UAS Pilots Code – Annotated Version 1.0

Michael S. Baum

Kristine Kiernan
Embry-Riddle Aeronautical University, kiern4fd@erau.edu

Ryan J. Wallace Ed.D.
Embry-Riddle Aeronautical University, ryan.wallace@erau.edu

Donald W. Steinman

Follow this and additional works at: https://commons.erau.edu/publication

Part of the Aviation Safety and Security Commons, Industrial Technology Commons, and the Management and Operations Commons

Scholarly Commons Citation

This Report is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Tools to advance UAS

safety and professionalism
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Revision Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>--</td>
<td>Last pre-peer-review working draft</td>
</tr>
<tr>
<td>0.4</td>
<td>11/24/17</td>
<td>Peer-review prototype</td>
</tr>
<tr>
<td>0.5a</td>
<td>12/23/17</td>
<td>Peer review draft</td>
</tr>
<tr>
<td>0.5b</td>
<td>1/5/18</td>
<td>Peer review draft, updated</td>
</tr>
<tr>
<td>0.5c</td>
<td>1/8/18</td>
<td>Peer review draft, further updated</td>
</tr>
<tr>
<td>1.0</td>
<td>1/27/18</td>
<td>First released version</td>
</tr>
</tbody>
</table>
UAS Pilot Letter

PERMANENT EDITORIAL BOARD
OF THE
AVIATORS CODE INITIATIVE
AND THE
UNIVERSITY AVIATION ASSOCIATION

DEAR UAS PILOT:

THIS LETTER INTRODUCES VERSION 1.0 OF THE **UAS PILOTS CODE** (**UASPC**). DEVELOPED BY A TEAM OF AVIATION AND UAS PROFESSIONALS, THE **UASPC** RECOMMENDS OPERATING PRACTICES TO ENHANCE THE QUALITY AND SAFETY OF YOUR OPERATIONS. THE **UASPC** APPLIES TO A RANGE OF OPERATING ENVIRONMENTS AND EXPERIENCE LEVELS, FROM THE UAS NOVICE TO EXPERIENCED UAS PILOTS.

PILOT CONDUCT AND PROFESSIONALISM AFFECT THE ENTIRE AVIATION COMMUNITY, INCLUDING ITS SAFETY CULTURE. CORRESPONDINGLY, ORGANIZATIONAL SAFETY CULTURE AFFECTS PILOT CONDUCT. A VOLUNTARY, ASPIRATIONAL CODE OF CONDUCT PROMOTES PILOT PROFICIENCY AND OPERATIONAL SAFETY. THE **UASPC** IS JUST SUCH A TOOL: A SET OF GUIDELINES, AND RECOMMENDED PRACTICES ADAPTABLE TO EACH PILOT AND ORGANIZATIONAL NEED.

THE **UASPC** REFLECTS YEARS OF SAFETY PRACTICES AND LESSONS LEARNED IN MANNED AND UNMANNED AVIATION THAT ARE APPLICABLE TO UAS OPERATIONS. WE ENCOURAGE YOU TO ADOPT IT, AND TO COMMIT TO THE HIGHEST PRINCIPLES OF AVIATION SAFETY.

37
Table of Contents

Revision History 2
UAS Pilot Letter 3
Table of Contents 4
Preface 5
Introduction 6
UAS Pilots Code 9
 I. **General Responsibilities of UAS Pilots** 9
 II. **Manned Aircraft and People on the Surface** 14
 III. **Training and Proficiency** 16
 IV. **Security and Privacy** 19
 V. **Environmental Issues** 22
 VI. **Use of Technology** 24
 VII. **Advancement of UAS Aviation** 27
Additional Resources 29
Notice 30
Edits, Errata, Comments 30
Acknowledgements 31
Appendices 34
 Appendix 1 – Abbreviations 34
 Appendix 2 – Definitions 36
 Appendix 3 – Selected References 43
 Appendix 4 – UASPC Condensed Version 45
 Appendix 5 – UASPC Abbreviated Version 46
Endnotes 47
Index 103
Preface

[You don’t have to be a manned pilot to understand and embrace a safety culture. We all share the same sky, and we must all consider the impact of what we do on everyone.]

Dallas Brooks, Chairman, AUVSI
Director, Raspet Flight Research Lab, MSU
Introduction

The UAS Pilots Code (UASPC) offers recommendations to advance flight safety, ground safety, airmanship, and professionalism. It presents a vision of excellence for UAS pilots and operators, and includes general guidance for all types of UAS. The UASPC offers broad guidance—a set of values—to help a pilot interpret and apply standards and regulations, and to confront real world challenges to avoid incidents and accidents. It is designed to help UAS pilots develop standard operating procedures (SOPs), effective risk management, safety management systems (SMS), and to encourage UAS pilots to consider themselves aviators and participants in the broader aviation community.

The FAA Airman Certification Standards (ACS) establish the pilot certification testing standards. Regulations and standards alone, however, do not necessarily prepare a pilot to handle every unusual or unanticipated situations, especially those beyond the scope of standard procedures, checklists or operating manuals. The UASPC’s principles complement and underscore legal requirements. Because regulation may lag behind technology developments, the UASPC can be particularly helpful in providing guidance.

The UASPC is designed to be a living document, intended to be updated periodically to reflect changes in aviation practices and the aviation environment.

This document is applicable to civil unmanned aircraft system (UAS) pilots, ground crew including visual observers, operators, operations managers, safety officers, and other interested or responsible parties. The UASPC may also serve as a supplemental resource for other UAS operations.

The UASPC is a model, not a standard. Users may customize this document to suit their needs including title, length, organization, and level of technical detail or sophistication. For further help with customization see “Additional Resources.” The UASPC is most effective if users commit to the pursuit of professionalism as well as a firm grasp of the fundamentals of UAS flight and flight safety.

Three versions of the UASPC are available:

- **Annotated Version** - this unabridged document includes supplemental materials, extensive supporting endnotes, and drafting considerations,
- **Condensed Version** - without annotation, intended for pilot implementation (see Appendix 4), and
- **Abbreviated Version** - containing only the core principles, introducing and promoting the UASPC (see Appendix 5).
The UASPC has seven sections, each presenting Principles and Sample Recommended Practices (SRPs).17

\textbf{The Sections:}

\begin{itemize}
\item \textbf{I. GENERAL RESPONSIBILITIES OF UAS PILOTS}
\item \textbf{II. MANNED AIRCRAFT AND PEOPLE ON THE SURFACE}
\item \textbf{III. TRAINING AND PROFICIENCY}
\item \textbf{IV. SECURITY AND PRIVACY}
\item \textbf{V. ENVIRONMENTAL ISSUES}
\item \textbf{VI. USE OF TECHNOLOGY}
\item \textbf{VII. ADVANCEMENT OF UAS AVIATION}
\end{itemize}

\textbf{The Principles:}

The Principles are recommended best practices addressing safety, training, risk management, and technology. General and concise, the Principles are designed to provide a foundation for building professionalism and a safety culture.

\textbf{The Sample Recommended Practices:}

\textit{Sample Recommended Practices} are suggestions for applying the principles of the \textit{UASPC} and tailoring them to individuals and organizations. Sample Recommended Practices may be reordered, modified, or eliminated when not applicable, to satisfy the unique capabilities and requirements of each pilot, mission, unmanned aircraft, organization, and flight environment.

\textbf{The Annotated Version and The Commentary:}

Extensive annotation is presented in this version of the \textit{UASPC} to provide support, resources, discussion, and drafting considerations. In addition, commentary is published at \url{www.secureav.com}. The commentary provides discussion, interpretive guidance, and suggested ways to adopt the \textit{UASPC}. The annotated version is intended primarily for flight departments,18 managers, UAS businesses, policy administrators, compliance officers, and UAS pilots and operators who wish to explore the \textit{UASPC} in greater depth.19

\textbf{Definitions:}

Recognizing that the field of unmanned aviation represents a confluence of aviation and consumer technology, terms likely to be more familiar to members of one group than the other are explained in brief parentheses. The annotated version contains extensive definitions of these and other terms.

\textbf{Benefits of the UASPC:}

The \textit{UASPC} benefits UAS pilots and the UAS community by:

\begin{itemize}
\item recommending practices to support safety and professionalism among UAS pilots,
\item encouraging UAS pilots to recognize themselves as aviators and members of the broader aviation community,
\end{itemize}
UAS Pilots Code – Annotated Version 1.0

- promoting improved training, airmanship, conduct, personal responsibility, and pilot contributions to the UAS community and society at large,
- encouraging the development and adoption of ethical practices and good judgment,
- advancing self-regulation and responsibility in the UAS community, and
- supporting improved communications between pilots, regulators, and others in the UAS industry to further enhance safety within the National Airspace System (NAS).

Note: References to civil aviation authorities (CAAs), including the US Federal Aviation Administration are used as examples. In all jurisdictions, applicable laws and regulations must be followed.
I. General Responsibilities of UAS Pilots

UAS pilots should:
 a. make safety a top priority,22
 b. seek excellence in airmanship (\textit{knowledge, skill, ability, and attitude that promote safe and efficient operations}),23
 c. adopt sound principles of aeronautical decision-making (ADM)23 (\textit{the process used by pilots to consistently determine the best course of action in response to the circumstances}), and develop and exercise good judgment,25
 d. use sound principles of risk management,26
 e. maintain situational awareness (\textit{the accurate perception and understanding of your operation and environment}),27 and adhere to prudent operating practices,28
 f. aspire to professionalism,29
 g. act with responsibility, integrity,30 and courtesy, and
 h. adhere to applicable laws, regulations, and industry guidance.31

\textit{Explanation:} These General Responsibilities serve as a preamble to the UASPC’s other principles.

\textit{Sample Recommended Practices:}

\textit{a. make safety a top priority}

- Recognize, plan for and accept the costs of implementing effective safety practices.
- Organizations of any size and scope should apply the principles of a safety management system (SMS): understand the risks in your operations, take steps to control them, and monitor operations to assure that these controls are working.32
- Improve safety margins and reduce unnecessary risk by planning and flying conservatively.
- Recognize that use of a visual observer enhances safety, even when not required.33
UAS Pilots Code – Annotated Version 1.0

- Do not carry hazardous payloads unless authorized.
- Do not assume that the altitudes prescribed in UAS Facility Maps are necessarily accurate or appropriate for flight.
- Create an emergency response plan, and implement it in the event of an incident or accident.

b. seek excellence in airmanship

- Identify and adapt to changing flight conditions based on airmanship, sound principles of UAS safety and risk management. Be prepared to alter your flight plan or discontinue your flight accordingly.

c. adopt sound principles of aeronautical decision-making, and develop and exercise good judgment

- Ensure UAS flight controllability is not adversely affected by payload weight, placement, and loading. Follow manufacturer's instructions if provided. In the absence of provided guidance, use conservative loading practices.
- Consider conducting a stability and controllability test at the start of each flight.
- Understand the unique relationship between UAS piloting and aeronautical decision-making, ethical choices, and flight safety.
- Recognize the difficulty of visually estimating UAS altitude and distance.
- Incorporate Threat and Error Management (TEM - process of detecting and responding to threats and errors) into your operation to aid in identifying errors and external threats that could compromise safety.
- Employ Crew Resource Management (CRM - the effective use of all available resources: human resources, hardware, and information) techniques to foster effective crew coordination, teamwork, and enhance safety culture.
- Consider the effect of weather such as wind, precipitation, and temperature on power, fuel reserves, and performance, and their impact on the safe completion of flight.
- Refuse to operate a UAS that is unsafe for flight because of mechanical, electrical or control system discrepancies, failure to meet applicable inspection requirements, airworthiness (suitability for safe flight), or any anomaly that adversely affects airworthiness.
- Discontinue UAS operations in the event of potential conflict with other aircraft, mechanical anomaly, low power or fuel condition, adverse weather, or any other condition that may compromise safety.

d. Use sound principles of risk management

- Use risk management tools to identify, evaluate and mitigate the effects of hazards, and do not subject anyone to unnecessary risks.
Keep operations well clear of airports, heliports, and seaplane bases. Conduct such operations only when safety can be reasonably assured. Where applicable, make notification, and obtain authorization from proper authorities.

