enabled computing resources [13]. Underwater networking is significantly challenging
compared to traditional wireless networking due to the dynamic self-mobility of the medium of
communication and constraints in signal propagation in the underwater environment [14–16]. In this
constrained networking environment, the underwater network deployment-oriented challenges further
complicate scientific investigations towards the development of an energy-centric green underwater
network for various application domains [17–19].

Towards enabling green underwater networking, several service and geolocation-centric
techniques of varying quality have been suggested [20,21]. A heuristic approach has been suggested
in underwater networking for solving the surface gateway deployment optimization problem,
focusing on the quality of service [22]. In particular, a heuristic solution has been explored for
the optimal deployment of surface nodes as access gateways for underwater networking. However, the
surface gateway deployment optimization lacks coordination with underwater node level multi-hop
communication. To support service-centric underwater networking, an optimal underwater node
deployment architecture is explored for a 3D underwater network environment [23]. A scientific,
mathematical model is designed for assessing the optimality of the deployment architecture. However,
the deployment architecture did not integrate with the dynamic self-mobility of underwater nodes in
the network environment. The 3D deployment architecture has been further improved by considering
static, self-adjusting, and mobility-supported deployments [24]. However, the coordination between
static and dynamic nodes during communication is lacking in these three types of deployment
architectures. To support these deployment approaches, a linear programming-centric approach has
been suggested for selecting underwater relay nodes focusing on a longer network lifetime [25].

In a similar work, node-level energy harvesting capability has been used as a parameter in relay
node selection for a longer network lifetime [26]. However, the impact of self-mobility of underwater
nodes due to underwater flow is not considered in both approaches, including deployment-centric
network lifetime optimization and harvested energy level-centric network lifetime optimization. To
improve network lifetime optimization, a geolocation vector-based forwarding strategy has been
explored [27]. It has focused on location-centric relay node selection to reduce energy consumption
in underwater communication. The geolocation-centric underwater relay node selection has been
improved by utilizing hop-by-hop forwarding prioritization for sparse underwater networking [28].
The pure geolocation-centric relay node selection faces the void area issue in underwater networking.
To address the issue in geolocation-centric relay node selection, void avoidance approach has been
investigated, utilizing the quality of service-oriented underwater backtracking [29]. The aforementioned
underwater relay node optimization techniques majorly rely on either geolocation-centric node selection
or the quality of service-centric node selection, without considering the dynamic self-mobility of the
medium of communication in underwater environments, such as in whale optimization [30].

In this context, this paper proposes an adapted whale optimization algorithm-based energy and
a delay-centric green UWSNs framework (W-GUN). It focuses on exploiting dynamic underwater
network characteristics by effectively utilizing underwater whale-centric optimization in relay node
selection. The significant insights and offerings of this paper can be listed as follows.

• Firstly, an underwater relay node optimization model is mathematically derived, focusing on
underwater whale dynamics for incorporating realistic underwater characteristics;

• Secondly, the optimization model is used to develop an adapted whale and grey wolf optimization
algorithm for selecting minimal energy consumption and stable relay node-centric underwater
communication paths;
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• Thirdly, a complete workflow of the green underwater networking framework W-GUN, is
presented with an optimization flowchart;

• Finally, a comparative performance evaluation of the prosed framework W-GUN, has been carried
out considering the state-of-the-art techniques in the literature regarding underwater networks.

The rest of the paper is organized as follows: in Section 2, related works on green computing-centric
underwater networks are critically reviewed, considering strengths and weaknesses. Section 3 presents
the detail of the proposed green underwater networking-centric framework W-GUN. In Section 4, the
experimental setting and result analysis are discussed. Our conclusions and possibilities for future
work are been presented in Section 5.

2. Related Works

Ibrahim et al. use a heuristic approach to solving the surface gateway deployment optimization
problem. The performance of UWSNs can be increased by deploying various surface-level gateways
(i.e., sink for the UWSNs). In addition, this approach can mitigate the high propagation delay in
acoustic communications. The position of gateways plays a crucial role in maximizing the benefit [22].
Furthermore, Pompili et al. proposed the enhanced deployment schemes for two-dimensional as well
as for three-dimensional architectures of communication in UWSNs. They also gave a mathematical
analysis for both scenarios. The proposed scheme helps in achieving the goal of using the least number
of sensors for efficient sensing and communication tasks. They discussed the robustness of the sensor
network in the particular scenario of node failures. They also gave an approximate count of the number
of redundant sensor nodes to be deployed to compensate in case of node failures [23]. Moreover,
Liu et al. presented an efficient algorithm for node placement in UWSNs. The aim is to enhance the
coverage and reduce the average end-to-end delay. They use the new tracking scheme to forecast
the sensor node’s positions. The deployment is carried out by using two factors, such as the current
location of sensor nodes as well as predicted locations of sensor nodes [24]. Su et al. have proposed a
unique approach for selecting the relay nodes in UWSNs. They use the linear programming approach
for the relay node selection with the principle aim of enhancing the network lifetime. They also
implemented a routing metric that considers both the transmitting energy and the residual energy [25].
Additionally, Khan et al. presented a scheme for relay node selection in UWSNs based on harvested
energy levels. For the selection of the correct signal at the destination, they used a fixed combined ratio.
Furthermore, they used an amplified forwarding scheme for data forwarding. In addition, they used
the piezoelectric effect-based harvesting scheme to increase the efficiency of sensors in UWSNs [26].

