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Apparatus , materials , and techniques and techniques herein 
can include providing a deposited layer comprising a com 
posite material including carbon nanotubes ( CNTs ) . Accord 
ing to various examples , the composite can be applied to a 
substrate such as using a solution containing CNTs and other 
constituents such as sulfur . The solution can be spray 
applied to a substrate , or spin - coated upon a substrate , such 
as to provide a uniform , conductive , and optically - transpar 
ent film layer . In one application , such a film layer can be 
clad or otherwise assembled in a stack - up including a 
substrate and cover layer ( e . g . , glass layers ) , such as to 
provide a transparent assembly . Such an assembly can 
include a portion of a window , such as a windscreen for a 
vehicle , where the CNT material can provide a conduction 
medium for Joule heating . 
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HEATING ELEMENT INCLUDING CARBON 
NANOTUBE ( CNT ) LAYER 

CLAIM OF PRIORITY 

[ 0001 ] This patent application claims the benefit of prior 
ity of Loganathan et al . , U . S . Provisional Patent Application 
Ser . No . 62 / 320 , 975 , titled “ Carbon Nanotube Composites , ” 
filed on Apr . 11 , 2016 ( Attorney Docket No . 4568 . 002PRV ) 
which is hereby incorporated by reference herein in its 
entirety . 

examples . The heating element assembly can include an 
optically - transparent substrate and the conductive layer can 
also be optically transparent , such as for use as a demisting , 
defrosting , or deicing element located within , applied to , or 
included as a portion of a windscreen . Other applications 
include leading edge deicing for airfoils , such as included as 
portions of an aircraft wing , stabilizer , elevator , or wind 
turbine blade airfoil , as illustrative examples . Such a heating 
element can be connected to a control circuit , such as in a 
system having one or more of a moisture or temperature 
sensor to provide closed - loop control of the heating element 
to reduce or suppress icing or enhance visibility . 
[ 0006 ] This summary is intended to provide an overview 
of subject matter of the present patent application . It is not 
intended to provide an exclusive or exhaustive explanation 
of the invention . The detailed description is included to 
provide further information about the present patent appli 
cation . 

BACKGROUND 
[ 0002 ] Transparent conductive film ( TCF ) and transparent 
heated glass can be used in a wide range of applications such 
as for solar voltaic cells , thermally - based sensors , or win 
dow defrosters and demisters , as illustrative examples . Gen 
erally - available transparent heating assemblies include use 
of an optically - transparent conductive film . Indium tin oxide 
( ITO ) is one material that is generally available and used in 
transparent heaters ( with transmittance , T > 95 % ) , particu 
larly ITO - based heaters in windscreens for vehicular appli 
cations . 

BRIEF DESCRIPTION OF THE DRAWINGS 

SUMMARY OF THE DISCLOSURE 
[ 0003 ] Apparatus , materials , and techniques and tech 
niques herein can include providing a deposited layer ( e . g . , 
a coating ) comprising a composite material including carbon 
nanotubes ( CNTs ) . According to various examples , the 
composite can be applied to a substrate such as using a 
solution containing CNTs and other constituents such as 
sulfur . The solution can be spray - applied to a substrate , dip 
coated upon the substrate , or spin - coated upon a substrate , 
such as to provide a uniform , conductive , and optically 
transparent film layer . In one application , such a film layer 
can be clad or otherwise assembled in a stack - up including 
a substrate and cover layer ( e . g . , glass layers ) , such as to 
provide a transparent assembly . Such an assembly can 
include a portion of a window , such as a windscreen for a 
vehicle , where the CNT material can provide a conduction 
medium for Joule heating . Use of a spray - coated or spin 
coated CNT solution is compatible with generally - available 
windscreen materials and assemblies , so such assemblies 
can be fabricated to include one or more CNT material 
layers without requiring chemical vapor deposition ( CVD ) . 
[ 0004 ] In an example , a technique such as a method can 
include depositing a solution on a substrate , the solution 
including carbon nanotubes , sulfur , and a solvent . The 
technique can include drying the solution to provide a 
conductive layer on the substrate , and forming two elec 
trodes on the substrate in electrical contact with the con 
ductive layer to provide a heating element . In an example , 
the method can include depositing multiple conductive 
layers comprising carbon nanotubes functionalized with 
sulfur on the substrate . 
[ 0005 ] In an example , a heating element assembly can 
include a substrate , a conductive layer including carbon 
nanotubes and sulfur , formed upon the substrate , and two 
electrodes electrically coupled to the conductive layer , the 
two electrodes , when energized , configured to establish a 
current through the conductive layer to provide a heating 
element . The heating element assembly can be included as 
a portion of a structure in a vehicle , such as an automobile , 
boat or ship , locomotive , or an aircraft , as illustrative 