Recognize the restrictions associated with flying near airports or other aircraft, in controlled airspace, over people, in inclement weather (including reduced visibility environments), and at night. Be aware of the increased risk associated with flying in congested, urban, or confined areas; near obstacles; over water, rugged, mountainous, or forested terrain; in high density altitude conditions; and in other circumstances that may adversely affect safety.

Have a ground safety plan for and ready access to appropriate fire suppression and other emergency equipment and the ability to contact emergency services.

Recognize that aviation or other charts may not accurately reflect all obstructions and hazards that could affect UAS operations. Maintain chart currency. Supplement aeronautical charts with visual observers, site survey, and other mapping resources.

Prevent distractions that could lead to errors and compromise safety by limiting unnecessary tasks or communication during launch, recovery, and other critical phases of flight.

Where practicable, enhance visibility through appropriate use of aircraft lighting and bright paint schemes or markings. Ensure aircraft lighting does not impair night vision.

See and be seen. Maintain a robust scan and practice techniques for seeing and avoiding other aircraft. Recognize that manned aircraft pilots are unlikely to anticipate or see your UAS.

Fly at an altitude appropriate to the mission. Consider the risks associated with higher altitude flights, such as higher wind speeds, maintaining separation from other aircraft and potential crash impact velocity with respect to people, structures or property on the surface. Be aware of the risks of flying at low altitudes, such as manned operations, obstructions, turbulence induced by urban structures, and other relevant hazards.

Make an honest evaluation of your mental and physical fitness a precondition of each flight—for example, by using the IM SAFE (Illness, Medication, Stress, Alcohol, Fatigue, Emotion) checklist.

Recognize that some emergency scenarios should not be practiced in the absence of an experienced UAS pilot or knowledgeable mentor.

c. Maintain situational awareness, and adhere to prudent operating practices

Improve situational awareness by using sound principles of airmanship, crew resource management, scenario-based training, and risk management.

Become familiar with and monitor appropriate aviation frequencies to enhance your awareness of other aircraft in proximity to your UAS operation. Where authorized, accurately inform other pilots of your position and intentions on appropriate frequencies, and air traffic control of emergencies including loss of separation with other aircraft, or loss of control of your UAS.
For flights to, from, at, or in proximity to airports, contact the controlling facility, and review applicable Chart Supplements (formerly Airport Facilities/Directory (AF/D)) and other resources to ascertain each airport’s environment, operational conditions, surrounding terrain and obstructions.

Remain aware of changing or deteriorating weather and other circumstances that may make continued flight unsafe. Be particularly aware of crosswinds, tailwinds, and gusty wind/turbulent conditions when landing, departing, or hovering. In such cases, make an informed risk management decision whether to continue the flight.

Avoid the flow of all manned aircraft traffic unless directed otherwise by air traffic control (ATC). For off-airport flights, include review of relevant maps, and local knowledge.

Plan for the possibility that curious onlookers may approach your UAS operation creating a potential distraction or hazard.

Check relevant Notices to Airmen (NOTAMs) including Temporary Flight Restrictions (TFRs) prior to commencing flight operations, and update as practicable during extended or multi-flight operations. When appropriate, file and update NOTAMs regarding your flight.

Complete a comprehensive preflight inspection prior to commencing flight operations to determine that the UAS is airworthy.

Ensure that your aircraft’s firmware (software that controls essential system functions) and other software is up to date. Recognize that various systems may require update, including aircraft, ground station, control application or display tablet and power supply. Be sure you understand the impact of any firmware/software updates.

As part of preflight planning, identify options for emergency landing locations.

Develop, use, periodically review, and refine checklists and personal minimums (an operational envelope within which the pilot is adequately trained and competent) for all phases of flight. Review these materials regularly with an experienced UAS pilot or knowledgeable mentor.

Before takeoff, understand your mission plan. The mission plan should include consideration of the objectives, pilot capabilities, UAS platform, operations area, environmental conditions, and other external factors affecting flight safety.

Maintain an altitude and configuration that will permit an emergency landing without undue hazard to people or property.

f. aspire to professionalism

As part of preflight planning, identify locations where either manned or unmanned aircraft may be encountered and develop contingencies for avoidance. UAS pilots may encounter VFR aircraft at lower than normal altitudes during periods of reduced visibility or limited ceiling height.

Be aware of personal susceptibility to, and seek to avoid or manage distraction, fatigue, and stress.
Be aware of your personal susceptibility to attitudes that adversely influence good aeronautical decision-making.

Develop conservative personal operating limitations reflecting experience, and proficiency, especially in challenging conditions.
UAS Pilots Code – Annotated Version 1.0

48

g. act with responsibility, integrity, and courtesy

- Approach UAS operations with seriousness, commitment, and diligence, recognizing that your actions may jeopardize the lives, well-being, and property of people in manned aircraft and on the surface.79

b. adhere to applicable laws, regulations, and industry guidance

- Understand and comply with the privileges and limitations of your certificates, authorizations, and waivers.80
- Adhere to rules and operating practices of your airport or operating location,81 employer, flight school, or flight center, and recommendations from recognized UAS organizations.
- Maintain awareness of local laws, regulations, or ordinances that may affect UAS operations.82
- As soon as practicable but no later than 10 days after an occurrence, report UAS accidents to the FAA;83 immediately report accidents that meet NTSB thresholds to the NTSB, and report near mid air collisions to the FAA’s Near Mid Air Collision System (NMACS),84 and/or safety incidents via the Aviation Safety Reporting System (ASRS).85
- Comply with manufacturer’s operating manuals and instructions, especially with regard to performance, limitations, and abnormal/emergency conditions.
- Understand the requirements and benefits of complying with manufacturer’s recommended inspections and maintenance guidance, and in the absence thereof, consider developing a scheduled maintenance plan that achieves the longest and safest service life of the UAS.86
- Complete post-flight procedures such as ATC flight completion notification, cancellation of flight plan, post-flight inspections, and discrepancy reporting.87 Keep a log of UAS maintenance and operational status and ensure that appropriate measures are taken to correct system deficiencies.88
- Identify safety and compliance issues, and communicate them appropriately.89
- Confirm availability of all required or recommended ground support equipment before initiating flight operations.90
- Learn and remain familiar with lost control link,91 stabilization, and other automation failure procedures.92 Follow manufacturer’s or builder’s instructions if provided.
- Use caution when charging, transporting, discharging, storing, disposing or otherwise handling batteries to minimize risk to persons or property.93

**
UAS Pilots Code – Annotated Version 1.0

II. Manned Aircraft and People on the Surface

UAS pilots should:

a. manage and avoid unnecessary risk to manned aircraft, and to people and property on the surface, and
b. avoid operations that may alarm or disturb people on the surface or in manned aircraft.

Explanation: UAS pilots must avoid harming persons or property. Civil aviation authorities accommodate flight operations with the expectation that UAS pilots exercise due care and adequately mitigate risks to others and their property.

Sample Recommended Practices:

a. Manage and avoid unnecessary risk to manned aircraft, and to people and property on the surface

- Recognize that responsible planning precedes every UAS mission.
- Give right-of-way to all manned aircraft.
- Do not operate over people without authorization, proper training and equipment.
- Consider using a covered area or safety line to segregate flight operations from non-participants and minimize risk to people.
- To the extent practicable, use aircraft and payloads composed of frangible or energy-absorbing materials, propeller guards, and other available mechanisms to mitigate risk of injury to persons.
- Monitor people within the proximity of your intended operations closely. Keep them informed and clear of potential UAS hazards including propellers, rotors, and hazardous materials.
- UAS pilots and crew members should consider the use of protective, highly-visible clothing (such as safety vests and other markers), helmets, and eye protection. Use high visibility area markers such as traffic cones to denote takeoff and landing areas to protect everyone.
- Maintain adequate insurance coverage for all UAS operations. Understand and comply with all policy terms and limitations.
- Brief all participants on the planned UAS operation to mitigate the potential for injury.
- Instruct non-crewmembers to avoid touching or obstructing equipment and payload.
- Develop and maintain an operations manual to help identify and describe the system and operations characteristics, including specifications of the aircraft, responsibilities of the crew, scope of operational decision-making authority, pre- and post-flight checklists, and processes that promote risk management.
- Collision avoidance may require UAS pilots to perform an aggressive maneuver. During such maneuvers be aware of the increased risk of impact with aircraft and people or structures on the surface.
- Consider the use of visual observers to aid the UAS pilot in maintaining situational awareness as well as identifying both airborne and ground hazards.
b. *avoid operations that may alarm or disturb people on the surface or in manned aircraft*

 - Ensure adequate separation from people, other aircraft, and unauthorized airspace.\(^{104}\)
 - Avoid manned aircraft traffic patterns unless authorized and operationally required.
 - Act professionally towards all people affected by your UAS operations.
 - Tactfully disclose risks to all affected parties and address their concerns regarding flight operations, and seek to accommodate their needs.
 - Take responsibility for any harm you may cause to people, property, or wildlife.\(^{105}\)
III. Training and Proficiency

UAS pilots should:

a. participate in regular training to maintain and improve proficiency beyond minimum requirements,
b. pursue a rigorous, lifelong course of aviation study,
c. remain vigilant and avoid complacency,
d. train to recognize and effectively respond to emergencies, and
e. maintain an accurate log to document your experience and improve future aeronautical decision-making and risk management.

Explanation: Training and proficiency underlie aviation safety. Regular training is a primary component of proficiency and should include both air and ground training. Training and proficiency each contribute significantly to flight safety and neither can substitute for the other.