Xie et al. have proposed an efficient routing scheme named vector-based forwarding (VBF). It is a
robust, scalable, and energy-efficient geographic routing. This scheme is also called a position-based
technique. In this scheme, there is no need for detailed state information. The scheme is called a
robust scheme because it is immune to packet loss and node failure. The data transmission mechanism
consists of a virtual pipe. In the case of dense deployment, energy consumption is increased. The sparse
networks have a low packet delivery ratio (PDR), but, in the case of dense networks, it increases.
This scheme has a lower end-to-end delay. The end-to-end delay is minimum in a dense environment.
However, this scheme produces communication overheads [27]. Towards enhancing the vector-based
forwarding, Nicolaou et al. have given a location-based routing technique known as hop-by-hop
vector-based forwarding (HH-VBF). Each forwarder has a separate routing vector in the network.
The separate routing vector for each forwarder brings several advantages and achieves a high efficiency
for sparse networks. This scheme has a higher packet delivery ratio in sparse networks. This scheme
has unique the characteristic of recognizing the routes, particularly when nodes are extremely scattered
in the network. In this scheme, if node density increases, then, as a consequence, end-to-end delay, as
well as energy consumption, also increases [28]. In addition, UWSNs are blighted by one of the most
prominent issues, known as the routing under the void scenario.

Xie et al. have proposed a unique approach to solving this problem. This approach is
known as vector-based void avoidance (VBVA). This approach has two parts, vector-shift and
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back-pressure. This scheme does not require prior knowledge of network topology. This technique is a
geographic-based routing. This approach enhances the robustness of the network [29]. Next, Han et al.
classified the node deployment schemes for UWSNs into three major categories, static or fixed scheme
of deployment, the self-adjusting scheme of deployment, and movement-supported deployment. In
the static or fixed scheme of deployment, sensors have fixed or static positions. There are two types of
fixed schemes of deployment—random deployment and regular deployment. In the self-adjusting
scheme, the depths of sensor nodes are adjusted automatically after initial deployment in order to
achieve the specific requirements. Furthermore, there are two types of self-adjusting schemes of
deployment—such as uniform self-adjusting deployment and nonuniform self-adjusting deployment.
In a movement-supported deployment scheme, sensor nodes cooperate with other sensors to carry out
sensing and monitoring tasks [31].

Furthermore, Khan et al. have proposed an optimal scheme for relay selection in UWSNs. In this
scheme, they consider two factors, the depth and location of the sensor nodes, for selecting the relay
nodes. The unique characteristic of the proposed scheme is the elimination of the synchronization
requirement among the source node (SN), relay nodes (RNs), and destination nodes. The second
unique feature is overcoming the packet drop issues [32]. Next, Feng et al. have proposed an algorithm
consisting of two parts—the establishment of links and transmission of data. The algorithms find out
the neighboring nodes at the appropriate ranges. In addition, the proposed algorithm selects the relay
nodes based on the depth of the neighbors. For balancing the energy in the network and consequently
increasing the network lifetime, the communication links were modified [33]. Moreover, Faheem et al.
proposed a routing protocol that uses three basic schemes, the detection of the channel, then the
assignment of the channel and packet-forwarding mechanisms. The channel detection scheme had a
high channel detection probability and the least false alarms [34]. Next, Wei et al. have presented an
optimal strategy for routing in UWSNs. This scheme initially considers residual energy and localization
information. This routing mechanism collects information about the position for energy saving with
vector-based forwarding (ES-VBF) [35].

The aforementioned underwater relay node optimization techniques rely majorly on either
geolocation-centric node selection or the quality of service-centric node selection, without considering
the dynamic self-mobility of the medium of communication in underwater environments. To this
end, the objective of the proposed framework is to reduce energy consumption in the network
by adapting underwater whale characteristics for the optimization of the overall performance of
underwater networking.

3. Green Underwater Sensor Network Framework using Adapted Whale and Wolf Optimization

In this section, the proposed framework for the green underwater network using whale and
wolf optimizations (W-GUN) is presented. In UWSNs, researchers are currently aiming to increase
network lifetime and improve the data delivery rate, considering constrained underwater network
scenarios. For this, the data dissemination path should consider natural underwater characteristics
along with the shortest path possible. It will lower the energy consumption and also packet delay in
the underwater scenario. However, the best deployment of underwater relay nodes optimizes each
network resource and routing performance. Therefore, optimizing the number of underwater relay
nodes and the deployment strategy of relay nodes considering underwater scenarios has been an
essential downside to green communication in underwater networks.

In order to solve the above mentioned problem, this paper presents a novel approach for the
optimization of underwater relay nodes prioritization using an adapted whale and wolf optimization
algorithm. The adapted optimization algorithm has been developed to realize the W-GUN framework
by incorporating moving underwater whale characteristics in underwater data dissemination. Here,
the optimal best relay nodes are obtained simultaneously from the algorithms, including whale
optimization and wolf optimization, and the final relay node decision is taken to select the best
among them during each iteration. At the completion of every iteration, the best underwater relay
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node solution will be given to both algorithms to generate a better solution for the underwater relay
node than the previous one, and the same cycle is repeated. Here, the deployment of underwater
sensor nodes comes in the form of normal random distribution at the initial underwater network
establishment stage.

By utilizing the proposed adapted optimization algorithms in W-GUN, the minimum number of
underwater relay nodes required is specifically determined once the network parameters are provided,
such as the variety of source nodes, the communication range, and amount of routing paths. Once the
underwater relay nodes are optimally determined, the average path length and, therefore, the range of
control packets were significantly reduced, which may doubtless minimize energy consumption and
packet delay and increase network lifetime, and packet delivery ratio. Moreover, the duty cycle of
underwater relay nodes is adjusted adaptively using the modified echo state network (MESN).