[ 0007 ] In the drawings , which are not necessarily drawn to 
scale , like numerals may describe similar components in 
different views . Like numerals having different letter suf 
fixes may represent different instances of similar compo 
nents . The drawings illustrate generally , by way of example , 
but not by way of limitation , various embodiments discussed 
in the present document . 
10008 ] . FIG . 1A and FIG . 1B illustrate generally views of 
an example of a heating element assembly that can include 
a conductive layer comprising carbon nanotubes . 
[ 0009 ] FIG . 2 illustrates generally an example of a heating 
element assembly that can include a conductive layer com 
prising carbon nanotubes , such as coupled to an energy 
source . 
[ 0010 ] . FIG . 3 illustrates generally an illustrative example 
of an Energy Dispersive X - ray Spectroscopy ( e . g . , “ EDS ” or 
“ EDX ” ) scan indicative of a composition of a solution 
including carbon nanotubes and sulfur . 
[ 0011 ] FIG . 4 illustrates generally an illustrative example 
of a scanning electron microscope ( SEM ) image such as 
showing a location for which a point spectrum EDX analysis 
can be performed on a carbon nanotube structure present in 
solution . 
[ 0012 ] FIG . 5 illustrates generally an illustrative example 
an SEM image illustrating generally respective dimensions 
of carbon nanotubes present in a solution . 
[ 0013 ] FIG . 6A illustrates generally a line - spectrum EDX 
obtained along a line as shown in FIG . 6B , providing an 
illustrative example of a sulfur blending signature in a 
carbon nanotube structure in solution . 
[ 0014 ] FIG . 7 illustrates generally a technique , such as a 
method , that can include forming a carbon nanotube film 
layer on a substrate . 
[ 0015 ] FIG . 8 illustrates generally an infrared thermal 
image of an operating heating element , obtained by a 
thermal camera and showing the temperature distribution 
profile , where brighter portions of the image represent 
higher surface temperature as compared to darker portions 
of the image . 
0016 ] FIG . 9 illustrates generally a representation of the 
user interface for the FLIR ResearchIR Max software ( avail 
able from FLIR Systems , Inc . , Wilsonville , Oreg . , USA ) , 
such as can be used for performing data acquisition , and as 
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was used for obtaining experimental results relating to 
illustrative examples described herein . 
[ 0017 ] FIG . 10A illustrates generally an illustrative 
example showing a decrease in optical transmittance as a 
count of a number of carbon nanotube layers increases . 
[ 0018 ] FIG . 10B illustrates generally an illustrative 
example showing a decrease in sheet resistance as a count of 
a number of carbon nanotube layers increases . 
[ 0019 ] FIG . 11 illustrates generally an illustrative example 
showing a negative temperature coefficient of sheet resis 
tance as an operating temperature of a heating element 
including a carbon nanotube structure increases . 
[ 0020 ] FIG . 12 illustrates generally an illustrative example 
showing a thermal cycling behavior of a heating element 
including a carbon nanotube structure . 
[ 0021 ] FIG . 13 illustrates generally an illustrative example 
showing respective temperature versus time profiles for 
heating elements having different counts of layers of carbon 
nanotubes . 
10022 ] FIG . 14A , FIG . 14B , and FIG . 14C illustrate gen 
erally respective illustrative examples showing temperature 
versus time profiles for heating elements having different 
counts of layers of carbon nanotubes , where the trends are 
plotted over a longer time duration as compared to FIG . 13 . 
[ 0023 ] FIG . 15A and FIG . 15B illustrate generally respec 
tive infrared thermal images of an operating heating ele 
ment , such as before application of a thermal tape in FIG . 
15A , and after application of a thermal tape in FIG . 15B . 
[ 0024 ] FIG . 16A , FIG . 16B illustrate generally respective 
infrared thermal images of an operating heating element , 
such as before application of a thermal tape in FIG . 16A , and 
after application of a thermal tape in FIG . 16B , and FIG . 16C 
shows a processed image calculating a difference between 
FIG . 16A and FIG . 16B at each spatial location , illustrating 
an improvement in thermal uniformity . 
[ 0025 ] FIG . 17A , FIG . 17B , and FIG . 17C illustrate gen 
erally respective histogram plots of the thermal images of an 
operating heating element , such as corresponding to the 
image of FIG . 16A before application of a thermal tape . 
[ 0026 ] FIG . 18A , FIG . 18B , and FIG . 18C illustrate gen 
erally respective histogram plots of the thermal images of an 
operating heating element , such as corresponding to the 
image of FIG . 16B after application of a thermal tape . 
[ 0027 ] FIG . 19A , FIG . 19B , FIG . 19C , FIG . 19D , FIG . 
19E , and FIG . 19F illustrate generally respective infrared 
thermal images of an operating heating element correspond 
ing to various operating temperatures . 
[ 0028 ] FIG . 20A and FIG . 20B illustrate generally tem 
poral plots of temperature versus time for each of the spatial 
locations shown in FIG . 19B , where FIG . 20A includes each 
of the nine cursor locations , and FIG . 20B includes a subset 
of the cursor locations . 

an ITO coating . Cloudiness , humidity , wind , and exposure to 
fluids , such as during washing , can also affect the perfor 
mance of such coatings . 
0030 ] In another approach , transparent heaters can be 
fabricated using carbon nanotubes ( CNTs ) . CNTs can pro 
vide one or more of excellent optical transparency , high 
conductivity ( e . g . , on the order of 10 Siemens per meter 
( S / m ) or greater ) , mechanical flexibility , and the raw mate 
rial used to produce CNTs is abundant . At temperatures of 
less than about 350° C . , CNTs are generally thermally stable 
in the presence of an oxygen environment . At a temperature 
beyond about 350° C . , CNTs may degrade at least in part due 
to oxidation because the CNTs are structures comprising 
carbon atoms . In a vacuum environment , the CNTs can 
endure up to about 3726° C . or even higher temperatures , 
such as due to the presence of sp2 hybridized carbon - carbon 
bonds in CNT structures . 
[ 0031 ] When an electric current is applied through a 
conductive material , the applied electric current will induce 
a Joule heating effect , which can be referred to as a self 
heating or resistive heating effect . The electric current will 
cause the traveling electrons to bounce off the atoms of the 
conductive element and make them vibrate . This vibration 
rate will create the rise in temperature . A tungsten filament 
inside an incandescent light bulb is an illustrative example 
of such heating , where the heating is used to produce light . 
The thermal output will vary depending upon the conductive 
nature of the element . Generally , a highly conductive mate 
rial will produce less Joule heating whereas a highly resis 
tive material will produce a comparatively greater Joule 
heating effect . Generally , as mentioned above , CNTs are 
excellent electrical conductors , but such CNTs alone may 
only produce a modest resistive heating effect . 
[ 0032 ] In one approach , such as to provide a CNT layer for 
a heating apparatus , CNT material can be grown on a 
substrate using a chemical vapor deposition . For an appli 
cation where the CNT material is part of a transparent 
assembly , a glass can be used as a substrate for CVD . 
However , such an approach can present challenges . For a 
vehicular application or another application where the sub 
strate glass occupies a significant area ( such as a windscreen 
for a vehicle or a mother glass for an electronic device such 
as a display or light source ) , it is generally not possible to 
use CVD apparatus enclosing the entire substrate . In another 
approach , CNTs can be formed on smaller wafers and 
transferred to a larger substrate . However , this approach can 
also have disadvantages , such as causing non - uniformity 
and layer deterioration . Growing CNTs in smaller scale can 
also incur significant costs . 
[ 0033 ] For heating applications , the Joule heating effect of 
CNTs can be enhanced by functionalizing the CNTs with an 
insulating material to increase a resistivity of a film includ 
ing the functionalized CNT compound . Such a functional 
ized compound can be included as a portion of a heating 
element . The present inventors have recognized , among 
other things , that a composite including CNTs can be used , 
such as to facilitate fabrication of assemblies that would 
otherwise be impractically large for CVD processing . Such 
a composite can also provide enhanced heating efficiency 
when used as a portion of a heating element . In an example , 
a CNT material can be functionalized with sulfur . A solution 
containing a mixture of single - walled nanotubes ( SWNT ) , 
double - walled nanotubes ( DWNT ) , and multi - walled nano 
tubes ( MWNT ) , along with ammonium hydroxide and 