Sample Recommended Practices:

a. participate in regular training to maintain and improve proficiency beyond minimum requirements

- Develop and follow a training regimen that incorporates the assessment of your progress. Obtain guidance and seek feedback from an experienced UAS pilot or mentor.
- Obtain equipment and operational training before commencing flight operations.
- Learn appropriate use of the UAS manufacturer’s manual or instructions to conduct flight planning, properly secure payloads, determine aircraft limitations, performance, and power or fuel requirements, assess weight and balance, and safely undertake flight operations.
- Recognize applicable safety or informational placards placed on the UAS platform, components, attachments, related devices, or manuals. Understand and comply with all placard instructions, limitations, or information. Ensure placards are visible and properly affixed.
- Become familiar with orientation or aircraft status lighting and their related meaning to enhance situational awareness.
- Learn and adhere to airspace classes, requirements, and restrictions.
- Integrate manual flight, autonomous flight, and scenario-based training (real-world situations that meet flight training objectives in an operational environment) in the training regime.
- Incorporate simulation into your training program with an emphasis on abnormal/emergency conditions, including loss-of-control and traffic conflicts.
- Learn how your automated systems work and understand their limitations.
- Learn and practice obstacle and wire avoidance techniques.
- Complete training appropriate to specialized operations or unique mission requirements.
- Develop a systematic approach to obtaining timely and reliable weather information and evaluating flight conditions.
UAS Pilots Code – Annotated Version 1.0

- Learn and remain familiar with aviation regulations and associated guidance material. Understand their intent and implications.
- Train for flight over challenging environments such as water, remote areas, desert, or mountainous terrain, woodlands, urban areas, and understand that such environments may compromise or degrade the performance or functionality of some UAS.²
- Learn how to determine and adhere to airworthiness requirements for each UAS you fly, and confirm its airworthiness before each flight by conducting a thorough preflight inspection.²
- Develop a practical understanding of the mechanics, systems, and unique risks of each UAS you fly.
- Conduct a periodic review of recent accidents, incidents, and unsafe conditions focusing on probable causes.²
- Periodically demonstrate mastery of applicable Airman Certification Standards (ACS); study and train to exceed ACS requirements.
- Select an appropriate training area, taking into consideration property ownership, airspace, local restrictions, and potential safety and privacy issues.²
- Fly often enough to maintain proficiency consistent with your certificates and authorizations.
- Use flight simulators and other training devices that appropriately reflect your system’s automation.²

b. pursue a rigorous, lifelong course of aviation study

- Invite and accept constructive criticism² from your fellow aviators and provide the same when asked.
- Attend aviation training programs, FAA Pilot Proficiency Program ("WINGS") safety seminars, and complete online FAAST courses and training materials.²
- Participate in organizations that can improve your UAS platform knowledge and flight skills regarding their capabilities, limitations, and safe operation.²
- Achieve and maintain proficiency in the operation of UAS systems, manual flight controls and automation.
- Commit to and maintain an ongoing course of training in both flight skills and aeronautical knowledge.
- Register at www.faasafety.gov to receive announcements of safety meetings and literature, and to review appropriate safety courses.
- Stay current with relevant aviation publications.²

c. remain vigilant and avoid complacency

- Obtain adequate training before flying an unfamiliar UAS, or operating unfamiliar UAS automation or systems, even if you have flown a similar make or model in the past.²
- Ensure before each flight that your safety, failsafe, and other settings are configured appropriately.
- UAS pilots who are not certificated to fly manned aircraft may benefit from introductory ground and flight training in manned flight. Such training will help the UAS pilot better
understand the unique challenges of operating manned aircraft, including detecting and avoiding UAS operations.131

\begin{itemize}
 \item Manned aircraft pilots who intend to fly UAS should obtain additional training to address the unique challenges of conducting UAS operations. Such training may cover command and control (C2) systems,132 including telemetry, data management, failure modes, autonomous operations,133 and aerodynamics.134
 \item Recognize the vulnerability of UAS to wind, turbulence, and other weather conditions, and how these effects may vary in fixed-wing, multirotor, and hybrid unmanned aircraft.
\end{itemize}

\textit{d. train to recognize and effectively respond to emergencies}

\begin{itemize}
 \item Practice emergency procedures regularly. Recognize that improper responses to simulated emergencies can lead to actual emergencies.135
 \item Understand your authority and responsibilities as a UAS pilot including recognizing an emergency when it occurs, and communicating that knowledge to crew, bystanders or external authorities as appropriate.
 \item Understand and train to use appropriate procedures in the event of system malfunctions or failures such as electrical, rotor, propulsion, or loss of control link.136
\end{itemize}

\textit{e. maintain an accurate log to document your experience and improve future aeronautical decision-making and risk management}

\begin{itemize}
 \item Debrief each flight. Review your objectives, identify mistakes and any unnecessary risks to enhance safety and improve your performance on future flights. Maintain a log to track errors and lessons learned during each flight.
\end{itemize}
IV. Security and Privacy

UAS pilots should:

a. take measures to maintain the security of persons and property affected by UAS activities,

b. remain vigilant and immediately report suspicious, reckless, or illegal UAS activities,\(^{137}\)

c. become familiar with current security and privacy rules and best practices,\(^ {138}\)

d. avoid controlled and special activity/special use airspace\(^ {139}\) except when approved or necessary in an emergency, and

e. recognize and respect the public’s reasonable expectation of privacy.

Explanation: Security pertains to measures taken to protect people, property, and information from criminal or terrorist acts. It also includes measures taken by UAS pilots to avoid inadvertently becoming a real or perceived security threat. In addition, UAS operations present a new and unique potential to compromise privacy. This section addresses the UAS pilot’s essential role in promoting national security, preventing criminal acts, and respecting privacy rights.\(^ {140}\)

Sample Recommended Practices:

a. take measures to maintain the security of persons and property affected by UAS activities

- Secure your UAS if it will be unattended.\(^ {141}\)
- Determine the ownership of property on which you desire to launch or recover, and seek prior permission where required.\(^ {142}\)
- Do not deactivate or degrade geo-fencing or other security features on your equipment unless they present a flight hazard or impede authorized operations.\(^ {143}\)
- To the extent practicable, seek to avoid even the appearance of a security threat.\(^ {144}\) UAS operations may be perceived as a threat by property owners, security, military, or law enforcement personnel, and may put the UAS at risk of being disabled, damaged, destroyed, or confiscated in response to a perceived threat.\(^ {145}\) If your UAS operation may have been perceived as a threat, move away, change the flight path, or consider landing the UAS and explaining your intentions.

b. remain vigilant and immediately report suspicious, reckless, or illegal UAS activities

- Become familiar with the means to report and deter suspicious activities, such as a call to law enforcement and follow-up to the FAA Hotline https://hotline.faa.gov/.

c. become familiar with current security and privacy rules and best practices

- Comply with applicable UAS registration requirements, including the proper display of registration number.\(^ {146}\)
Comply with applicable requirements for electronic identification, tracking, and authorization.\(^{147}\)

Comply with all rules relating to UAS payload or cargo, such as the carriage of hazardous materials, weapons, ammunition, or other contraband.\(^{148}\)

Consider use of systems that improve data security (including encrypted command and control systems, and relevant security standards\(^{149}\)), and provide at least the level of security required to satisfy information security requirements.\(^{150}\)

Complete any required or recommended security training applicable to your flight operations.\(^{151}\)

d. avoid controlled and special activity/special use airspace except when approved or necessary in an emergency

During preflight preparation, check airspace and location restrictions applicable to your operation, including NOTAMs\(^{152}\) and temporary flight restrictions (TFRs).\(^{153}\)

Avoid TFRs, public safety/emergency operations or other areas of intensive manned aircraft operations, and events that may attract other aircraft or crowds.\(^{154}\)

Avoid UAS operations near prisons, power plants, military bases, and other critical infrastructure.\(^{155}\) Notify such entities prior to operating nearby.

Be cognizant of operations that may be subject to privacy, trespass, nuisance, intrusion upon seclusion, or other considerations.\(^{158}\) or other considerations.\(^{159}\)

Query applicable charts, available/approved applications, Flight Service (air traffic facilities that provide preflight briefings, flight plan processing, and inflight advisories),\(^{160}\) or ATC to avoid operating in special activity/special use airspace\(^{161}\) or other areas not authorized for UAS flight.\(^{162}\)

Comply with airspace restrictions and authorized operational limitations approved for your flight and UAS platform.\(^{163}\)

e. recognize and respect the public’s reasonable expectation of privacy

Understand and respect the public’s reasonable expectation of privacy rights of others by conducting your UAS operations with prudence and restraint.\(^{164}\)

Seek to avoid even the appearance of impropriety regarding potential violations of privacy with your operations.\(^{165}\)

Limit data capture to mission-related objectives.\(^{166}\)

Retain personal data only when legally and purposefully collected, and only for the duration necessary.\(^{167}\)

Avoid the collection of personal data\(^ {168} \) without the subject’s consent. Delete such data immediately upon discovery, and maintain a de-identified log of the deletion.

Implement a written privacy policy that is appropriate and responsive to your UAS operations.\(^{169}\)

Recognize that limited societal experience may cause some people to consider unmanned aircraft harassing, invasive, or threatening. Respond with courtesy and professionalism.
V. Environmental Issues

UAS pilots should:

a. recognize and seek to mitigate the environmental impact of UAS operations,

b. minimize the discharge of fuel, oil, and other chemicals into the environment during refueling, preflight preparations, servicing, and flight operations,

c. recognize that some UAS components, including batteries, other fuels, and lubricants, may be hazardous and require special handling procedures,

d. respect and protect environmentally sensitive areas, and

e. avoid flight over noise-sensitive areas, and comply with applicable noise-abatement procedures.

Explanation: Environmental issues can cause harm, hamper operations, and increase regulatory burdens. Mitigating the environmental impact of UAS operations will improve public health and society's perceptions of the industry. Through the thoughtful exercise of responsible practices, most environmental issues are manageable.

Sample Recommended Practices:

a. recognize and seek to mitigate the environmental impact of UAS operations

- Learn and adopt environmentally responsible methods for all aspects of UAS care.
- Adopt organizational policies for managing environmental issues.
- Complete a post-flight assessment to ensure that the UAS operations did not cause environmental harm. If the UAS operation causes damage to property or the environment, restore it to its previous condition.
- Patronize service providers that adhere to environmentally friendly practices.

b. minimize the discharge of fuel, oil, and other chemicals into the environment during refueling, preflight preparations, servicing, and flight operations; and
c. recognize that some UAS components, including batteries, other fuels, and lubricants, may be hazardous and require special handling procedures

- Adopt environmentally sound and legally compliant procedures for battery or fuel transportation, storage, fueling, sampling, defueling, disposing of batteries or fuel samples, and remediating fuel spills.

d. respect and protect environmentally sensitive areas

- Consider the potential impact of UAS on animal life, and comply with recommended practices when flying near wilderness, wildlife, marine sanctuaries, and other environmentally sensitive areas. Recognize that UAS may attract, frighten, or injure birds and other animals. Remember that UAS may be mistaken as predators by nesting birds and other wildlife, causing harmful stress or abandonment of nests and habitat.

e. avoid flight over noise-sensitive areas, and comply with applicable noise-abatement procedures

- If practicable, avoid residential and other noise-sensitive areas.
Be aware of the noise signature of your aircraft, take steps to limit ambient UAS noise, and consider system modifications that do so. ¹⁷⁸
VI. Use of Technology

UAS pilots should:

a. become familiar with UAS equipment and related technologies,

b. make effective use of technology by integrating technical guidance and solutions into your standard operating procedures,

c. practice effective system monitoring and ensure you are prepared to revert to manual operations if available,

d. Identify failure modes, and where practicable, test and deploy fault-tolerant or redundant equipment, and

e. use, and understand the limitations of, position-indicating technologies including detect-and-avoid (DAA), if available and authorized.

Explanation: Innovative, compact, and inexpensive aviation technologies offer expanded capabilities and enhanced safety. This section encourages the use and promotion of such safety- and capability-enhancing technologies.

Sample Recommended Practices:

a. become familiar with appropriate UAS and other technologies

- When practicable, invest in new technologies that enhance your proficiency, knowledge, situational awareness, and advance flight safety.

- Recognize that new technologies will increasingly provide enhanced safety capabilities, including, e.g., detect-and-avoid, obstacle avoidance, graceful degradation, and advanced UAS traffic management (UTM) capabilities supporting beyond visual line of sight (BVLOS) operations.

- Do not engage in UAS operations unless the instruments and equipment needed for the type of flight operation, including controls, transmitters, and sensors, are installed and in an operable condition.

- Recognize conditions that may induce control signal attenuation, interference, or disruption. Electromagnetic fields near power lines, transmission towers, or other transmitting devices may disrupt control signals. Determine the potential impact and develop contingency plans if the UAS encounters signal interference.