3.1. Underwater Relay Node Optimization Model

Here, as the adapted whale and wolf optimization algorithm is used for picking the optimal relay
set required for continuous data packet transmission in W-GUN. In our proposed framework W-GUN,
the traditional whale optimization is adapted for green underwater networking. The exploitation and
exploration of whale optimization is further improved via wolf optimization. This adaptation works
towards harnessing the benefits of underwater whale movement characteristics in reducing energy
consumption and delay. The adaptation of whale movement characteristics is crucial for underwater
communication environments. The aim of the objective function of the optimization scheme is to avail
the maximum number of underwater forwarding routes as possible reachable paths with a minimum
number of underwater relay nodes. So, the position of the underwater relay nodes is varied and
checked for optimal deployment, so as to reduce the number of underwater relay nodes (RNs) needed
for deployment. Therefore, the objective function is adapted for underwater scenarios, as expressed in
Equation (1).

max(Pn) = min

Rb
n,

N∑
j=1

R j
n

 (1)

where max(Pn) represents the maximum number of underwater forwarding paths that can be formed
between the base station and all sender sensor nodes, Rb

n represents the number of underwater relay
nodes nearby to the base station; R j

n the number of underwater relay nodes close to jth sensor node
and j = {1, 2, . . .N} denotes the number of underwater sensor nodes. To achieve the above objective,
the two major constraints that must be satisfied are as given below in Equations (2) and (3):

R j
n ≥ P

j
n (2)

Rb
n ≥

N∑
j=1

R j
n ≥ (

N∑
j=1

P
j
n = Pn) (3)

where P j
n denotes the number of underwater forwarding paths between the base station and jth

underwater relay sensor nodes. During each iteration, based on the maximum number of underwater
forwarding paths obtained for different solutions, the set of underwater relay nodes (i.e., the finest
solution) and their position is selected. The base of the objective function of the adapted whale and
wolf algorithm is discussed in detail, with related mathematical derivations, in the following sections.

3.1.1. Adapted Whale Optimization for Underwater Networks

The whale optimization algorithm (WOA) is influenced by the natural characteristics of the
underwater movement of whales [30]. The technical optimization steps involved in WOA are given
in the following description, which can be divided into two major phases, namely exploitation and
exploration phases. In the exploitation phase, the encircling prey and spiral position updating are
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performed, and searching for prey is implemented in the exploration phase. The mathematical
modeling of these operations is carried out as follows:

• Encircling prey

Traditionally, whales encircle the prey once they discover its location or position. Similarly, the
position of the optimal next-hop sensor nodes is identified in the underwater network environments. In
the proposed algorithm, the present leading candidate solutions, i.e., the positions of the direct neighbor
nodes, are the target prey near the optimal solution. Subsequently, the other search agents attempt
to change their position towards the best search agents. The encircling prey can be mathematically
represented as given in Equation (4):

→

W = |
→

G ·
→

M
∗

(k) −
→

M(k)| (4)

→

M(k + 1) =
→

M
∗

(k) −
→

X ·
→

W (5)

where ‘k’ represents a current iteration,
→

X,
→

G represent coefficient vectors,
→

M
∗

(k) demonstrate the

previous best solution or position of the previous best node,
→

M(k + 1) depicts the current best state or
the position of the current best node for next-hop forwarding in the neighborhood. Furthermore, the

coefficient vectors
→

X,
→

G can be calculated as expressed in Equations (6) and (7):

→

X = 2
→
x ·
→

J −
→
x (6)

→

G = 2 ·
→

J (7)

where
→
x reduces from 2 to 0,

→

J ∈ [0, 1] also results in the reduced range of
→

X. The new position of the
current best forwarding node can be determined anywhere between the previous best position of the
node and the encircling preposition.

• Exploitation phase

There are two mechanisms presented to carry out the exploitation phase in the whale-based search
space discovery:

1. Shrinking encircling mechanism

This mechanism is basically represented in Equation (6) where the value of the unit coefficient

vector
→
x is reduced from 2 to 0 with

→

J ∈ [0, 1].

2. Spiral updating position

Traditionally, once the distance between the encircling prey and the whales is calculated, a spiral
equation is derived between the position of the prey and the whales to imitate the helix-shaped
movement of whales. Here, the positions of the current forwarder node and the direct neighbor nodes
are shown in Equation (8):

→

M(k + 1) =
→

Wdist.explogspirals · cos
(
2
∏

s
)
+
→

M
∗

(k) (8)

where
→

Wdist = |
→

M
∗

p(k) −
→

M(k)|means the distance between pth whale and prey (i.e., the best solution
attained up until now), s takes value from [−1, 1] and logspiral signifies the logarithmic spiral shape.

Here, we want to highlight that the ‘exploitation phase’ of the whale optimization process can be
executed by either ‘shrinking encircling’ or ‘spiral updating’. These operations basically represent
humpback whales’ swimming characteristics around the prey within a shrinking circle and along a
spiral-shaped path, simultaneously. To model this simultaneous behavior, the selection of the threshold
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value plays a significant role, where we assume that there is a 0.5 probability of choosing between
either the shrinking encircling mechanism or the spiral model for the next future position of the
whales during optimization. This is assumed in order to give a fair amount of randomization to the
whale optimization process for underwater networking environments. This exploitation phase can be
expressed as given in Equation (9):

→

M(k + 1) =


→

M
∗

(k) −
→

X ·
→

W, i f Q < 0.5
→

Wdist.explogspirals · cos(2
∏

s) +
→

M
∗

(k), i f Q ≥ 0.5
(9)

where Q ∈ [0, 1] is a random number to help with the selection of the two aforementioned mechanisms
in the underwater sensor node selection for energy- and delay-centric next-hop node identification or,
in other words, search space exploitation.