DETAILED DESCRIPTION 

[ 0029 ] The present inventors have recognized , among 
other things , that conductive films such as including Indium 
Tin Oxide ( ITO ) can have disadvantages , particularly when 
used for heating applications . Such disadvantages can 
include a slow thermal response , mechanical brittleness , and 
a high cost of manufacturing . Other drawbacks can also 
exist , such as interference of the ITO coating with radio 
transmission , such as can adversely affect radio and mobile 
phone reception or transmission through a surface including 
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water , can be used to form a conductive layer as a portion of 
a heating element . In an illustrative example , such as 
described herein , such a solution can include about 75 % 
SWNT ( such as 75 % SWNT by volume ) . An example of 
such a solution can be obtained from Brewer Science ( Rolla , 
Mo . USA ) under the trade name CNTRENETM 3021 B3 - R . 
[ 0034 ] FIG . 1A and FIG . 1B illustrate generally views of 
an example of a heating element assembly 100 that can 
include a conductive layer 102 comprising carbon nanotubes 
( CNTs ) such as deposited on a substrate 108 , along with two 
or more electrodes , such as a first electrode 106A and a 
second electrode 106B . A cover layer 104 can be included , 
such as comprising the same material as the substrate 108 , 
or a similar material . As an illustrative example , the sub 
strate 108 can include windscreen glass or another material 
such as polycarbonate . The CNT layer 102 can have a 
thickness in the range of a few micrometers . The electrodes 
106A and 106B can contact the CNT layer 102 , such as at 
the edges . Materials for the electrode can include one or 
more of copper , silver , tungsten , aluminum , or one or more 
other materials . The cover layer 104 can include one or more 
of another glass layer , a non - reactive protective coating , or 
an anti - scratch , high thermal performance one - sided tape 
( e . g . , an adhesive - backed flexible polymer ) . Other structural 
configurations and materials can be used to provide opti 
cally - transparent assemblies as described herein , such as 
without requiring a glass substrate or cover layer . For 
example , a cover layer including one or more of polymethyl 
methacrylate ( PMMA ) or polycarbonate ( PC ) can be used , 
such as a ProTEK PSR - R ( available from Brewer Science ) . 
Such a polymer - based coating can also provide transpar 
ency , temperature stability , and compatibility for retaining 
the CNTRENETM - coated layer properties , such as to provide 
a flexible heating element that can also be optically trans 
parent . 
[ 0035 ] FIG . 2 illustrates generally an example of a heating 
element assembly that can include a conductive layer 202 
comprising carbon nanotubes , such as coupled to an energy 
source 212 ( e . g . , a voltage source ) . The configuration shown 
in FIG . 2 illustrates generally a prototype heating element 
that was used for obtaining the experimental results 
described generally herein . In the example of FIG . 2 , a 
substrate 208 can include a glass substrate , and a cover layer 
204 such as glass or a polymer can be used , according to 
various examples . Electrical interconnects ( such as wires 
210A and 210B ) can be used to couple the source 212 to the 
conductive layer 202 . The conductive layer 202 can include 
one or more CNT layers formed upon the substrate 208 , such 
as comprising a sulfur - functionalized CNT composite . 
[ 0036 ] FIG . 3 illustrates generally an illustrative example 
of an Energy Dispersive X - ray Spectroscopy ( e . g . , “ EDS ” or 
“ EDX ” ) scan indicative of a composition of a solution 
including carbon nanotubes and sulfur . As mentioned else 
where herein , by functionalizing CNTs with sulfur , a suit 
able CNT film layer can be deposited having resistance 
characteristics appropriate for Joule heating . An example of 
a sulfur - functionalized solution suitable for use in deposition 
is CNTRENETM 3021 B3 - R available from Brewer Science . 
In the CNTRENETM 3021 B3 - R solution , an average length 
of CNT is approximately 0 . 4 to 0 . 6 micrometers ( um ) . To 
functionalize the CNTs with sulfur , carbon and sulfur - based 
gases can be introduced during the CNT growth process . 
Sulfur is generally insoluble in water and many other 
solutions , but carbon disulfide provides a solution contain 

ing sulfur . Without being bound by theory , it is believed that 
in at least one approach , functionalization can be performed 
by introducing carbon disulfide gas , which was the source of 
sulfur during production of carbon nanotubes . The 
CNTRENETM solution contains a mixture of sulfur - func 
tionalized single - walled nanotubes ( SWNT , - 75 % ) , double 
walled nanotubes ( DWNT ) and multi - walled nanotubes 
( MWNT ) with ammonium hydroxide and water . 
[ 00371 EDX spectroscopy as shown in FIG . 3 was per 
formed using a Bruker EDX scan system in an FEI Quanta 
650 scanning electron microscope . A surface morphology of 
a material and its chemical composition can be studied by 
using EDX . This method is based on the X - ray source 
interaction upon the sample material surface . A high beam of 
electron source can be focused on the sample and will excite 
an atom from an unexcited ground state . Then , the electrons 
from the outer high - energy shell will fill the gap . This tends 
to create an energy difference and releases an X - ray . This 
energy difference is measured by the analyzer in the EDX 
system . Each element in the periodic table holds its own 
energy spectrum , which can be quantitatively measured and 
displayed . 
[ 0038 ] The elemental analysis of the CNTRENETM solu 
tion was performed using an EDX scan , where EDX was 
used to measure qualitative and quantitative elemental com 
position at the nanoscale . A quantity of 0 . 5 milliliters ( ml ) of 
the CNTRENETM solution was dropped on an aluminum 
stub and left to dry for 24 hours , then loaded and scanned . 
As shown in FIG . 3 , sulfur is present in the solution , 
confirming the doping process of the CNTs . The EDX 
spectrum of FIG . 3 illustrates a plot of X - ray counts versus 
energy ( in Kilo - electron Volts ( KeV ) ) . The test also reveals 
the presence of aluminum and oxygen . The presence of 
oxygen was due to the ammonium hydroxide and the 
presence of sulfur was due to the functionalization of the 
carbon nanotubes . The high concentration of aluminum is 
attributed to the stub . The spectrum of FIG . 3 illustrates a 
presence of sulfur in the dried solution . Sulfur can generally 
be regarded as an electrical insulator and an electrical 
resistivity of sulfur is high ( e . g . , on the order of about 
1x1012 m ) . 
( 0039 ) FIG . 4 illustrates generally an illustrative example 
of a scanning electron microscope ( SEM ) image such as 
showing a location for which a point spectrum EDX analysis 
can be performed on a carbon nanotube structure present in 
a dried sample of solution and FIG . 5 illustrates generally an 
illustrative example an SEM image illustrating generally 
respective dimensions of carbon nanotubes present in the 
dried solution . Generally , a diameter of CNTs is approxi 
mately 900 nm as shown in FIG . 4 and FIG . 5 . 
[ 0040 ] FIG . 6A illustrates generally a line - spectrum EDX 
obtained along the white line as shown in FIG . 6B , providing 
an illustrative example of a sulfur blending signature in a 
carbon nanotube structure in solution . The proportion of 
carbon is higher than sulfur , which is used to functionalize 
the CNT , particularly in regions where the line spectra show 
spatially - overlapping carbon and sulfur fractions . 
[ 0041 ] A layer of carbon nanotubes creates a conductive 
medium between electrode locations , and a presence of 
sulfur functionalization modulates a resistance of the con 
ductive medium . This helps produce a high temperature 
output for the applied voltage , compared to a CNT film 
lacking such functionalization . Referring back to FIG . 3 , a 
presence of nitrogen and oxygen in the EDX scan chart was 
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due to ammonium hydroxide [ NH , OH ] in the solution . 
Hydrogen cannot be detected using an EDX scan , and is thus 
absent from the results . There are multiple reasons for the 
use of ammonium hydroxide , including that it serves as a 
dispersant . Functionalized carbon nanotubes are prone to 
attract and stick together with nearby carbon nanotubes , but 
this can be suppressed such as by using an ammonium 
hydroxide solution . Ammonium hydroxide can also create a 
hydroxide environment by engaging all hydrogen and oxy 
gen elements in the solution . The name ammonium hydrox 
ide shows an alkali with composition : [ NH4 + ] [ OH - ] . This , in 
turn avoids the formation of sulfur dioxide and carbon 
dioxide gases , from the reaction shown below . 