- Recognize many UAS contain magnetic sensors critical for navigation. Consider conditions that may induce magnetic interference.

- Understand how to interpret and respond to weather radar imagery and other advanced weather tools, and become apprised of new weather products that may inform and enhance flight planning and safety.

- Understand the currency of weather information sources, and obtain weather updates as appropriate.

- Consider the use of flight data monitoring, tracking, and flight recording to improve training, flight operations, post-flight review or debrief, and post-crash/injury investigation.
Use web-based flight planning, compliance, and management tools to enhance safety, situational awareness, and efficiency.

Understand and comply with any licensing requirements for use of certain radio frequency bands.

b. make effective use of technology by integrating technical guidance and solutions in your standard operating procedures

Understand the accuracy limitations of the aircraft’s altimetric equipment. Understand the accuracy limitations of your GPS and other navigation systems, learn to identify degradation or failures, and how to apply effective recovery procedures. Familiarize yourself with your UAS’s entire feature set, and configure all systems to ensure safe operations. Do not assume that factory default settings are necessarily safe or adequate. Modify factory default settings as needed.

Understand the capabilities, limitations, and proper operation of safety devices (such as prop guards and parachutes).

c. practice effective system monitoring and ensure you are prepared to revert to manual operations if available

Learn and understand manual and automated features, limitations, and proper use of UAS control system technologies.

Properly manage autoflight systems. Understand that programming avionics during flight operations may cause distractions and that distractions may lead to errors, particularly during critical phases of flight.

Recognize that increasingly complex UAS may be subject to unpredictable anomalies.

Maintain basic flying and navigating skills to enhance safety in the event of in-flight emergencies or abnormal conditions.

d. Identify failure modes, and where practicable, test and deploy fault-tolerant or redundant equipment

Test third-party applications and devices before mission critical operations.

Consider keeping backup devices accessible including extra batteries or power supplies.

Learn to identify and correct system degradation or failures. Incorporate risk management practices into the decision process to continue, modify, or cancel a flight under degraded system conditions.

Report inoperative GPS and other navigation signals and areas of poor radio/signal coverage to the appropriate authority.

e. use, and understand the limitations of, position-indicating technologies including detect-and-avoid (DAA), if available and authorized

Understand the limitations for the use of (DAA) detect-and-avoid technologies, and comply with DAA alerts, cautions, and warnings.
VII. ADVANCEMENT OF UAS AVIATION

UAS pilots should:

a. advance and promote aviation safety as well as adherence to the UASPC,

b. collaborate with or assist organizations that advance UAS aviation and contribute to society at large; encourage other UAS pilots to do so as well,

c. demonstrate appreciation for aviation professionals and service providers,

d. advance an aviation culture that values openness, humility, positive attitudes, and the pursuit of personal improvement,

e. promote ethical behavior within the UAS community, and

f. mentor new and future UAS pilots.

Explanation: Vigilance and responsive action are essential to ensure aviation vitality and to enhance the aviation community.

Sample Recommended Practices:

a. advance and promote aviation safety as well as adherence to the UASPC

- Strive to adopt the UASPC.
- Be aware of the impact of your UAS on manned aviation. As a UAS pilot, be a respectful user of the National Airspace System, recognizing that adherence to regulations, best practices, and safe operational procedures protects all users of shared airspace.

b. collaborate with or assist organizations that advance UAS aviation, contribute to society at large, and encourage other UAS pilots to do so as well

- Advocate and promote the development of unmanned aviation.
- Consider participating in local government efforts that advance flight safety and advocate appropriate enforcement of UAS regulation.
- Participate in local aviation and recognized UAS associations to learn and contribute to the knowledge base on the safe operation of UAS.
- Participate in the review of UAS Facility Maps to ensure they reflect safe altitude separation between UAS and manned aircraft, or other safety hazards.
- Consider making charitable use of your expertise and resources such as participating in community events, humanitarian initiatives, or donating flight time to search and rescue organizations and environmental programs.
- Participate in FAA Safety Team meetings and events. Learn from and interact with other aviation professionals.

c. demonstrate appreciation for aviation professionals and service providers

- Express appreciation to air traffic controllers, airport staff, and service personnel for their valuable assistance.
UAS Pilots Code – Annotated Version 1.0

d. **advance an aviation culture that values openness, humility, positive attitudes, and the pursuit of personal improvement**

- Consider your responsibility to promote safe and appropriate behavior to other pilots and aviation professionals.
- Recognize that your actions can reflect upon the entire UAS community.
- Serve as an aviation ambassador to the public by providing accurate information, refuting misinformation concerning UAS activities, and encouraging prospective UAS pilots.

e. **promote ethical behavior within the UAS community**

- Adhere to the highest ethical principles in all aviation dealings, including business practices.¹¹²
- Seek to resolve disputes quickly and informally.
- Advance the promotion of data privacy.¹¹³

f. **mentor new and future UAS pilots**

- Strive to engender professionalism, to serve as a role model and convey best practices to new and future UAS pilots.¹¹⁴

**
Additional Resources

- Annotated commentary, source materials, implementation examples, and supplemental aids for the Codes of Conduct are available at secureav.com, and Notes for Implementers at secureav.com/Notes-for-Implementers.pdf.

- Further information about UAS is available at:

 FAA www.faa.gov/uas
 AEA www.aea.net
 AMA www.modelaircraft.org
 AOPA www.aopa.org/215
 ASTM Int'l www.astm.org216
 AUVSI www.auvsi.org
 CANSO www.canso.org
 CTA www.cta.tech
 EAA www.eaa.org
 EASA www.easa.europa.eu217
 EUROCAE www.eurocae.net218
 Flight Service 1-800-WX-BRIEF
 ICAO www.icao.int219
 ISO www.iso.org220
 JARUS http://jarus-rpas.org/publications
 NBAA www.nbaa.org
 RTCA www.rtca.org
 SAE Int'l http://www.sae.org/
 UVS Int'l https://rps-info.com

**
Notice
The UASPC is available at secureav.com and UAA.aero. UAS Pilots CODE © Aviators Code Initiative (ACI) and University Aviation Association (UAA). All Rights Reserved. Terms of Use are available at secureav.com/terms.pdf.

The UASPC is a joint initiative between the Aviators Code Initiative and the University Aviation Association.

The UASPC does not purport to address every possible safety concern. It is the responsibility of the user of the UASPC to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. It is not intended to provide legal advice and must not be relied upon as such.

Edits, Errata, Comments
Please send your suggestions, edits, errata, questions and comments to: PEB@secureav.com.

**
Acknowledgments

The UASPC Drafting Team:
Michael S. Baum, JD, MBA, ATP
Kristy K. Kiernan, PhD, ATP
Donald W. Steinman, BA, ATP B737, B757/767, A320
Ryan J. Wallace, EdD

The Aviators Code Initiative Permanent Editorial Board:
Don Arendt, PhD, CFI, ATP
Michael S. Baum, JD, MBA, ATP
Ric Peri
Michael Radomsky, CFII
Bill Rhodes, PhD
Stan Rose
Rusty Sachs, JD, DhE, MCFI
Don Steinman, ATP, CFII

Various subject matter experts have provided input for the UASPC. We gratefully acknowledge their editorial assistance. Not all reviewers concur with all positions taken. The list does not include those reviewers who requested anonymity.

The Reviewers:

Rex Alexander, Head of Aviation Infrastructure, Uber Technologies, Inc.
Tim Bean, CEO, Fortum Technologies
Fred Borda, Co-founder, COO, Aerial Innovation, LLC
Amanda Brandt, Assistant Professor and Chief UAS Pilot, University of North Dakota
John Bridewell, EdD, Professor of Aviation, Univ. of North Dakota
Amanda Briggs, Flight Instructor, Inst. of Aviation, Parkland College
Tim Bruner, UAS Researcher, Kansas State Polytechnic
Scott S. Burgess, PhD, CFI/IP, RPC, Associate Professor, ERAU-Worldwide
Kendell Clutts, Flight Validation Lead, GoPro Inc.
Linda Connell, Dir., Aviation Safety Reporting System, NASA
Chris Covell, Flight Operations Manager, GoPro Inc.
Michael L. Dworkin, Esq., Avialex
UAS Pilots Code – Annotated Version 1.0

Paul Duty, CFI, CFII, MEI, AGI, Aviation Instr., Aviation Marketing Specialist, Gleim
Patrick Egan, Managing Partner, sUAS News
Nicholas T. Flom, Exec. Dir., Northern Plains Unmanned Aircraft Systems Test Site
Michael Gadd (FRaeS), Policy Lead, UAS, Civil Aviation Authority (UK)
John T. Van Geffen, Esq., Avialex
David Graves, Founder and CEO, SkyVector
Rich Hansen, President, Academy of Model Aeronautics
Brad Hayden, President & CEO, Robotic Skies
Becky L. Hooey, PhD, Human Systems Integration Div., NASA Ames Research Center
David Ison, PhD, Editor-in-Chief, IJAAA; Asst. Prof. of Aeronautics, ERAU; Pres., UAA
Kenneth Kelly, FAA, Airworthiness FPM/POC sUAS Ed. Outreach, SPPO, AFS-920
Christopher T. Kucera, Director, Air Operations, Analytical Graphics, Inc.
Tracy Lamb, VP, Reg. & Safety Affairs-Chief Pilot, AUVSI
Leonard Ligon, Corp. Lead; Global UTM, WhiteFox Defense Group
John Marselus, DDiv, Director of Aviation, San Diego Christian College
Douglas M. Marshall, Esq., Principal, TrueNorth Consult. LLC; Adj. Prof., De Paul C.o.L.
Frank Matus, Dir., Strategy & Business Development, Thales
Nick Mayhew, Senior Program Manager, L3 Link Training & Simulation
Mary Mikolajewski, Manager, Technical Committee Operations, ASTM Int'l
Brandon Montellato, University Relations Manager, DJI
David Morss, ATP, Test Pilot, Reno Air Races Pilot
Jorge B. Moya, ASRS, NASA Ames; Booz Allen Hamilton, Inc.
R. Lance Nuckolls, FAA, Aviation Safety Inspector
Frank Paskiewicz, VP - Production and Airworthiness, Padina Group, Inc.
Kuldeep S. Rawat, PhD, Dep’t Chair, Dir. of Aviation, Elizabeth City State University.
Timothy Reuter, Civil Drones Project Head, World Econ. Forum
John Robbins, PhD, Assistant Professor, ERAU
Fred Roggero, President and CEO, Resilient Solutions, Ltd.
Wes Ryan, Mgr., Advanced Technology Branch, FAA
Confesor Santiago, III, Aerospace Engineer, Ames Research Center
UAS Pilots Code – Annotated Version 1.0

Karl Schweikert, Esq., AV8 Law Group
Jackie Spanitz, General Manager, Aviation Supplies & Academics (ASA Inc.)
Tyler Spence, PhD, Assistant Professor, Dep’t Avi. & Tech., San Jose State University
Werner von Stein, Founder, SF Drone School
Walter Stockwell, Director of Technical Standards, DJI
Scott Strimple, Chief Flight Instructor, Drone Flight School
Joseph J. Vacek, JD, Assistant Professor of Aviation, University of North Dakota
John Scull Walker, Senior Partner, Padina Group; Chair, ISO TC 20/SC 16
Reiner von Weber, Founder, SF Drone School; STEAM Capt., X Class Drone Racing L
Gretchen West, Sr. Advr., Hogan Lovells US LLP; Co-Exec. Dir., Comm. Drone Alliance
Ted Wierzbanowski, Immediate Past Chair, ASTM Int’l, Committee F38
Michael Wiggins, EdD, MBA, Professor and Depart. Chair, Aeronautical Science, ERAU
Heidi Williams, Dir., Air Traffic Services & Infrastructure, NBAA
Randy Willis, Manager, FAA ATO, Emerging Technologies Team
Harrison Wolf, Project Lead, World Economic Forum
Gilead Wurman, PhD, CFI, Senior Seismologist and UAS Program Mgr., ENGEO