• Exploration phase

Traditionally, it is the search phase where whales use random search to discover their prey based
on the how nearby they are. Here, the search for the next-hop is carried out using the nearby positions

of the direct neighbor nodes, which are candidate forwarders. The exploration uses
→

X vector with
random values that are greater or less than one. In addition, a random search agent is considered,
rather than the best search agent for addressing the optimal local problem in the exploration phase.
This search procedure can be mathematically expressed as given in Equation (10):

→

W = |
→

G ·
→

M
rand
−
→

M| (10)

→

M(k + 1) =
→

M
rand
−
→

X ·
→

W (11)

where
→

M
rand

is a current population random position vector, and
→

G and
→

X are coefficient vectors, as
described in previous equations. Now, grey wolf optimization (GWO) is discussed, which enables the
whale optimization for underwater node searching.

3.1.2. Adapted Grey Wolf Optimization for Underwater Networks

Towards effectively balancing the exploitation and exploration phases for better convergence in
next-hop searching, wolf optimization is used to enable the proposed framework W-GUN [36]. It is
also a swarm intelligence technique. In traditional GWO, tracking is directed by the alpha, beta and
delta wolves as follows:

• The alpha wolves (α): the most important wolves. They encompass a responsibility to make a
decision. Using this setting, we focus on the energy-centric nodes for optimization;

• The beta wolves (β): they comprise the second tier of wolves, subsequent to the alphas.
The standard responsibility of beta wolves is to aid and encourage alpha selection. Using
this setting, we focus on delay-centric nodes for optimization;

• The delta wolves (δ): they comprise the third tier of wolves. Using this setting, both energy and
delay are considered as the overall optimization goal.

In W-GUN, the most important aspiration is to encircle a prey by guidance through α, β and δ,
which can be systematically established as given in Equation (12):

M(k + 1) = M(k) −C · P (12)

P = |V ·Ml(k) −M(k)| (13)
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where P is the search accelerator parameter, M represents the grey wolf position, Ml is the prey position,
C, V are the coefficient vectors, and the number of iterations is defined by ‘k’. The coefficient vectors C
and V can be obtained by the equation below:

C = 2c ·w1 − c (14)

V = 2 ·w2 (15)

where ‘c’ will be linearly decreased from 2 to 0 and w1 and w2 are the random vectors from [0, 1].
The parameter ‘c’ is updated in every iteration within the range from 2 to 0, according to the below
Equation (16):

c = 2− k
( 2

K

)
(16)

where ‘K’ denotes the total number of iterations allowed. It is assumed that the large number of
possible locations of prey can be discovered through the alpha, beta, and delta solutions; the updated
procedure of the whales positions, based on the first three best solutions, can be obtained as shown
below:

M1 = Mα(k) −C1 · Pα (17)

M2 = Mβ(k) −C2 · Pβ (18)

M3 = Mδ(k) −C3 · Pδ (19)

where the component values Pα, Pβ and Pδ are calculated as follows:

Pα = |V1 ·Mα −M| (20)

Pβ = |V2 ·Mβ −M| (21)

Pδ = |V3 ·Mδ −M|. (22)

Based on the above Equations (17)–(19), the solution for the next iteration will be obtained
as follows:

M(k + 1) =
(M1 + M2 + M3)

3
(23)

The process of updating the whales positions takes place continuously until the maximum iteration
is achieved. A complete procedure of the proposed framework W-GUN, is presented below as an
algorithm and flowchart in Figure 1.

3.2. The Pseudo-Code for the Proposed W-GUN Framework

In Algorithm 1, a few of the major operations of the optimization model are detailed. In steps
one and two, initialization of the optimization model is performed, which is basically a constant
time operation depending on the population size Mx. In step two, the fitness function for the
optimization model is calculated using Equation (1). In step five, whale optimization is considered
for better underwater relay node selection. The exploration and exploitation of whale optimization
is enhanced in step six via the wolf optimization method. In steps 10–13, we prioritize the three
best solutions as the most recent solutions at each optimization iteration. In steps 17–31, the whale
optimization-based iterative search is performed for selecting underwater relay nodes. In steps 35–38,
the wolf optimization-based search is performed for enhancing the exploitation and exploration of
the whale approach. In steps 40–44, the three optimal relay node solutions are prioritized for each
particular iteration.
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Algorithm 1 W-GUN: Whale-centric Optimization for Green Underwater Networks

1. Initialize the population, Mx(x = 1, 2, . . . , y),
//Mx represents the set of random solutions based on the size and position of relay nodes

2. Initialize WOA parameters(x, X, G, Q and s) and GWO parameters(C, V and c)
3. Calculate the fitness(FF = max(Pn)) of each search agent using Equation (1)

// Fitness represents the maximum number of paths covered with minimal relay nodes
4. Selection based on the adapted search algorithm
5. For WOA-based search
6. Find the best solution M∗

7. For GWO-based search
8. Do
9. Separate the solutions based on the fitness

10. Mα = the first best search solution
11. Mβ = the second-best search solution
12. Mδ = the third best search solution
13. Compare M∗ and Mα

//Select the best solution among M∗ and Mα pass M( f inal_best) to WOA- and GWO-based updating procedures
14. While (k < maximum number of iterations)
15. Do update based on WOA and GWO
16. //WOA-based update
17. For each search agent

18. Update
→
x ,
→

X,
→

G, Q and s
19. if1(Q< 0.5)

20. if2(|
→

X|< 1)
21. Update the position of the current search agent by,

22.
→

W = |
→

G ·
→

M
∗

(k) −
→

M(k)|

23. else if2(|
→

X| ≥ 1)