CS2 + 302 - CO2 + 2502 EQN . 1 

[ 0042 ] Use of ammonium hydroxide in the CNT solution 
can also provide a uniform coating during the spin coating 
process . A surface tension of ammonium hydroxide is low as 
compared to other media and accordingly , use of ammonium 
hydroxide promotes spreading of the solution on a glass 
substrate . Without being bound by theory , it is believed that 
ammonium hydroxide can also provide or enhance a bond 
ing effect between the self - adhering carbon nanotubes and a 
substrate surface . TABLE 1 , below , illustrates generally 
results obtained from performing a point - spectrum EDX 
scan of a glass substrate coated with CNTRENETM solution . 

TABLE 1 
Point Spectrum EDX Scan 

Atomic 
Number 

Norm . C 
[ wt . % ] Series 

Atom . C 
[ at . % . ] 

( 1 Sigma ) 
[ wt . % ] Element 

tion to the substrate , a solution temperature , and a concen 
tration of the solution to be coated . Such an approach is 
suitable for a double - sided coating with high uniformity and 
precision thickness control but such a process may be more 
time consuming as compared to other approaches described 
herein . A dip withdrawal can be performed at a constant rate , 
such as in order to avoid defects such as unwanted micro 
patterns . 
[ 0046 ] Spray Coating 
[ 0047 ] A spray coating technique can also be used . As an 
illustrative example , a substrate having dimensions of 25 
millimeters ( mm ) x25 mm can be treated with ethanol . The 
substrate can then be loaded in a spray coating machine ( for 
example , Spray Pyrolysis Automated Equipment ) , chuck 
temperature , ambient temperature , and pressure can be con 
trolled . To achieve a uniform coating the nozzle flow rate of 
5 ml / min was used , according to an illustrative example . An 
ultrasonic transducer can be included at a distal tip of a spray 
nozzle , such as to atomize the solution which is then 
deposited on the surface of the substrate . The lateral velocity 
and the number of consecutive sprays can be used to 
precisely control a thickness of the layer . As an illustrative 
example , for large - scale commercial manufacturing to pro 
vide a uniform coating , a spray coating process can be used . 
[ 0048 ] Spin Coating 
( 0049 ) Use of a spin coating technique generally provides 
a uniform and thin layer of coating . The thickness of each 
layer can be controlled by adjusting one or more of the 
applied rotational velocity of the spin coater ( in revolutions 
per minute ( RPM ) ) , a duration of spinning , and the operating 
temperature ( e . g . , a chuck temperature ) . A thickness of the 
coating layer is generally inversely proportional to the 
rotational velocity ( e . g . , " spin speed " ) . For example , a thin 
layer can be produced using a relatively higher RPM range , 
and at relatively lower RPM range , the thickness will be 
high , for the same operating duration . The CNTRENETM 
solution mentioned above was observed as suitable for spin 
coating , and other operations such as a spray coating . 
[ 0050 ] A spin coating technique can be performed using 
one or more of a static dispense technique or a dynamic 
dispense technique . Generally , a small puddle of fluid is 
dropped at the center of a spinning substrate . Fluid dis 
pensed on the surface can propagate outward , and some 
proportion flows off an edge of the substrate . As mentioned 
above , a thickness of a resulting film can depend on multiple 
parameters , such as including a spin duration , a spin RPM , 
an acceleration rate , a surface tension of the solution , an 
amount of solution , an evaporation rate , and temperature of 
a chuck or the surrounding environment . In order to achieve 
a desired thickness and precision , spin coating is generally 
performed in a controlled environment . In a static dispense 
technique , a small puddle of solution is generally dropped at 
the center of the substrate while the chuck or stage is in a 
static condition . An amount of dispensed solution can be 
selected based upon a concentration of the solution and an 
area of the substrate to be coated . In the dynamic dispense 
technique , a small puddle can be applied on the substrate , 
such as mostly or entirely in the center of the substrate while 
the stage is rotating . A modified static dispense technique 
was used for the prototypes from which experimental data 
was obtained herein . 
[ 0051 ] FIG . 7 illustrates generally a technique 700 , such as 
a method , that can include forming a carbon nanotube film 
layer on a substrate . At 702 , a substrate can be loaded for 