**
Appendices

Appendix 1 - Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ACI</td>
<td>Aviators Code Initiative</td>
</tr>
<tr>
<td>ACS</td>
<td>Airman Certification Standards</td>
</tr>
<tr>
<td>AD</td>
<td>Airworthiness Directive</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance-Broadcast</td>
</tr>
<tr>
<td>AIM</td>
<td>Aeronautical Information Manual</td>
</tr>
<tr>
<td>AFSS</td>
<td>Automated Flight Service Station</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>API</td>
<td>Application Interface</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATO</td>
<td>Air Traffic Organization</td>
</tr>
<tr>
<td>AUVSI</td>
<td>The Association for Unmanned Vehicle Systems International</td>
</tr>
<tr>
<td>BVLOS</td>
<td>Beyond Visual Line of Sight</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority</td>
</tr>
<tr>
<td>C2</td>
<td>Command and Control</td>
</tr>
<tr>
<td>CRM</td>
<td>Crew Resource Management</td>
</tr>
<tr>
<td>DAA</td>
<td>Detect-and-Avoid</td>
</tr>
<tr>
<td>DHS</td>
<td>US Department of Homeland Security</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAAST</td>
<td>FAA Safety Team</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>Final Rule</td>
<td>14 C.F.R. Part 107, Small Unmanned Aircraft Systems</td>
</tr>
<tr>
<td>FSIMS</td>
<td>FAA Flight Standards Information System</td>
</tr>
<tr>
<td>FTC</td>
<td>Federal Trade Commission</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HEMS</td>
<td>Helicopter Emergency Medical Services (HEMS) Tool</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>JARUS</td>
<td>Joint Authority for Rulemaking on Unmanned Systems</td>
</tr>
<tr>
<td>JARUS-SORA</td>
<td>JARUS Specific Operations Risk Assessment (Annex 1 - Glossary)</td>
</tr>
<tr>
<td>LAANC</td>
<td>Low Altitude Authorization and Notification Capability</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Airmen</td>
</tr>
<tr>
<td>NTIA</td>
<td>National Telecommunications and Information Administration</td>
</tr>
<tr>
<td>Part 107</td>
<td>14 C.F.R. Part 107</td>
</tr>
<tr>
<td>PEB</td>
<td>Permanent Editorial Board, Aviators Code Initiative</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>RP</td>
<td>Remote Pilot</td>
</tr>
<tr>
<td>RPA</td>
<td>Remotely Piloted Aircraft</td>
</tr>
<tr>
<td>RPIC</td>
<td>Remote Pilot In Command</td>
</tr>
<tr>
<td>RPAS</td>
<td>Remotely Piloted Aircraft System</td>
</tr>
<tr>
<td>RPS</td>
<td>Remote Pilot Station</td>
</tr>
<tr>
<td>SAA</td>
<td>Special Activity Airspace</td>
</tr>
<tr>
<td>SB</td>
<td>Service Bulletin</td>
</tr>
<tr>
<td>sm</td>
<td>Statute Mile</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>SRM</td>
<td>Safety Risk Management</td>
</tr>
<tr>
<td>SRP</td>
<td>Sample Recommended Practice</td>
</tr>
<tr>
<td>SUA</td>
<td>Special Use Airspace</td>
</tr>
<tr>
<td>sUAS</td>
<td>Small UAS</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restriction</td>
</tr>
<tr>
<td>UA</td>
<td>Unmanned Aircraft</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aircraft System</td>
</tr>
<tr>
<td>UASPC</td>
<td>UAS Pilots Code</td>
</tr>
<tr>
<td>UAT</td>
<td>Universal Access Transceiver</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UTM</td>
<td>UAS Traffic Management</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VLOS</td>
<td>Visual Line of Sight</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual Meteorological Conditions</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WX</td>
<td>Weather</td>
</tr>
</tbody>
</table>
accident—An unplanned event or series of events that result in death, injury, or damage to, or loss of, equipment or property.\(^{222}\)

aeronautical decision-making (ADM)—A systematic approach to the mental process used by aircraft pilots to consistently determine the best course of action in response to a given set of circumstances.\(^{223}\) Effective ADM skills incorporate systematic approaches to risk assessment and risk mitigation.\(^{224}\)

aircraft—A device that is used or intended to be used for flight in the air.\(^{225}\)

airplane—An engine-driven fixed-wing aircraft heavier than air, that is supported in flight by the dynamic reaction of the air against its wings.\(^{226}\)

airport—An area of land or water that is used or intended to be used for the landing and takeoff of aircraft, and includes its buildings and facilities, if any.\(^{227}\)

airport environment—The area or airspace on or proximate to an airport, generally defined as: a) Class A, B, C, D, or E controlled airspaces which touch the surface with an airport and/or controlled airspaces which do not touch the surface, but in connection to an airport (normally depicted on aeronautical charts and sectionals); or b) Any Mode C Veil (US) or TMZ (Europe) in Class A, B, C, D, or E, controlled airspace; or c) 5 nautical miles from an airport having an operational control tower; or d) 3 nautical miles from an airport with a published instrument flight procedure, but not an operational tower; or e) 2 nautical miles from an airport without a published instrument flight procedure or an operational tower; or f) 2 nautical miles from a heliport with a published instrument flight procedure.\(^{228}\)

airworthiness—See “airworthy”.

airworthy—A UAS conforming to its type design (TD), if certificated, or in lieu of a certificated design, the manufacturer’s design, and determined to be in a condition for safe operation.\(^{229}\)

autonomous aircraft—An unmanned aircraft that does not allow [or is capable of operating without] pilot intervention in the management of the flight.\(^{230}\)

autonomous operation—An operation during which a remotely-piloted aircraft is operating without pilot intervention in the management of the flight.\(^{231}\)

best practice—a procedure that has been shown by research and experience to produce optimal results and that is established or proposed as suitable for widespread adoption.

beyond visual line of sight (BVLOS)—A means of flying the UAS without the direct, unaided visual supervision of the aircraft [by the crewmembers].\(^{232}\)

C2 link—The data link used for the purpose of UAS command and control (C2).\(^{233}\)

C2 link loss—Any situation in which the unmanned aircraft can no longer be controlled by the remote pilot due to the degradation or failure of the communication channel between the RP and UAS.\(^{234}\)

civil aircraft—Aircraft other than public (or state) aircraft.\(^{235}\)

command and control link—See “C2 link”.\(^{236}\)
concept of operations (CONOPS)—A user-oriented document that describes systems characteristics and limitations for a proposed system and its operation from a user’s perspective. A CONOPS also describes the user organization, mission, and objectives from an integrated systems point of view and is used to communicate overall quantitative and qualitative system characteristics and operational procedures to stakeholders.

class condition for safe operation—See “airworthy”.

configuration—The requirements, design and implementation that define a particular version of a system or system component.

control station (CS)—The equipment used to maintain control of, communicate with, guide, or otherwise pilot an unmanned aircraft.

controlled airspace—An airspace of defined dimensions within which air traffic control service is provided to IFR flights and to VFR flights in accordance with the airspace classification. In the US, controlled airspace is a generic term that covers Class A, Class B, Class C, Class D, and Class E airspace.

covered data—Information collected by a UAS that identifies a particular person. If data collected by UAS likely will not be linked to an individual’s name or other personally identifiable information, or if the data is altered so that a specific person is not recognizable, it is not covered data.

crewmember—Remote pilot in command (RPIC), other person manipulating the controls, a visual observer, or crewmembers necessary for the safety of the UAS operation.

critical infrastructure—Systems and assets, whether physical or virtual, so vital to a sovereign state that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matters.

critical system—Systems needed to perform one or more safety functions, in which failure would cause a significant increase in the safety risk for the third parties and/or environment involved.

data link—Interconnections to, from and within the remotely piloted aircraft system, includes control, flight status, communication, and payload links.

detect and avoid (DAA)—The capability to see, sense or detect conflicting traffic or other hazards and take the appropriate action to comply with the acceptable rules of flight.

failure mode—A loss of function or a malfunction of a system or a part thereof.

flight manual—A manual, where applicable, associated with the certificate of airworthiness, containing limitations within which the aircraft is to be considered airworthy, and instructions and information necessary to the flight crew members for the safe operation of the aircraft.

flight safety—See “safety”.

flight termination—Flight termination is a system, procedure or function which aims to [immediately] end the flight. It can be initiated by pilot or autonomously. Flight termination is not a return-home function.
fly-away—Unintended flight outside of operational boundaries (altitude/airspeed/lateral) as the result of a failure of the control station or onboard systems or both. Fly-away is a loss of trajectory control.

geo-fencing—A system that would prevent UAS flight in specifically designated areas or constrain the flight to within specifically designated areas.

ground control station—See “control station (CS)”.

guidelines—Recommended practices for promoting safety, proficiency and, as applicable, compliance with regulations.

hazard—A potentially unsafe condition resulting from failures, malfunctions, external events, errors, or a combination thereof.

human factors—how people respond to and interact with machines, with procedures and with the environment [including other people] about them.

incident—An occurrence other than an accident that affects or could affect the safety of operations.

IFR conditions—Weather conditions below the minimum for flight under visual flight rules.

likelihood—Estimated probability or frequency, in quantitative and qualitative terms, of a hazard’s effect or outcome.

lost link—The loss of command and control link contact with the UAS such that the remote pilot can no longer manage the aircraft’s flight. Lost link is not inherently a fly-away.

maintenance—Inspection, overhaul, repair, preservation, and the replacement of parts.

malfunction—Failure of a system or component to operate as specified or designed.

model aircraft—An unmanned aircraft that is: (1) capable of sustained flight in the atmosphere; (2) flown within visual line of sight of the person operating the aircraft; and (3) flown for hobby or recreational purposes.

Navigable airspace—Airspace at and above the prescribed minimum flight altitudes, including airspace needed for safe takeoff and landing.

Near mid air collision (NMAC)—An incident associated with the operation of an aircraft in which a possibility of a collision occurs as a result of proximity of less than 500 feet to another aircraft, or a report is received from a pilot or flight crew member stating that a collision hazard existed between two or more aircraft. A report does not necessarily involve the violation of regulations or error by the air traffic control system, nor does it necessarily represent an unsafe condition.

night—The time between the end of evening civil twilight and the beginning of morning civil twilight, as published in the Air Almanac, converted to local time.

non-participant—Any individual in the vicinity of a UAS operation who is not participating in the operation of the UAS.