24. Select a random search agent (
→

M
rand

)
25. Update the position of the current search agent by,

26.
→

M(k + 1) =
→

M
rand
−
→

X ·
→

W
27. end if2
28. else if1(Q ≥ 0.5)
29. Update the position of the current search by,

30.
→

M(k + 1) =
→

Wdist.explogspirals · cos(2
∏

s) +
→

M
∗

(k)

31. (where
→

Wdist = |
→

M
∗

p(k) −
→

M(k)| It means the distance between pth whale and prey (i.e., the best solution

attained till now); s ∈ [−1, 1] and logspiral is the constant for defining the shape of the logarithmic spiral)
32. end if1
33. end for
34. Return M* //GWO-based update
35. For each search solution
36. Update the current search agent

37. M(k + 1) = (M1+M2+M3)
3

38. where M1 = Mα(k) −C1 · Pα; M2 = Mβ(k) −C2 · Pβ; M3 = Mδ(k) −C3 · Pδ;
Pα = |V1 ·Mα −M|; Pβ = |V2 ·Mβ −M|; Pδ = |V3 ·Mδ −M|;

39. End for
40. Check if any search agent goes beyond the search space and adjust it
41. Calculate the fitness of each search agent (i.e., relay set) obtained through both search algorithms
42. Compare and update M( f inal_best) if there is a better solution
43. Store the best solution attained so far
44. k = k + 1
45. end while
46. return M( f inal_best)
47. Stop
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3.3. The Complete Working Structure of the Adapted Optimization Framework (W-GUN)

The working structure of the adapted whale optimization-based relay node optimization for the
W-GUN framework with a dynamic duty cycle is given in Figure 2.
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Next, we will discussed the working of the proposed underwater framework W-GUN, in detail as
per Figure 2 (above). In the first step, the underwater sensor nodes that were deployed in a uniform
random fashion are located in the underwater network sensing area. In the second step, underwater
relay nodes deployed in a normal random distribution fashion are identified. In the third step, the
initial estimation of the network is performed with the objective function of the deployed underwater
relay nodes. Thus, this step initially calculates the fitness of each search agent. In the fourth step, the
adapted underwater optimization framework W-GUN, is utilized to find the optimal set of underwater
relay nodes from the direct neighbor nodes. A flowchart of the adapted whale and wolf optimization
framework is given in Figure 1. The adapted underwater optimization has been designed by integrating
the whale and wolf optimization techniques. Here, the optimal best relay node solutions are obtained
simultaneously from both algorithms, and the final decision is taken to select the best relay node
among them during each optimization iteration. At the completion of every underwater relay node
optimization iteration, the best underwater relay node solution will be given to both optimization
algorithms to generate solutions that are better than the previous underwater relay node solutions,
then the same cycle is repeated. Thus, the output of the fourth step is an optimal set of underwater
relay nodes to be used as the next-hop forwarder.

After finding the optimal set of underwater relay nodes, their current duty cycle is calculated in
the fifth step. Now, the underwater relay set for each node is identified, and all relay nodes become
active in the underwater network path. In addition, in the fifth step, the expected effective transmission
cost (EETC) is calculated, and relay nodes are prioritized accordingly [37,38]. Therefore, the actual
underwater relay node list for each node is discovered in this step. For each sender node m, the
underwater relay nodes n are identified. The EETC of the underwater single-hop data forwarding,

EETC
(
Tmn

single−hop(u)
)
, at particular slot u, is derived from the sum of the underwater transmission cost

and the waiting cost, as expressed in Equation (24):

EETC
(
Tmn

single−hop(u)
)
= cost

(
Tmn

wait(u)
)
+ cost

(
Tmn

transmission(u)
)

(24)

where Tmn
wait is the waiting time interval and Tmn

transmission represents a transmission time interval.
The expected time interval between receiving a packet and beginning to send that packet to other
nodes is considered to be the waiting cost. The underwater multi-hop data forwarding uses the
single-hop EETC and an average of subsequent underwater relay nodes. This can be calculated as
given in Equation (25):

EETC(Tmn(u)) = EETC
(
Tmn

single−hop(u)
)
+

∑
o∈Setn

initial
EETC(Tno(u))

size
(
Setn

initial

) (25)

where size
(
Setn

initial

)
is the size of the relay set, EETC

(
Tmn

single−hop(u)
)

is the expected effective transmission

cost for a single hop of the receiver node n in the relay node-set Setn
initial. Moreover,

∑
o∈Setninitial

EETC(Tno(u))

size(Setn
initial)

is the average dynamic transmission cost of the relay node-set size
(
Setn

initial

)
.

In step six, underwater node energy acquisition of the next slot is predicted by using a modified
eco state network (MESN) model [39]. Here, for (j + 1) time slot, energy acquisition is Ex

acquisition( j + 1).
Finally, in step seven, underwater node energy consumption is calculated, and the duty cycle is
adjusted accordingly based on energy consumption, the energy acquisition of the next slot and the
energy threshold of the underwater network environments.
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In the underwater network, the energy utilization of ( j + 1)th the time slot is nothing but the sum
of the energy acquisition of the next time slot and the excess energy of the current time slot, which can
be referred to as given in Equation (26):

Ex
U( j + 1) = Ex

acquisition( j + 1) + Ex
ex( j) (26)

where Ex
acquisition( j + 1) denotes the underwater node energy acquisition of next time slot, Ex

ex( j)
represents the excess energy in the current time slot. By utilizing Equation (2), the dynamic duty cycle
in underwater networking as calculated as given in Equation (27):

Duty_Cyclex
act( j + 1) = Duty_Cyclex ×min

max

Ex
U( j + 1) − ET

ExT
max − ET

, 0

, 1

 (27)

where Duty_Cyclex
act( j + 1) represent the active time at slot ( j + 1) of the underwater relay node,

Duty_Cyclex is the slot length, Ex
U( j + 1) refers to the energy utilization of ( j + 1)th time slot for the

underwater relay node, ExT
max represent maximum consumption of energy for a slot, and ET represent

the energy threshold in underwater communication network environments. The active-duty cycle
constraint is referred to as, Duty_Cyclex

act( j + 1) ≤ Duty_Cyclex. In addition, if Duty_Cyclex
act( j + 1) = 0,

this represents that the underwater node is entirely inactive for the ( j + 1)th time slot.