Oxygen 
Carbon 
Sulfur 
Aluminum 
Nitrogen 

Waa 
K - series 
K - series 
K - series 
K - series 
K - series 

33 . 33 
43 . 94 
10 . 25 

8 . 78 
3 . 70 

31 . 32 
55 . 01 
4 . 81 
4 . 89 
3 . 97 

3 . 37 
4 . 47 
0 . 33 
0 . 38 
0 . 66 

Total 100 . 00 100 . 00 

[ 0043 ] Various techniques can be used to form a CNT film 
on a substrate , such as comprising a sulfur - functionalized 
CNT film having constituents as shown above in the illus 
trative example of TABLE 1 . Such techniques can include 
one or more of dip coating , spray coating ( e . g . , using a spray 
pyrolysis technique ) , or spin coating . Such techniques can 
be performed repeatedly , such as to form multiple CNT film 
layers . According to various examples described herein , a 
transparent heating device can include an conductive opti 
cally - transparent CNT layer , such as to provide an optical 
transmittance of the overall stack - up of substrate , CNT layer 
( or layers ) , and a cover layer of over 90 % in the visible 
wavelength spectrum . The phrase " optically transparent " 
does not require perfect transmittance ( e . g . , 100 % or 1 . 0 ) , 
but can refer to any of a variety of specified transmittances , 
such as at least 80 % , at least 85 % , or at least 90 % , as 
illustrative examples . 
10044 ] Dip Coating 
[ 0045 ] A process including a bath immersion can be used 
where a substrate is dipped in a coating material . A dip 
coating technique allows relatively easy control of thickness 
as compared to other approaches . Such control can be 
achieved by adjusting one or more different variables includ 
ing a count of dip operations , a withdrawal velocity , a 
substrate surface characteristic , a contact angle of the solu - 
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processing , such as placed in a chuck or stage . At 704 , a 
coating solution can be dispensed on the substrate . At 706 , 
a film can be cast such as by rotating the stage or chuck , and 
at 708 , the film can be allowed to settle . At 710 further 
processing can occur , such as providing additional rotation 
( e . g . , spinning ) to achieve a desired film uniformity or 
thickness . Other processing steps can include film curing or 
isolation . 
10052 ] FIG . 8 illustrates generally an infrared thermal 
image of an operating heating element , obtained by a 
thermal camera and showing the temperature distribution 
profile , where brighter portions of the image represent 
higher surface temperature as compared to darker portions 
of the image . The CNT layer in the structure imaged in FIG . 
8 was formed on a transparent glass substrate having dimen 
sions of 25 mmx25 mm . In this illustrative example , a 
one - sided adhesive copper tape is used as an electrode 
material , and the electrodes are placed at opposite edges of 
the CNT - coated transparent glass . A multi - meter can be used 
to measure the resistance of each specimen . The transmit 
tance of each specimen can be measured , such as by using 
an EvolutionTM 260 Bio UV - Visible spectrophotometer 
( available from Thermo Fisher Scientific Inc . , Waltham , 
Mass . , USA ) . A forward - looking infrared ( FLIR ) thermal 
imaging camera can be used to capture the thermography of 
the specimen , such as to obtain an image as shown in FIG . 
8 and as shown in other examples described herein . 
[ 0053 ] For the examples imaged in FIG . 8 and other 
examples below , a spin coating technique was used to 
produce the heating element . A CNT - based film can be 
obtained on a glass substrate by spin coating the substrate 
using a Chemat KW - 4A spin coater ( available from Chemat 
Technology , Inc . , Northridge , Calif . , USA ) . The substrate 
( e . g . , a glass slide ) was examined closely for any sort of 
imperfection such as small scratch and pits . The slide was 
then treated with ethanol to get rid of atmospheric dust and 
fingerprints . The ethanol treatment can provide better adhe 
sion between the glass and CNT material , though the CNT 
material has a self - interconnections and self - adhering capa 
bility . In an illustrative example , the ethanol treated slide 
was baked at 250° C . for 5 minutes and cooled to room 
temperature for 2 minutes . After cooling down , the slide is 
loaded into the spin coater chuck where the glass slide is 
placed rigidly using a vacuum suction technique . The 
CNTRENETM solution mentioned above is applied on the 
entire surface of the transparent glass . In this illustrative 
example , a static dispense coating mechanism is used 
including a pipette positioned at 45 degrees with respect to 
the substrate for improved visibility and dispersion rate . To 
get rid of excess coating material , a quick spin of 2000 RPM 
was applied for 1 second at a ramp rate of 10000 RPM / sec . 
Then , the coating was allowed to cool at low RPM . The 
substrate was post - baked to 250° C . for 5 minutes and 
cooled to room temperature for 2 minutes . This provided 
uniform coating and additional layers could then be coated 
using a similar procedure , without requiring ethanol treat 
ment between coating operations . In another illustrative 
example , the slide is loaded into the spin coater chuck where 
the glass slide is placed rigidly using a vacuum suction 
technique , without requiring pre - baking . The CNTRENETM 
solution mentioned above is applied on the entire surface of 
the transparent glass . To get rid of excess coating material , 
a quick spin of 2000 RPM is applied for 30 seconds . In these 
illustrative examples , the one or more CNT - coated layers on 