Operational risk assessment (ORA)—Evaluation of the proposed design and operation of the UAS, its intended mission, and proposed area of operation to determine potential risk to persons and property.
operational risk management (ORM)—A systematic, cyclical process of identifying hazards, assessing the associated risks, and facilitating informed and effective risk management decisions by individuals and organizations.252

operations manual—A manual containing procedures, instructions and guidance for use by operational personnel in the execution of their duties.

operator—A person, organization or enterprise engaged in or offering to engage in an aircraft operation.253

participant—Those persons directly involved with the operation of the UAS or fully aware that the UAS operation is being conducted near them. Active participants should be fully aware of the risks involved with the UAS operation and have accepted these risks. Active participants are informed on and able to follow relevant effective emergency procedures and/or contingency plans.

payload—A system, an object or collection of objects onboard or otherwise connected to the UAS that performs, or is related to, a mission function but is not required for flight.254

personal data—See “covered data”.255

pilot—Remote pilot-in-command (RPIC) or other pilot who is controlling the flight of a UAS under the supervision of the RPIC.

practice—Recommended methods, rules, and designs for voluntary compliance.

public aircraft—An aircraft owned, operated, or under contract to any federal, state, local or tribal government entity, and performing a government function.256

radio line of sight (RLOS)—Operational state in which radio communications are over distances where the path between the transmitter and receiver is not obstructed by the curvature of the earth or other obstructions such as terrain or structures.

rating—A statement that, as a part of a certificate, sets forth special conditions, privileges, or limitations.257

reliability—The probability that an item will perform a required function under specified conditions, without failure, for a specified period of time.

remote pilot station (RPS)—See “control station (CS)”.258

remote pilot-in-command (RPIC)—Person who is directly responsible for and is the final authority as to the operation of the UAS, has been designated as remote pilot in command before or during the flight of a UAS, and holds the appropriate certificate(s) for the conduct of the flight.

remotely piloted aircraft system (RPAS)—A remotely piloted aircraft, its associated remote pilot station(s), the required command and control links and any other components [as specified in the type design].258

required link performance (RLP)—Generic term for required end to end C2 link performance.259

residual risk—Any risk that remains after mitigation or other control actions.

risk—Composite of predicted severity and likelihood of the potential effect of hazards.
risk analysis—Analyses used to determine or estimate the likelihood of an event (usually described as an accident, fatal accident, etc.) and the potential severity of the event if it occurs. These analyses could be either quantitative or qualitative.

risk management—A formalized method of dealing with hazards through the logical process of weighing the potential costs of risks against the possible benefits of allowing those risks to stand uncontrolled.

risk mitigations—The process of incorporating defenses or preventive controls to lower the severity and/or likelihood of a hazard’s projected consequence.

safety—The state in which the possibility of harm to persons or of property damage is reduced to, and maintained at or below an acceptable level through a continuing process of hazard identification and safety risk management.

safety management system (SMS)—The formal, top-down, organization-wide approach to managing safety risk and assuring the effectiveness of safety risk controls. SMS is comprised of four functional components, including an intangible, but always critical, aspect called safety culture: (1) safety policy, (2) safety risk management, (3) safety assurance, and (4) safety promotion, including promotion of a safety culture within all levels of a workforce.

see and avoid—The requirement for the pilot of an aircraft to “see” and to remain well clear of other aircraft, and “avoid” a collision.

situational awareness—The accurate perception and understanding of all the factors and conditions within the five fundamental risk elements (flight, pilot, aircraft, environment, and type of operation that comprise any given aviation situation) that affect safety before, during, and after the flight. Thus, loss of situational awareness results in a pilot not knowing where he or she is, inability to recognize deteriorating circumstances, and the misjudgment of the rate of deterioration.

small unmanned aircraft (sUA)—An unmanned aircraft weighing less than 55 pounds on takeoff, including everything that is on board or otherwise attached to the aircraft.

small unmanned aircraft system (sUAS)—A small unmanned aircraft and its associated elements (including communication links and the components that control the small unmanned aircraft) that are required for the safe and efficient operation of the small unmanned aircraft in the national airspace system.

special activity airspace (SAA)—Airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations.

special use airspace (SUA)—Airspace of defined dimensions identified by an area on the surface of the earth wherein activities must be confined because of their nature and/or wherein limitations may be imposed upon aircraft operations that are not a part of those activities.

standard operating procedure—A set of instructions covering those features of operations which lend themselves to a definite or standardized procedure without loss of effectiveness.

threat—Events or errors that occur beyond the influence of an operational person, increase operational complexity and must be managed to maintain the margin of safety.
threat and error management (TEM)—The process of detecting and responding to threats and errors to ensure that the ensuing outcome is inconsequential, i.e. the outcome is not an error, further error or undesired state.

uncontrolled airspace—Airspace excluding Class A, Class B, Class C, Class D, and Class E airspace.

unmanned aircraft—An aircraft operated without the possibility of direct human intervention from within or on the aircraft.

unmanned aircraft system (UAS)—Unmanned aircraft and associated elements (including communication links and the components that control the unmanned aircraft) that are required for safe and efficient operation in a national airspace system.

visual flight rules (VFR)—Flight rules adopted by a CAA governing aircraft flight using visual references. VFR operations specify the amount of ceiling and the visibility the pilot must have in order to operate according to these rules. When the weather conditions are such that the pilot cannot operate according to VFR, he or she must use instrument flight rules (IFR).

visual line of sight (VLOS)—An operation in which the RPIC and the person manipulating the controls (and visual observer, if used) is capable of seeing the unmanned aircraft with vision unaided by any device other than corrective lenses.

visual observer (VO)—Person who is designated by the RPIC to assist the RPIC and the person manipulating the flight controls of the UAS to see and avoid other air traffic or objects aloft or on the ground.

Appendix 3 –

Selected References

UAS Pilots Code –Annotated Version 1.0

The UASPC Condensed Version is intended for pilot implementation. Its content includes the introduction, provisions, and the sample recommended practices contained in the UASPC Annotated Version. It is available at secureav.com/UAS.

The UASPC Condensed Version cover page.
The **UASPC Abbreviated Version** includes a brief introduction, the provisions (without sample recommended practices), and links to all UASPC versions and resources. It provides an introduction to, and promotion of the UASPC. It is available at secureav.com/UAS.
14 C.F.R. Part 107, 71, 72, 80, 9
Abbreviated Version, 40
abnormal conditions, 61
ACI, 67, 71, 9
Acknowledgments, 68
Additional Resources, 66
ADVANCEMENT OF UAS AVIATION, 41, 63
Advisory Circular, AC 107-2, 80
aeronautical decision-making, 43, 44, 47, 51, 53, 73
AF/D, 46
air traffic controllers, 64
airmanship, 40, 42, 43, 44, 46
Airport Facilities/Directory, 46
airspace, 45, 50, 51, 52, 55, 56, 63, 73, 74, 75, 78, 9
airworthiness, 45, 52, 73, 75
airworthy, 46, 73, 74, 75
altimetric equipment, 61
AMA, 66
Annotated Version, 40
anomalies, 61
Appendix 1 - Abbreviations, 71
Appendix 2 - Definitions, 73
Appendix 3 - Selected References, 80
Appendix 4 - UASPC Condensed Version, 82
Appendix 5 - UASPC Abbreviated Version, 83
applications, 56, 62
ASRS, 48, 69
ASTM, 66, 69, 70
ATC, 46, 48, 56, 71
attitudes, 47, 63, 65
Audience, 9
authorization, 45, 49, 56
autonomous, 51, 53, 73, 9
aviation ambassador, 65
aviation safety, 37, 51, 63
Aviation Safety Reporting System, 48, 69
Aviators Code Initiative, 37, 67, 68, 71, 72, 80, 9
batteries, 48, 58, 62
behavior, 63, 65
best practices, 41, 55, 56, 63, 65
beyond visual line of sight, 60, 73
birds, 58
BVLOS, 60, 71, 73, 81
C2 link, 73, 74, 77
CAA, 71, 78
Canada, 81
cautions, 62
Chart Supplements, 46
checklists, 40, 47, 49
complacency, 51, 53
culture, 37, 39, 41, 44, 63, 65, 77
DAA, 60, 62, 71, 74
data, 53, 56, 57, 61, 65, 73, 74, 76
Debrief, 53
degradation, 60, 61, 62, 74
detect-and-avoid, 60, 62
EASA, 66, 71
Electromagnetic, 60
emergencies, 46, 51, 53, 61
environment, 40, 41, 43, 46, 51, 58, 73, 74, 75, 77
Environmental Issues, 41, 58
electronically sensitive, 58
Errata, 67
ethical, 42, 44, 63, 65
EUROCAE, 66
FAA, 40, 48, 52, 55, 64, 66, 69, 70, 71, 80, 9

FAA, Modernization and Reform Act of 2012, 80

Facility Maps, 44, 63

failure modes, 53, 60, 62

fault-tolerant, 60, 62

flight operations, 46, 48, 49, 50, 51, 56, 58, 61

flight planning, 51, 61

flight safety, 40, 44, 47, 51, 60, 63, 75

fly-away, 75

fuel, 44, 45, 51, 58

fuel spills, 58

geo-fencing, 55, 75

GPS, 61, 62, 71

hazardous materials, 49, 56

hazards, 45, 49, 50, 63, 74, 76, 77

humility, 63, 65

I'M SAFE, 46

ICAO, Manual on Remotely Piloted Aircraft Systems (RPAS, 80, 9

identification, 56, 77

incident, 44, 75

industry guidance, 43, 48

information security, 56

integrity, 43, 48

interference, 60

Introduction, 40

ISO, 66, 70

JARUS, 66, 71, 80

JARUS guidelines on Specific Operations Risk Assessment, 80

judgment, 42, 43, 44

Kopardekar, 69

law enforcement, 55

laws, 42, 43, 48

licensing, 61

lighting, 45, 51

local government, 63

log, 48, 51, 53, 57

malfunctions, 53, 75
manned aircraft, 45, 46, 48, 49, 50, 53, 56, 63, 9

Manned Aircraft and People on the Surface, 41, 49

manual, 49, 51, 52, 60, 61, 75, 76, 80, 9

Manual on RPAS, 9

mentor, 46, 47, 51, 63, 65

military bases, 56

minimum requirements, 51

NAS, 42, 72, 80

National Airspace System, 42, 63, 72, 78, 80

national security, 55

navigation, 60, 61, 62

NIST, 80

NMAC, 75

noise, 58, 59

noise-abatement, 58, 59

NOTAM, 72

NOTAMs, 46, 56

Notes for Implementers, 66

Notice, 67, 72

Notices to Airmen, 46

NTIA, 72, 81

NTSB, 48

obstacle avoidance, 60

operator, 76

payloads, 44, 49, 51

perceived threat, 55

performance, 44, 48, 51, 52, 53, 77

Permanent Editorial Board, 37, 68, 72

personal improvement, 63, 65

PKI, 72

post-flight, 48, 49, 58, 61

Preface, 39

Principles, 41

prisons, 56

privacy, 52, 55, 56, 57, 65, 81

professionalism, 35, 37, 40, 41, 43, 47, 57, 65

professionals, 37, 63, 64, 65

proficiency, 37, 47, 51, 52, 60, 75
property, 45, 47, 48, 49, 50, 52, 55, 58, 73, 76, 77
public aircraft, 76, 9
radar, 61
radio, 61, 62, 76
radio frequency, 61
registration, 56
regulations, 40, 42, 43, 48, 52, 63, 75, 76, 80
report, 48, 55, 75
Reviewers, 68
Revision History, 36
risk analysis, 77
risk management, 40, 41, 43, 44, 45, 46, 49, 51, 53, 62, 76, 77
RPAS, 72, 77, 80, 81, 9
safe operation, 52, 63, 73, 74, 75
security, 55, 56, 74
Security and Privacy, 55
see and avoid, 77, 78
sensors, 60
service providers, 58, 63, 64
settings, 53, 61
simulators, 52
situational awareness, 43, 46, 50, 51, 60, 61, 77
SORA, 71, 80
study, 51, 52, 80
SUA, 72, 78
suspicious, 55
Table of Contents, 38
technologies, 60, 61, 62
temporary flight restrictions, 56
TFR, 72
Threat and Error Management, 44
tracking, 56, 61
training, 41, 42, 46, 49, 51, 52, 53, 56, 61
Training, 41, 51, 69
Training and Proficiency, 41, 51
training regime, 51
transmitting, 60
UAS pilot, 46, 47, 50, 51, 53, 55, 63
UAS Pilot Letter, 37
UASPC Abbreviated Version, 83
UASPC Drafting Team, 68
UK, 69
Use of Technology, 41, 60
UTM, 60, 69, 72
values, 40, 63, 65
visual observer, 44, 74, 78
VLOS, 72, 78
waivers, 48
warnings, 62
weather, 44, 45, 46, 52, 53, 61, 78
weight and balance, 51
wildlife, 50, 58
Endnotes

3 Title - Resolving a title for the UASPC was challenging because relevant taxonomy in both industry and government is still evolving. The title, UAS Pilots Code, reflects the following considerations:

 Audience -
 The primary audience includes civil, commercial unmanned aircraft system (UAS) pilots, operators, visual observers, operations managers, safety officers, and other interested or responsible parties. The UASPC also serves as a supplemental resource for diverse UAS operations, and may be useful for some public aircraft operations.