4. Results and Discussion

4.1. Experimental Settings

In this section, a brief description of the experimental settings is provided, which were used to
set up Aqua-Sim-enabled network simulator (ns2) environments for evaluating the performance of
the proposed underwater relay node optimization framework W-GUN. The underwater simulation
environment had utilized acoustic channels at Medium Access Control (MAC) and physical layers.
Towards benchmarking a centric comparative experimental analysis, recent techniques in underwater
relay node optimization were considered, including VBF [27], HH-VBF [28], VBVA [29] and ES-VBF [35].
Both VBF and HH-VBF possess the qualities of service-oriented modeling without considering
underwater network characteristics in the modeling. VBVA and VBF both focused on void avoidance
without topology knowledge using the geographic locations of relay nodes. Here, the significant impact
of underwater characteristics on relay node locations is not considered. The adapted optimization
framework W-GUN for underwater relay node selection with a dynamic duty cycle is implemented
under realistic 3D underwater network environments of size 1000m × 1000m × 1000m. Here, the
underwater sensor nodes vary from 100 to 500 in the network region, which is quite a realistic
assumption for scalability. Each sensor node in the region is charged with an initial energy of 100 j. For
sending a single packet of size 512 bytes per node, the transmission energy per node is considered
2w, and receiving energy per node is considered to be 0.75w, given that the ideal node needs 10 mw
of energy. The transmission range of each underwater sensor node is 150 m, and the movement of
underwater nodes in the horizontal dimension is considered to be 0–3 m/s. There is the consideration
of an 100 s beaconing gape in underwater networking communication. Due to the longer propagation
delay in underwater networking environments, the handling packet collision is significant. The packets
colliding in one node may not collide with other nodes or arrive in different sequential orders in
underwater environments. This is handballed effectively in our Aqua-Sim-based simulations where
every node maintains a local copy of incoming packets and collision of packets are identified using the
difference in received power levels locally. Therefore, the effect of collision only remains on local copies
of a node and does not impact the copies of other nodes. This is the way in which collisions are handled
locally at each node in our simulation experiments. For controlling the constrains of underwater
physical layer implementation, we are essentially setting the exposed interface values of the simulator.
For example, as attenuation model setting, spreading factor was considered to be two, along with the
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absorption coefficient calculated following Thorp’s equation with 1500 m/s propagation speed. An
average of 50 simulation runs are averaged to get the results, and overall simulation time considered
to be 1500 s. A confidence interval of 98% was considered for generating the results. The framework is
implemented in the C++ environment in the simulator.

4.2. Analysis of Results

This section covers the comparative performance analysis part of the proposed approach with the
existing methods. The analysis of the end-to-end delay versus the number of underwater sensor nodes
is given in Figure 3. Here, the number of underwater sensor nodes is varied as 100, 200, 300, 400, and
500. It shows that the delay is considerably less for the proposed underwater relay optimization method
W-GUN than the state-of-the-art techniques. It is evident that the optimal selection of underwater relay
nodes enhances the performance of the overall network, resulting in reduced delay. For a lower delay,
the underwater routing path should be as optimal as possible. The aim of the proposed optimization
method is to select the maximal number of underwater routes with a minimal number of underwater
relay nodes. Therefore, the route consists of the minimum number of underwater relay nodes in our
proposed approach. Thus, the delay is considerably minimal compared with existing schemes in the
underwater literature.
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A more detailed description of the end-to-end delay performance gain of the proposed framework
is given in Table 1 with the comparative investigation of the frameworks HH-VBF, VBVA and ES-VBF,
as described in the literature. It can be observed that the average performance gain of W-GUN in
terms of percentage is 27%, 42%, and 50% for ES-VBF, VBVA and HH-VBF, respectively. This can be
attributed to the fact that the natural underwater characteristics are not considered in the literature,
which rather majorly relies on service quality and location-centric underwater relay nodes. However,
W-GUN utilized underwater characteristics by the consideration of whales movement, resulting in
a considerable performance gain. This performance gain is further represented in a more readable
way in Figure 4, where percentage gain and end-to-end delay observations are shown to be in close
relation. This verifies the results presented in Table 1 and Figure 3. Therefore, the proposed underwater
framework outperforms the state-of-the-art techniques with considerably lower end-to-end delay.
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Table 1. Descriptive performance observation of W-GUN in terms of end-to-end delay.

Delay (ms) Comparison with Varying Number of Nodes % Improvements of W-GUN Compared with Existing
Techniques

Nodes VBF HH-VBF VBVA ES-VBF W-GUN
% Gain of W-GUN

Compared with
ES-VBF

% Gain of W-GUN
Compared with

VBVA

% Gain of W-GUN
Compared with

HH-VBF

100 125 115 109.8 100 89 11 19 23
200 120 109 100 78 66 15 34 39
300 112 94 81 64 49 23 40 48
400 98 78 65 53 35 34 46 55
500 84.8 60 35.6 20 10 50 72 83

Average % Improvement→ 27 42 50
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Figure 4. Detailed percentage-centric performance gain of W-GUN focusing on end-to-end delay.