the glass substrate are sandwiched by placing another trans 
parent glass with the same dimension on the top . This will 
isolate the CNT from environment disturbance without 
losing transmittance . 
[ 0054 ] For the experimentally - obtained results herein , a 
spectral range of 7 . 5 um . to 14 um was used , and FLIR 
ResearchIR Max software ( available from FLIR Systems , 
Inc . , Wilsonville , Oreg . , USA ) provides a user interface for 
active thermography and also provides a data acquisition 
system , as shown in FIG . 9 , which illustrates generally a 
representation of the FLIR ResearchIR Max software . The 
FLIR ResearchIR Max software was used for obtaining 
experimental results relating to illustrative examples 
described herein . To evaluate a thermal performance of the 
sandwiched heater structure comprising the glass substrates 
and the CNT material , a DC power source is provided using 
two 48 - Volt DC supplies connected in series . A delivered 
current and corresponding resistance of the structure - under 
test can also be monitored . The two terminals of the voltage 
source were connected to copper electrodes as described 
generally above in relation to FIG . 2 . A current and resis 
tance can thereby be measured . The FLIR IR camera was 
used to capture the temperature increment . A surface tem 
perature was measured for the applied voltage , as heat is 
emitted from the CNT coating . 
[ 0055 ] FIG . 10A illustrates generally an illustrative 
example showing a decrease in optical transmittance as a 
count of a number of carbon nanotube layers increases . The 
FLIR thermal camera used for obtaining the result shown in 
FIG . 10A can be calibrated with an emissivity value corre 
sponding to the materials being measured . The emissivity 
was assigned as 0 . 95 because a CNT film can generally be 
regarded as a near - perfect optical absorption material and 
generally the emissivity ranges from 0 . 91 - 0 . 95 with respect 
to the temperature range - 40° C . to 300° C . Temperature 
readings derived from FLIR imaging were verified with a 
digital thermometer by performing a surface contact 
method , for the experimentally - obtained observations 
herein . According to various illustrative examples herein , 
glass slides uniformly coated with CNTRENETM , such as 
forming a five - layer CNTRENETM coated transparent glass 
heating element , had a sheet resistance of about 3 . 5 Kilo 
ohms ( Kf ) to about 4 . 5 KQ2 and a transmittance of 93 % . A 
nine - layer CNTRENETM - coated transparent glass heating 
element provided a sheet resistance of about 1 . 3 K22 and a 
transmittance of 88 % . 
[ 0056 ] FIG . 10B illustrates generally an illustrative 
example showing a decrease in sheet resistance as a count of 
carbon nanotube layers increases . It is observed that increas 
ing a layer count of CNTRENETM - coated layers correspond 
ingly increases a duration of time to reach a peak ( e . g . , 
equilibrium ) temperature for a specified applied voltage . 
Also , the sheet resistance generally decreases as a 
CNTRENETM layer count increases , but experimentally 
obtained results indicate that after 10 layers there is no 
significant reduction in both resistance , as shown in FIG . 
10B , and possibly due to a transition from sheet to bulk 
conduction within the coating medium . The labels ( n , r ) on 
each point in FIG . 10B indicate a count of layers , “ n , ” and 
a corresponding resistance in K22 , “ r . ” 
f0057 ) FIG . 11 illustrates generally an illustrative example 
showing a negative temperature coefficient of sheet resis 
tance as an operating temperature of a heating element 
including a carbon nanotube structure increases . Electrical 
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sample , respective carbon nanotube coating configurations 
( e . g . , layer count , processing conditions ) generated a con 
sistent resistance along with transmittance and other general 
properties . 
[ 0061 ] An equation to determine the total power consump 
tion ( P ) for operating a transparent ( or other ) heating ele 
ment can be represented as , 

P = VI EQN . 2 

resistance of coated layers including CNTs can be influenced 
by operating temperature . For example , a sheet resistance as 
shown in FIG . 11 decreased initially with an increasing 
temperature . Without being bound by theory , this is believed 
due to a negative thermal coefficient ( NTC ) effect . Due to 
the NTC effect , a specimen can increase its temperature 
rapidly as the voltage was applied , such as initially present 
ing a higher resistance . The NTC is observed in elements 
such as carbon , silicon , and germanium . In FIG . 11 , the NTC 
effect is illustrated generally where an initial resistance is 
high when the heating element is first energized , and then 
drops before increasing as temperature increases . 
[ 0058 ] FIG . 12 illustrates generally an illustrative example 
showing a thermal cycling behavior of a heating element 
including a carbon nanotube structure , including a count of 
five layers . A voltage of 80 V was applied , then turned off , 
and then applied again to provide ten successive thermal 
cycles as shown in FIG . 12 . The target cycling range was to 
achieve a temperature of about 60° C . peak starting from 
about 30° C . For the FLIR - derived temperature measure 
ments , an emissivity was set to 0 . 95 and the transmittance 
was set to 1 , because the carbon nanotube side faced towards 
the infrared camera . A fast heating and cooling response was 
observed as shown in FIG . 12 , and there was no degradation 
in performance observed during the test . An average cycle 
took about 210 seconds to reach from about 30° C . to about 
60° C . and back down to about 30° C . 
[ 0059 ] FIG . 13 illustrates generally an illustrative example 
showing respective temperature versus time profiles for 
heating elements having different counts of layers of carbon 
nanotubes . Heating performance can depend upon various 
factors such as including an overall thickness of a carbon 
nanotube film formed on a surface of a specimen . A thick 
ness of CNT coating may vary throughout a sample when 
observed at microscale , such as using SEM . However , 
temperature profiles recorded for specimens with different 
counts of deposited CNT layers clearly illustrate a depen 
dence between an equilibrium temperature versus a count of 
layers . For the experimentally - observed results in FIG . 13 , 
a constant voltage of 120 V was applied and the temperature 
plot was generated with respect to time in seconds , for 
deposited layer counts of four , six , and seven layers . 
[ 0060 ] FIG . 14A , FIG . 14B , and FIG . 14C illustrate gen 
erally respective illustrative examples showing temperature 
versus time profiles for heating elements having different 
counts of layers of carbon nanotubes , where the trends are 
plotted over a longer time duration as compared to FIG . 13 . 
To obtain the data plotted in FIG . 14A , FIG . 14B , and FIG . 
14C , weekly lifetime performance tests were performed on 
two 5 - layer slides and one 9 - layer slide for nine weeks , 
under a constant applied voltage of 80 V . An average 
temperature of about 75° C . was obtained for the five - layer 
samples and about 115º C . for the nine - layer slides , respec - 
tively . To avoid lifetime degradation , the slide was coated 
with a cover layer , to isolate the CNTRENETM layers from 
atmospheric contact . Such a cover layer can also be provided 
by sandwiching the CNT layer with another glass layer , or 
by using a protective inert coating such as acrylic , or by 
applying thermal tape , according to various examples . The 
repeatability of experimentally - obtained results described 
herein was assessed using range of different samples , includ 
ing substrates comprising microscope slides , annealed 
glasses , laminated glasses , and tempered glasses ( e . g . , used 
to manufacture car windshields ) . Regardless of the glass 

where V represents the voltage applied and I represents the 
current . A surface power density can be estimated using the 
following equation , 