 “UAS” -
 A. UAS vs. RPAS: The term “UAS” enjoys widespread usage in the US and other jurisdictions, and regulatory adoption in the FAA’s Small Unmanned Aircraft Systems rule, 14 C.F.R. Part 107, available at https://www.eC.F.R.gov/cgi-bin/text-idx?SID=5a94599c486631fe22f2127461f38a26&mc=true&node=pt14.2.107&rgn=div5. The term “RPAS” is largely unfamiliar outside of military aviation in the US. In contrast, while focused on civil UAS, the UASPC applies broadly to any type of non-military unmanned aircraft operation. Thus, “UAS” most accurately characterizes the UASPC’s scope and content.

 The ICAO, Manual on Remotely Piloted Aircraft Systems (RPAS), Doc. 10019, Fig. 1.2 & § 1.5.1 (2015) (“Manual on RPAS”), available (fee) at https://store.icao.int/manual-on-remotely-piloted-aircraft-systems-rpas-doc-10019-english-printed-12792.html graphically presented remotely piloted aircraft, model aircraft, and autonomous aircraft each “as one subset of UAS.” ICAO’s UAS Study Group (UASSG) “first considered introducing the term ‘remotely piloted’ [in] 2009, after reaching the conclusion that only unmanned aircraft that are remotely piloted could be integrated alongside manned aircraft in non-segregated airspace and at aerodromes [and] therefore narrow[ed] its focus from all UAS to those that are remotely piloted.” ICAO, § 1.2.14. Cf., it has been recognized that “Art. 8 of the ‘Chicago Convention’ means there must [be] a person accountable for the operation of the aircraft, hence under the ICAO framework there is a need to refer to RPAS (rather than the more generic UAS) to reflect the pilot aspect.” Michael Gadd (FRAeS), Policy Lead, UAS, Civil Aviation Authority (UK) (Jan. 21, 2018).

 B. UAS vs. Drone: The term “drone” has historically applied to airborne military practice targets, and more recently to model or hobbyist aircraft. In contrast, the term “UAS” is widely recognized as applying to civil, scientific or professional operations, among others.
C. **UAS vs. sUAS**: We use the blanket "UAS" when we mean all, and "sUAS" (small UAS) only when we mean that specific subset of UAS.

“Pilots” -

A. **Pilots vs. Operators**: The term “pilots” was adopted rather than “operators” reflecting (1) broad industry and government consensus that licensed UAS aviators should be considered pilots, (2) the FAA’s and other civil aviation authorities (CAAs) issuance of UAS “pilot” certificates, and (3) the specific meaning of the word "pilot" as someone who operates the controls of an aircraft. See FAA, *Becoming a Pilot*, www.faa.gov/uas/getting_started/fly_for_work_business/becoming_a_pilot. As UAS platforms become increasingly automated, the transfer of direct control shifts from the human operator or “pilot” to automated systems. The term “pilot” underscores that automation should be subordinate to the responsibility and authority of the human component. Notwithstanding, the UASPC addresses and seeks to include “operators” extensively. See UASPC, n.133 (addressing autonomous aircraft and systems).

B. **Pilots vs. Remote Pilots**: Our use of the term “Pilots” mirrors usage of the term by certification authorities as discussed immediately above, and reflects acceptance of UAS aviators as members of the pilot community with commensurate responsibilities to adhere to applicable rules and embrace aviation safety culture.

C. **Plural Non-Possessive Form**: The usage of “Aviators” or “Pilots” in the Aviators Code Initiative’s title takes the plural, and non-possessive form, i.e., “Pilots”, as opposed to “Pilot’s”. “Pilots” is here used as a modifier, as in “Air Line Pilots Association”.

D. **Pilots vs. Commercial Pilots**: The term “Commercial” was considered to underscore that many of the UASPC’s practices are geared to the comparatively rigorous requirements of commercial operations (in contrast to certain hobbyist or certain other types of operations). Nonetheless “Commercial” was rejected because: (1) much of the UASPC is extensible or relevant to non-commercial operations, (2) the UASPC’s introduction describes its scope and audience, and (3) there is an editorial preference for a concise title.

“Code” -

Code vs Code of Conduct: The term “Code” is a more concise version of the phrase “Code of Conduct” used in the ACI’s earlier documents. As used in this title, “Code” is not intended to connote a collection or compendium of laws.

Drafting Considerations: Further discussion regarding the titling of our codes of conduct is presented in ACI, *Commentary to the Title*, http://secureav.com/Comment-AMCC-Title.pdf.

6 All pilots share many attributes traditionally identified with aviation professionals, including: (1) a wide range of required specialized skills, (2) a need for good judgment, (3) a need for proficiency and ongoing training, (4) a direct responsibility for the well-being of others, and (5) serious consequences for

The FAA uses the term Safety Risk Management (SRM) as a primary component of safety management systems (SMS) throughout the aviation industry as well as in FAA operations. “The objective of SRM is to provide information regarding hazards, safety risk, and safety risk controls/mitigations to decision makers and to enhance the FAA’s ability to address safety risk in the aerospace system. SRM consists of conducting a system analysis; identifying hazards; and analyzing, assessing, and controlling safety risk associated with the identified hazards.” FAA, Order 8040.4B, Safety Risk Management Policy, p.1 (May 2, 2017), https://www.faa.gov/documentLibrary/media/Order/FAA_Order_8040.4B.pdf. These principles are consistent with the general concept of “risk management,” the terminology used in the UASPC.

Cf., U.S. 14 C.F.R. Part 5, § 5.51 (required for part 121 air carriers) also specifies Safety Risk Management processes to be performed prior to implementation of new systems or revision of existing systems, including processes for system analysis, identification of potential hazards, analysis and assessment of risk, and, where necessary, development of risk controls.

Ideally, individuals adhere to codes for their own good reasons. Such deferential adherence may occur in part as a result of deliberate organizational or cultural encouragement. And, individuals may seek rules more stringent than their status requires.

The UASPC is informed by the US FAA’s Small Unmanned Aircraft Systems rule (as codified in 14 C.F.R. § 107) and applicable rules and guidance of other jurisdictions and intergovernmental organizations, including, but not limited to:

- Canada (DoT) - https://www.unmannedsystems.ca/download/usc-small-rpas-bvlos-best-practices/
- ICAO - https://www4.icao.int/uastoolkit/Home/Narrative#background
- JARUS - http://jarus-rpas.org/publications

While the scope of the UASPC is primarily applicable to U.S. operators, the recommended guidance and best practices may have applicability in other jurisdictions. Consequently, the annotations selectively include supporting or comparative references to relevant rules and guidance from these (and where helpful, other) entities.

For example, because UAS pilot certification (in the United States) does not require the involvement of an instructor, the need for non-regulatory or operational guidance is heightened.

Diminished Regulation - A current trend towards diminished regulation and oversight may also bolster the need for voluntary practices such as a code of conduct. See, e.g., Wheeler, et al., *Trump signs ‘2-for-1’ order to reduce regulations*, The Hill (Jan. 30, 2017), http://thehill.com/homenews/administration/316839-trump-to-sign-order-reducing-regulations (“The executive order [No. 13771, *Reducing Regulation and Controlling Regulatory Costs*] is aimed at dramatically rolling back federal regulations.”); and Andy Pasztor, *Some Drone Regulations Delayed, Others Postponed Indefinitely: Highly anticipated rules await government approval, but timeline is pushed back to late 2018 or early 2019*, WSJ (Sept. 17, 2017), available (fee) at www.wsj.com, and (free) at http://www.kathrynsreport.com/2017/09/some-drone-regulations-delayed-others.html; and Mark Dombroff, Dentons US LLP (“It seems in many respects everything has come to a halt There’s almost a resignation that has set in.”). Cf., Jan Pie, Chairman, Int’l Coordinating Council of Aerospace Indus. Ass’ns (ICCAIA), Presentation at RPAS2017, ICAO, Montréal (Sept. 19, 2017) (asserting that regulations are essential to safely integrating UAS into existing aviation systems; and that without appropriate regulation, the operation of UAS business would be premature. “No regulatory framework, no business.”).

Drafting Considerations: The scope of the UASPC includes civil UAS operations and does not distinguish between commercial vs. non-commercial operations, as the 14 C.F.R. 1.1 definition of civil aircraft
inclusively contains both types of operations. Moreover, the decision to limit the scope to civil UAS operations is not to suggest that some elements or recommendations may not apply to governmental operations, but rather to acknowledge the inadequacy of the UASPC in fully addressing the unique regulatory and operational framework of governmental UAS operations under military authority or state aircraft rules.

“Other interested or responsible parties” is inclusive and intended to include anyone planning to work with or hire UAS pilots.

13 Limitations - The UASPC’s general, foundational guidance should inform any UAS operation although many of its specific provisions may not address operations beyond the scope of 14 C.F.R. Part 107, such as Beyond Visual Line of Sight (BVLOS) operations or UAS carriage of people.

Part 107 is, however, just “the first step in the process of integrating small UAS operations into the NAS.” Final Rule, 81 Fed. Reg. 42,063 (June 28, 2016). “With this new rule [14 C.F.R. Part 107], we are taking a careful and deliberate approach that balances the need to develop this new technology with the FAA’s mission to protect public safety. But this is just our first step. We’re already working on additional rules that will expand the range of operations.”, Fmr. FAA Adm’r Michael Huerta (June 21, 2016). https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20515. Integration developments are evolving quickly.

15 The Code is founded on codifying best practices, which include professional procedures that are industry benchmarks, or otherwise accepted as being the most correct or most effective in achieving identified desirable effects. Nonetheless, the UASPC could become a model for standards development. See ASTM Int’l, Form and Style for ASTM Standards, § C15.1A, https://www.astm.org/FormStyle_for_ASTM_STDS.html#definitions (defining “standard practice” as “an accepted procedure for the performance of one or more operations or functions.”).

17 “SRPs” are distinct from ICAO’s Standards and Recommended Practices (“SARPs”). See www.ICAO.int.

In addition, the UASPC may be helpful to civil aviation authorities for their development of associated practices.

As noted above, the FAA has not developed or adopted standards for the qualification and certification of UAS pilot instructors. Consequently, the UASPC emphasizes establishing a meaningful self-training program, aided by experienced UAS pilots or other knowledgeable mentors. See UASPC, § III. Training and Proficiency. The individual UAS pilot retains responsibility for assessing their own skill, comfort level, and personal minimums associated with the UAS platform, mission, and operational environment, and should adapt their training plan appropriately. Cf., ICAO, Manual on RPAS, § 8.5 (presenting general prerequisites and requirements for instructors).