The results in Figure 5 show the comparison of packet delivery ratio performance between the
proposed framework and state-of-the-art techniques with varying underwater network density in the
range of 100–500 sensor nodes. It can be observed that the packet delivery ratio is significantly higher
for the proposed underwater relay optimization framework compared to state-of-the-art techniques.
The better packet delivery ratio for the proposed framework can be attributed to the utilization of
underwater environmental characteristics in relay node optimization, ultimately paying as a higher
packet delivery rate. Furthermore, an underwater environmental scenario-centric delivery path is
the target of the proposal’s discovery mechanism, in order to have more stable nodes in the path for
a higher packet delivery ratio. This means that the proposed underwater relay node optimization
framework selects the more stable underwater routes with the optimal number of underwater relay
nodes. Therefore, the delivery path consists of stable underwater relay nodes in our proposed
approach. Thus, the packet delivery ratio is considerably higher compared with existing schemes in
the underwater literature.

A more detailed analysis of performance gain in terms of packet delivery ratio of the proposed
framework is presented in Table 2. This comparative investigation considered the underwater state-of
the-art literature for highlighting the respective performance gains against the framework in this study.
It can be observed that the average performance gain of the proposal in terms of percentage is 15%,
23%, and 32% for ES-VBF, VBVA and HH-VBF, respectively. The reason behind this the utilization of
underwater characteristics for identifying network dynamics which is not considered in the existing
literature. The existing techniques have utilized service quality and location of underwater relay nodes
for making data delivery decisions. However, the proposed framework considers underwater network
dynamics resulting in significant performance gain in the packet delivery ratio. This performance gain
is further shown in a more scientifically understandable way in Figure 6. Here, the percentage gain as
well as packet delivery ratio observations are presented close together to make it easy to highlight the
performance benefits of the proposal in comparison with the literature. This is also helpful in validating
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the results shown in Table 2 and Figure 5. Thus, the proposed underwater framework provides a better
packet delivery ratio in underwater environments compared to state-of-the-art techniques.
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A comparative analysis between the proposed framework and state-of-the-art techniques is
presented in Figure 7 for energy consumption performance as a function of the number of underwater
sensor nodes in the underwater network. It can be observed that the energy consumption is considerably
lower for the proposed underwater relay optimization method W-GUN than the state-of-the-art
techniques. It is evident that the optimal selection of underwater relay nodes reduces the energy
consumption of the overall network, resulting in better utilization of the energy of underwater
nodes. For lower energy consumption, the underwater routing path should be as optimal as possible.
The proposed optimization framework selects the optimal number of underwater relay nodes for
optimizing the energy usage at the node level. Therefore, the route consists of stable underwater
nodes as well as the minimum number of underwater relay nodes in our proposed framework. In
particular, it can be observed that energy consumption reaches more than 7000 j for VBVA with 500
sensor nodes in the underwater network. In the case of our proposal, it reaches up to approximately
5000 j with similar 500 sensor nodes underwater network density. Here, we want to clarify that the
energy consumption is of the overall underwater network, considering all the sensor nodes’ energy
consumption. As we have specified in our experimental setting description, total simulation time
considered for each simulation experiment was 1500 s and each point considered in the result is an
average 50 simulation runs. Essentially, after our simulation time, overall 14% of underwater network
energy has been consumed in the case of VBVA and approximately 10% of underwater network energy
has been consumed in the case of the proposed framework. Therefore, energy consumption is lower
considerably compared with existing schemes in the underwater literature.
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The overall energy consumption of the proposed framework is investigated in detail in Table 3
with a comparison to the literature, focusing on respective performance gain percentage. It can be noted
that the average energy consumption performance gain of the proposed framework in percentage is
27%, 53%, and 46% for ES-VBF, VBVA and HH-VBF, respectively. This can be attributed to the fact that
the optimal and stable underwater nodes are considered in the proposed framework, in comparison
with the literature majorly relying on the quality of service and location-centric underwater relay
nodes. W-GUN utilized underwater characteristics resulting in a considerable energy performance
gain. This energy performance gain is further represented in a more understandable way in Figure 8,
where percentage gain and energy consumption observations are shown in close relation for better
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clarity and understanding. This verifies the results presented in Table 3 and Figure 7. Therefore, the
proposed underwater framework outperforms the state-of-the-art techniques with considerably lower
energy consumption.

Table 3. Descriptive performance observation of W-GUN in terms of energy consumption.

Energy Consumption (J) Comparison with a Varying Number
of Nodes % Improvement of W-GUN Compared with Existing Schemes

Nodes VBF HH-VBF VBVA ES-VBF W-GUN
% Gain of W-GUN

Compared with
ES-VBF

% Gain of W-GUN
Compared with

VBVA

% Gain of W-GUN
Compared with

HH-VBF

100 557 758 1050 466 229 51 78 70
200 768 1048 1358 568 398 30 71 62
300 2778 3168 3778 2449 1880 23 50 41
400 5880 6260 6660 5300 4449 16 33 29
500 6460 7140 7400 5800 5018 13 32 30

Average % Improvement→ 27 53 46
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The overall network lifetime as a function of the number of sensor nodes in the underwater
network is comparatively investigated in Figure 9, considering the proposed framework and the
state-of-the-art techniques. Similar network density in the range of 100–500 sensor nodes is considered
for this experiment. It can be easily noticed that the network lifetime is effectively longer for the
proposed underwater relay optimization framework than the compared state-of-the-art techniques. It is
evident that the optimal selection of underwater relay nodes enhances the communication performance
of the overall network in terms of a longer network lifetime. For a durable network lifetime, the
underwater communication path should be optimal. The aim of the proposed optimization method
is to select the maximal number of underwater communication routes with a minimal number of
underwater relay nodes. Therefore, the route consists of the minimum number of underwater relay
nodes in our proposed approach. Therefore, the network lifetime is longer considerably compared
with existing schemes in the underwater literature.