P & p / A EON . 3 

where A represents a CNT coated surface area ( ignoring the 
area covered by electrodes ) . For 25 mmx25 mm and 25 
mmx50 mm slides , the voltages to reach about 70° C . are 
about 60 V and about 80 V , respectively . The voltages can be 
multiplied by the measured current ( 0 . 02 A and 0 . 03 A 
respectively ) to obtain the power . The surface power density 
determined EQN . 3 are about 0 . 24 watts / centimeter2 for both 
samples . Such a value is approximate , as some non - unifor 
mity in the temperature distribution over the coated area was 
observed . Similar manufacturing parameters have produced 
specimens having a similar surface power density , over a 
range of different surface areas . Once the power density is 
determined for the specific manufacturing parameters , it is 
possible to derive a suitable operating voltage for a specified 
area . 
[ 0062 ] FIG . 15A and FIG . 15B illustrate generally respec 
tive infrared thermal images of an operating heating ele 
ment , such as before application of a thermal tape in FIG . 
15A , and after application of a thermal tape in FIG . 15B . A 
thermal tape comprising a flexible polymer film and adhe 
sive can be used to protect a deposited CNT layer by creating 
isolation from the surrounding environment , such as sup 
pressing oxidation or moisture exposure . A cover layer such 
as tape can also reduce hot spots , enhancing uniformity of 
heating . Hot spots are zones where the temperature is higher 
than other nearby areas . This is believed to be due to a 
presence of an increased number or density of carbon 
nanotubes in a particular zone . As shown in FIG . 15A as 
compared to FIG . 15B , use of a thermal tape as a cover layer 
generally reduces or suppresses hot spots . 
100631 . FIG . 16A , FIG . 16B illustrate generally respective 
infrared thermal images of an operating heating element , 
such as before application of a thermal tape in FIG . 16A , and 
after application of a thermal tape in FIG . 16B , and FIG . 16C 
shows a processed image calculating a difference between 
FIG . 16A and FIG . 16B at each spatial location , illustrating 
an improvement in thermal uniformity . A maximum tem 
perature was generally attained at a contact point of a 
positive electrode and a minimum temperature was gener 
ally attained at contact point of the negative electrode . 
Without being bound by theory , it is believed that a source 
for the observed difference in temperature can be attributed 
to the Peltier effect , which is generally observed in semi 
conductors . 
[ 0064 ) Other factors might affect formation of hot spots , 
such as electrode / CNT layer adhesion and uniformity of the 
deposited CNT layer . The Peltier effect is a thermoelectric 
phenomenon where some heat is transported as a thermo 
electric interaction with the electrical current , in parallel 
with heat transport . The Peltier process can either increase or 
decrease the heat flux at a contact point included as a portion 
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of an electrical circuit . In the example of FIG . 16A and FIG . 
16B , the contact points are the electrodes . The Peltier effect 
is generally only about 5 % efficient in thermoelectric reac 
tions , and evidence of the effect was reduced after applying 
a thermal tape as a cover layer . A resultant image in FIG . 
16C illustrates a difference between the before - tape and 
after - tape images of FIG . 16A and FIG . 16B , and illustrates 
generally where heat spots , possibly due to Peltier effect , 
have been reduced or suppressed . Pixel red - green - blue 
( RGB ) values can be extracted from digital FLIR images . As 
shown in FIG . 16A and FIG . 16B , two images were obtained 
corresponding to a specimen before and after applying 
thermal tape , with the images having the same number of 
pixels . Pixel RGB values were then processed and compared 
to each other to generate the new resultant plot , correspond 
ing to FIG . 16C , based on the change in RGB value . 
[ 0065 ) FIG . 17A , FIG . 17B , and FIG . 17C illustrate gen 
erally respective histogram plots of the thermal images of an 
operating heating element , such as corresponding to the 
image of FIG . 16A before application of a thermal tape and 
FIG . 18A , FIG . 18B , and FIG . 18C illustrate generally 
respective histogram plots of the thermal images of an 
operating heating element , such as corresponding to the 
image of FIG . 16B after application of a thermal tape . As 
mentioned above , a resultant plot showed the corrected heat 
spot and reduced Peltier effect . A population of pixel values 
can be used to generate histogram plots . Such histograms 
can be used to determine a difference in hot spot formation , 
and the illustrations of FIG . 17A , FIG . 17B , FIG . 17C , FIG . 
18A , FIG . 18B , and FIG . 18C illustrate generally that use of 
thermal tape reduces hot spot formation ( e . g . , by showing a 
narrowing of the distributions and suppression or elimina 
tion of long tails ) . 
[ 006 ] FIG . 19A , FIG . 19B , FIG . 19C , FIG . 19D , FIG . 
19E , and FIG . 19F illustrate generally respective infrared 
thermal images of an operating heating element correspond 
ing to various operating temperatures , where an individual 
thermal contour plot was generated to show the variation or 
change in temperature with respect to time , on a heating 
element clad with a cover layer of thermal tape . A tempera 
ture limit was set to 50° C . , and for every 5º C . increase , an 
image was recorded , to provide the series of images shown 
in FIG . 19A , FIG . 19B , FIG . 19C , FIG . 19D , FIG . 19E , 
through FIG . 19F . 
10067 ] FIG . 20A and FIG . 20B illustrate generally tem 
poral plots of temperature versus time for each of the spatial 
locations shown in FIG . 19B , where FIG . 20A includes each 
of the nine cursor locations ( labeled as “ Point ” in FIG . 20A ) , 
and FIG . 20B includes a subset of the cursor locations . The 
locations of cursor numbers four and five are close to the 
positive electrode and experience relatively higher tempera 
tures , and cursor numbers two and three are close to the 
negative and experience relatively lower temperatures . 
Excluding cursors two , three , four , and five ( e . g . , due to 
Peltier effect ) , all other cursors reflected a temperature 
uniformity of plus or minus 5º C . Use of a thermal tape as 
a cover layer can preserve optical transparency , while one or 
more of enhancing thermal uniformity or protecting a depos 
ited CNT layer . Thermal tapes or other polymer materials 
can be tinted or can include various hues that can be 
specified for particular applications . Other examples of 
protective materials having varying degrees of longevity and 
immunity to contamination are mentioned in Longanathan , 
Santosh Kumar . 

10068 ] “ Windshield defrost and deice using carbon nano 
tube composite , " Dissertation / Thesis : On Shelf , THESIS 
2016 L64 , ERAU Thesis Collection ( December , 2016 ) , 
which is hereby incorporated herein by reference in its 
entirety . 
[ 0069 ] Each of the non - limiting aspects described in this 
document can stand on its own , or can be combined in 
various permutations or combinations with one or more of 
the other aspects or other subject matter described in this 
document . 
[ 0070 ] The above detailed description includes references 
to the accompanying drawings , which form a part of the 
detailed description . The drawings show , by way of illus 
tration , specific embodiments in which the invention can be 
practiced . These embodiments are also referred to generally 
as “ examples . ” Such examples can include elements in 
addition to those shown or described . However , the present 
inventors also contemplate examples in which only those 
elements shown or described are provided . Moreover , the 
present inventors also contemplate examples using any 
combination or permutation of those elements shown or 
described ( or one or more aspects thereof ) , either with 
respect to a particular example ( or one or more aspects 
thereof ) , or with respect to other examples ( or one or more 
aspects thereof ) shown or described herein . 
[ 0071 ] In the event of inconsistent usages between this 
document and any documents so incorporated by reference , 
the usage in this document controls . 
[ 0072 ] In this document , the terms “ a ” or “ an ” are used , as 
is common in patent documents , to include one or more than 
one , independent of any other instances or usages of at least 
one ” “ one or more . ” in this document , the term “ or ” is used 
to refer to a nonexclusive or , such that “ A or B ” includes “ A 
but not B , ” “ B but not A , " and " A and B , " unless otherwise 
indicated . In this document , the terms “ including ” and “ in 
which ” are used as the plain - English equivalents of the 
respective terms " comprising ” and “ wherein . " Also , in the 
following claims , the terms “ including ” and “ comprising ” 
are open - ended , that is , a system , device , article , composi 
tion , formulation , or process that includes elements in addi 
tion to those listed after such a term in a claim are still 
deemed to fall within the scope of that claim . Moreover , in 
the following claims , the terms “ first , " " second , ” and 
" third , ” etc . are used merely as labels , and are not intended 
to impose numerical requirements on their objects . 
[ 0073 ] Method examples described herein can be machine 
or computer - implemented at least in part . Some examples 
can include a computer - readable medium or machine - read 
able medium encoded with instructions operable to config 
ure an electronic device to perform methods as described in 
the above examples . An implementation of such methods 
can include code , such as microcode , assembly language 
code , a higher - level language code , or the like . Such code 
can include computer readable instructions for performing 
various methods . The code may form portions of computer 
program products . Further , in an example , the code can be 
tangibly stored on one or more volatile , non - transitory , or 
non - volatile tangible computer - readable media , such as dur 
ing execution or at other times . Examples of these tangible 
computer - readable media can include , but are not limited to , 
hard disks , removable magnetic disks , removable optical 
disks ( e . g . , compact disks and digital video disks ) , magnetic 
cassettes , memory cards or sticks , random access memories 
( RAMS ) , read only memories ( ROMs ) , and the like . 
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[ 0074 ] The above description is intended to be illustrative , 
and not restrictive For example , the above - described 
examples ( or one or more aspects thereof ) may be used in 
combination with each other . Other embodiments can be 
used , such as by one of ordinary skill in the art upon 
reviewing the above description . The Abstract is provided to 
comply with 37 C . F . R . $ 1 . 72 ( b ) , to allow the reader to 
quickly ascertain the nature of the technical disclosure . It is 
submitted with the understanding that it will not be used to 
interpret or limit the scope or meaning of the claims . Also , 
in the above Detailed Description , various features may be 
grouped together to streamline the disclosure . This should 
not be interpreted as intending that an unclaimed disclosed 
feature is essential to any claim . Rather , inventive subject 
matter may lie in less than all features of a particular 
disclosed embodiment . Thus , the following claims are 
hereby incorporated into the Detailed Description as 
examples or embodiments , with each claim standing on its 
own as a separate embodiment , and it is contemplated that 
such embodiments can be combined with each other in 
various combinations or permutations . The scope of the 
invention should be determined with reference to the 
appended claims , along with the full scope of equivalents to 
which such claims are entitled . 

The claimed invention is : 
1 . A method , comprising : 
depositing a solution on a substrate , the solution including 

carbon nanotubes , sulfur , and a solvent ; and 
drying the solution to provide a conductive layer on the 

substrate ; and 
forming two electrodes on the substrate in electrical 

contact with the conductive layer to provide a heating 
element . 

2 . The method of claim 1 , comprising depositing multiple 
conductive layers comprising carbon nanotubes functional 
ized with sulfur on the substrate . 

3 . The method of claim 1 , wherein depositing the solution 
comprises spin - coating the substrate with the solution . 

4 . The method of claim 1 , wherein depositing the solution 
comprises spray - coating the substrate with the solution . 

5 . The method of claim 4 , wherein the spray - coating 
includes use of a spray - pyrolysis technique . 

6 . The method of claim 1 , wherein depositing the solution 
comprises dip - coating the substrate with the solution . 

7 . The method of claim 1 , wherein the solution includes 
at east 75 % single - walled carbon nanotubes ( SWNT ) . 

8 . The method of claim 7 , wherein the solution also 
includes double - walled nanotubes and multi - walled nano 
tubes . 

9 . The method of claim 7 , wherein the solution includes 
ammonium hydroxide . 

10 . The method of claim 7 , wherein at least a portion of 
the carbon nanotubes are functionalized with sulfur . 

11 . An electrical device , comprising : 
a substrate ; 
a conductive layer including carbon nanotubes and sulfur , 

formed upon the substrate ; and 
two electrodes electrically coupled to the conductive 

layer , the two electrodes , when energized , configured to 
establish a current through the conductive layer to 
provide a heating element 

12 . The electrical device of claim 11 , wherein the sub 
strate and the conductive layer are optically transparent . 

13 . The electrical device of claim 11 , wherein the sub 
strate includes glass . 

14 . The electrical device of claim 11 , comprising a cover 
layer located upon a surface of the conductive layer , oppo 
site the substrate . 

15 . The electrical device of claim 14 , wherein the cover 
layer comprises glass . 

16 . The electrical device of claim 14 , wherein the cover 
layer comprises a flexible polymer . 

17 . The electrical device of claim 16 , wherein the cover 
layer comprises an adhesive - backed film . 

18 . The electrical device of claim 11 , wherein the con 
ductive layer comprises a plurality of carbon nanotube 
layers formed upon the substrate , the carbon nanotube layers 
including sulfur . 

19 . An electrical device , comprising : 
an optically - transparent substrate including glass ; 
an optically - transparent conductive layer including car 
bon nanotubes and sulfur , formed upon the substrate ; 

two electrodes electrically coupled to the optically - trans 
parent conductive layer , the two electrodes , when ener 
gized , configured to establish a current through the 
conductive layer to provide a heating element ; and 

a cover layer located upon a surface of the conductive 
layer , opposite the substrate . 

20 . The electrical device of claim 19 , wherein the cover 
layer comprises a flexible polymer . 

* * * * 
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