The longer network lifetime-centric performance benefits of the proposed framework are explored
in detail in Table 4 in terms of percentage gain compared with the literature. The average performance
gain of W-GUN in terms of network lifetime percentage can be notes as 12%, 32%, and 46% for literature
including ES-VBF, HH-VBF and, VBVA respectively. The performance benefits can be reasoned to
the fact that the natural underwater characteristics are not considered in the literature, which rather
majorly relied on the quality of service and location information of underwater relay nodes. However,
the proposed framework has utilized underwater characteristics, resulting in considerable performance
gain and a longer network lifetime. This network lifetime performance gain is further represented
in a more readable way in Figure 10. Here, the percentage gain and network lifetime observations
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are shown in close relation so that they can be analyzed relatively. This is also verifying the results
presented in Table 4 and Figure 9. Therefore, the proposed underwater framework shows a longer
network lifetime compared to the state-of-the-art techniques in the underwater literature.
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Figure 9. Network lifetime versus the number of underwater nodes.

Table 4. Descriptive performance observation of W-GUN in terms of network lifetime.

Network Lifetime (s) Comparison with Varying Number of
Nodes

% Improvements of W-GUN Compared with Existing
Techniques

Nodes VBF HH-VBF VBVA ES-VBF W-GUN
% Gain of W-GUN

compared with
ES-VBF

% Gain of W-GUN
compared with

HH-VBF

% Gain of W-GUN
compared with

VBVA

100 1678 1547 1380 1700 1980 14 22 30
200 1498 1378 1156 1560 1798 13 23 36
300 1376 1165 928 1498 1699 12 31 45
400 1178 980 711 1389 1557 11 37 54
500 920 714 525 1240 1380 10 48 62

Average % Improvement→ 12 32 46
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The throughput performance of the proposed framework is comparatively studied in the results
presented in Figure 11, with varying numbers of sensor nodes in the underwater network environment.
The throughput of the proposed framework is significantly higher for the considered underwater
relay optimization environment compared to state-of-the-art techniques. The better throughput of
the proposal is due to the utilization of stable and lower delay-centric underwater relay nodes. In the
framework, an underwater environmental scenario-centric routing path is discovered to have more
stable nodes in the delivery path. In other words, the proposed underwater relay node optimization
framework selects the more stable underwater routes compared to the considered existing literature
with the optimal number of underwater relay nodes. The delivery path consists of stable underwater
relay nodes in our proposed framework. Thus, the throughput performance of the proposal is
considerably higher compared with existing schemes in the underwater literature.Sensors 2020, 20, x FOR PEER REVIEW 21 of 24 
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The benefits in terms of the throughput of the proposed framework are analyzed as performance
gain in Table 5. It is a comparative investigation between the proposed framework and underwater
state-of-the-art techniques. The average throughput performance gain of W-GUN in terms of percentage
is 10%, 33%, and 45% for the underwater literature including ES-VBF, HH-VBF and, VBVA respectively.
The reason behind the better throughput is the utilization of underwater characteristics for identifying
network dynamics. However, W-GUN considers underwater network dynamics, resulting in significant
performance gains in throughput. These performance benefits are further evident in Figure 12 in a
more scientifically understandable way. Here, the percentage gain and throughput observations are
presented in close relation so that they can be analyzed relatively. This is helpful in validating the
results shown in Table 5 and Figure 11. Thus, the proposed underwater framework provides higher
throughput in underwater environments compared to the state-of-the-art techniques.
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Table 5. Descriptive performance observation of W-GUN in terms of throughput.

Throughput (Packets/Second) Comparison with Varying
Number of Nodes

Percentage Improvements of W-GUN Compared with Existing
Techniques

Nodes VBF HH-VBF VBVA ES-VBF W-GUN
% Gain of W-GUN

Compared with
ES-VBF

% Gain of W-GUN
Compared with

HH-VBF

% Gain of W-GUN
Compared with

VBVA

100 92 70 51 124 138 10 49 63
200 117 93 70 138 155 11 40 55
300 132 112 91 149 166 10 33 45
400 144 134 112 156 174 10 23 36
500 166 151 136 170 188 10 20 28

Average % Improvement→ 10 33 45
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5. Conclusions

In this paper, we have presented an underwater relay node optimization framework (W-GUN)
for enabling green computing in underwater networking. The underwater relay nodes are selected
to cover the maximal paths with the help of an adapted whale and wolf optimization algorithm.
The position of underwater relay nodes is varied and checked for optimal deployment to reduce the
number of underwater relay nodes for green underwater networking. The adapted W-GUN framework
has been designed by integrating underwater-centric optimization techniques, namely a whale and
wolf optimization algorithm. Moreover, the performance of the proposed framework is compared
with the existing techniques ES-VBF, VBVA and HH-VBF. The proposed methodology is analyzed in
terms of various underwater-centric metrics including end-to-end delay, packet delivery ratio, energy
consumption, network lifetime, and throughput by varying the number of underwater sensor nodes in
the network. The average percentage improvements reflect the effectiveness of the proposed scheme
compared with the state-of-the-art underwater techniques. In addition, from the results attained, it
can be concluded that the proposed optimal underwater relay selection scheme is effective in terms
of improving the network lifetime with less energy consumption. In future works, the authors will
focus on using deep learning-centric optimization in order to further evolve the understanding of
underwater network environments in optimal relay node selection and route optimization based on
network dynamics.
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