As is often the case with an emergent technology, unmanned aircraft are likely to pose new ethical and regulatory challenges. “As always, we must welcome innovation and the benefits it brings us. But, we must also remain committed to sustainable development, taking into account issues of inequality, human dignity, and inclusiveness.” Nayef Al-Rodhan, Scientific American (Mar. 13, 2015), https://www.scientificamerican.com/article/the-many-ethical-implications-of-emerging-technologies/ (addressing ethical implications of emerging technologies); and Alisa M. Dolan, et al., Integration of Drones into Domestic Airspace: Selected Legal Issues, Rpt. 7-5700, Cong. Research Service (Apr. 4, 2013), available at https://fas.org/sgp/crs/natsec/R42940.pdf. Ethical behavior underlies and is integrated into the UASPC. See, e.g., UASPC, § VII.e & n.133 (Autonomous Systems & Ethical Considerations).

See ACI, Commentary to AMCC 1.a – General Responsibilities; UASPC, n.8 (addressing safety risk management); FAA Adm’r Michael Huerta, Preface to FAA, Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap, p. i (Nov. 7, 2013), https://www.faa.gov/uas/media/uas_roadmap_2013.pdf (“The FAA is committed to the safe and efficient integration of UAS into the NAS. However, as safety is our top priority, UAS integration must be accomplished without reducing existing capacity, decreasing safety, impacting current operators, or placing other airspace users or persons and property on the ground at increased risk.”) (emphasis added). Cf., JARUS, JARUS OPS, Recommendations for Unmanned Aircraft Systems (UAS), Operations for Category A and B, JAR_DEL_WG2_D.03, Art. 4–Principles for UA operations, ¶ 1 (Oct. 7, 2017), available at http://apant.pt/wp-content/uploads/2017/10/jar_doc_14_draft_d3_ops_cat_a_extcons_251017.pdf (“The operator of a UA shall be responsible for its safe operation.”); Australian Ass’n for Unmanned Systems, Code of Conduct, v1.0 (Aug 19, 2016), http://aaus.org.au/resources/Documents/Documents/AAUS%20Code%20of%20Conduct.pdf (“The safety of your operations is paramount to any other concern.”); Gur Kimchi, VP, Amazon Prime Air, Presentation at ICAO, DRONE ENABLE 2017, Montréal (Sept. 22, 2017) (“The number one priority for our service is safety.”); ICAO, Manual on RPAS, Ch. 1, § 10.1.5 (“[Unmanned aircraft] will have to be as safe as, or safer than, present manned operations.”); and Email from Michael Gadd, UK (Jan. 21, 2018) (urging “tests of reasonableness”).

Consider the following perspective from Don Arendt, Ph.D., FAA (Dec. 2016):

It is common to say that safety is the top priority but this, arguably, may not be realistic. It could, at its extremes, imply that we can achieve absolute safety, which can only be achieved by eliminating the activity in which risk is incurred. We take on (or accept) risk when we engage in these activities, but this needs to be done in a context of effectively managing those risks - operating safely. People, particularly those who are innovators, don’t enter into their enterprises to “be safe.” Safety is one of the three things, mission,
Achievement necessitates survival in all three areas. Risk has to be managed by understanding the boundaries that have to be observed to stay in balance. We have to be sure that people recognize these margins and not dismiss them with what can easily become empty rhetoric. While it’s good rhetoric to place a high, if not the highest priority on safety, I caution that it’s easy to compartmentalize safety into its own domain and lose the fact that risks mostly exist as byproducts of operations – the real purpose(s) behind what we’re doing. (emphasis added).

Drafting Considerations: Implementers may prefer alternative formulation of UASPC §1.a, (“make safety a top priority”) such as: “make safety the top priority”, “make safety of operations the highest priority”, or “make risk management the priority”.

Adherence to good airmanship and aeronautical decision-making practices is necessary to ensuring safe flight operations. See ICAO, Manual on RPAS, § 8.4.36 (“...demonstrate the ability to: d) exercise good judgement and airmanship”). “The remote pilot in command is directly responsible for and is the final authority as to the operation of the small unmanned aircraft system.” 14 C.F.R. § 107.19(b).

See Michael Huerta, Fmr. FAA Adm’r, Speech at AirVenture, Oshkosh, WI, EAA AirVenture (July 28, 2016), available at https://www.faa.gov/news/speeches/news_story.cfm?newsid=20575, (“[T]here’s a lot more to flying than just knowing the rules and pushing buttons. It takes good judgment. It requires discipline. And it demands a true sense of professionalism that’s rooted in a deep, unwavering commitment to doing the right thing.”).

The goal of risk management is to proactively identify safety-related hazards and mitigate the associated risks. Risk management is an important component of ADM.” FAA, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8030-25B, Ch. 2, p. 3.

“Aircraft operating without a pilot on board present a wide array of hazards to the civil aviation system. These hazards must be identified and the safety risks mitigated, just as with introduction of an airspace redesign, new equipment, or procedures.” ICAO, Unmanned Aircraft Systems, ICAO Cir. 328, § 2.17 (2011), https://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf.

Situational Awareness - “Maintaining situational awareness requires an understanding of the relative significance of all flight related factors and their future impact on the flight. When a pilot understands what is going on and has an overview of the total operation, he or she is not fixated on one perceived significant factor. Not only is it important for a pilot to know the aircraft’s geographical location, it is also important he or she understand what is happening.” FAA, Aeronautical Decision-Making and Judgement, Remote Pilot – Small Unmanned Aircraft Systems Study Guide, FAA-G-8082-22 (2016) Ch. 10, p. 63. See FAA, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8030-25B, Ch. 2-24, Aeronautical Decision-Making, https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/, and FAA, Airplane Flying Handbook, FAA-H-8083-3B (2016), Ch. 2-11.

Perceptual Illusions - “The pilot of an RPAS may be exposed to a range of perceptual illusions and conflicts that do not occur in conventional aviation [for example:]”

Control-consequence incompatibility. [In VLOS, where] the track of the aircraft is not aligned with the pilot’s point of view, for example, if the aircraft is flying towards a visual pilot, or a map display is not aligned with track up, then control inputs may result in the aircraft turning in a manner that is inconsistent with the pilot’s point of view.

Depth cues. . . Camera views can produce misleading depth cues, some of which may be related to the lack of binocular cues. . . .

Camera direction. If a moveable camera located on board an RPA [Remotely Piloted Aircraft] is not aligned as expected by the pilot, there may be an illusion of yaw, disorientation or other undesired aircraft state.”

See ACI, Commentary to AMCC 1.f – General Responsibilities (Nov. 14, 2005), http://www.secureav.com/Commentary-AMCC-1.f-General-Responsibilities.pdf (addressing professionalism); and Fmr. FAA Adm’r Randy Babbitt, Statement before the House Comm. on Transp. and Infrastructure, Subcomm. on Aviation, An Update: The FAA’s Call to Action on Airline Safety and Pilot Training (Feb. 4, 2010), https://www.transportation.gov/content/update-faa%E2%80%99s-call-action-airline-safety-and-pilot-training (“Professionalism is not something we can regulate . . . it is something we can encourage and urge pilots and flight crews to aspire to.”).

No such code can ever create an exhaustive list of what it takes to be healthy, and the same holds for ethics. The character of both morality and health is organic. And, if someone seeking a reference for either encounters a list of behaviors, they might be misled into taking a “checklist” approach to a matter that no checklist can describe. The whole is greater than the sum of its parts. How to think and the objects of thought occupy radically distinct categories. This issue pervades education, professional development, strategy . . . maybe most fields concerned with humanity.

Email from Bill Rhodes, PhD., PEB Member, ACI (Oct. 27, 2017). Checklists are considered in UASPC, n.76.

See UASPC, n.82 (addressing state/local vs. Federal rules, and federalism). See generally, FAA, Unmanned Aircraft Systems (UAS) Regulations & Policies, https://www.faa.gov/ux/resources/ias_regulations_policy/. Also, consider the implications of the FAA’s compliance philosophy. “Regulatory compliance represents the minimum standards by which an operator can achieve a minimal degree of safety.” According to the FAA, “Traditional oversight relies on the assumption that if an airman/organization is fully compliant with the applicable regulatory requirements, then an adequate level of safety is achieved. However, the aviation environment has reached a level of complexity where further safety improvements cannot be achieved by simple compliance with prescriptive rules.” FAA, FSIMS, 8900.1 Chg 422, 14-1-1-5B, http://fsims.faa.gov/PICResults.aspx?mode=EBookContents&restricttocategory=all~menu (describing evolution of the FAA’s compliance philosophy).

There is an important trend towards safety risk management oversight based upon data-driven, “performance-based” metrics, including within design standards. For example, 14 CFR Part 107 is widely steeped in performance-based requirements. And, use of performance-based metrics in rule-making transcend the FAA. Indeed, the U.S. Office of Management and Budget has stated that focusing on
“outcomes rather than specifying the means to those ends are generally superior”, OMB, Circular A-4 (Sept. 7, 2013), available at https://www.transportation.gov/sites/dot.gov/files/docs/OMB%20Circular%20No.%20A-4.pdf (emphasis added); and FAA, FSIMS, 8900.1 CHG 422 (Dec. 4, 2016), Ch. 14-1-1-7, Compliance Philosophy, http://fsims.faa.gov/wdocs/8900.1/v14%20compliance%20&%20enforcement/chapter%2001/14_001_001.htm (considering that “[t]he greatest systemic safety risk is not from a specific operational event or its outcome, but rather from an airman or organization’s unwillingness or inability to comply with safety standards and, most importantly, operating contrary to the core principles of Safety Risk Management (SRM)”).

32 See generally FAA, Safety Management System (SMS), https://www.faa.gov/about/initiatives/sms/; ICAO, Manual on RPAS, Ch. 7.4.1 (requirement to implement a SMS); and ICAO, Safety Management Manual, Doc. 9859, AN/474, ch. 5 (3rd ed. 2013), https://www.icao.int/safety/SafetyManagement/Documents/Doc.9859.3rd%20Edition.alltext.en.pdf (considering that “[t]he greatest systemic safety risk is not from a specific operational event or its outcome, but rather from an airman or organization’s unwillingness or inability to comply with safety standards and, most importantly, operating contrary to the core principles of Safety Risk Management (SRM)”).

Cf., S. M. Vance & R. J. Wallace, et al., Detecting and assessing collision potential of aircraft and small unmanned aircraft systems (sUAS) by visual observers, IAAA, vol. 4(4) (2017), available at https://doi.org/10.15394/ijaaa.2017.1188 (“The use of visual observers is one of many tools available to remote pilots to comply with aviation regulations and ensure safety of flight. [Recognize] the important human performance limitations associated with visual observer performance and be wary of relying solely on this fallible modality of hazard detection.”).

First-Person View (FPV) - While FPV devices are commonly used for flying some UAS (such as for drone racing activities), they do not satisfy the requirements of 14 C.F.R. § 107.31(a), Visual Line of Sight Aircraft Operation. The FAA has not addressed FPV usage under 14 C.F.R. Part 107, however, 14 C.F.R. Part 101 may support such use provided such operations are conducted under the auspices of programming of a national community-based organization. If operating under FPV, it is highly recommended to use a visual observer to assist in maintaining situational awareness.

34 A hazardous payload may increase risks associated with UAS operation Wherever there are shared resources or interactions between the payload and the air vehicle, there is a need to analyze and manage this sharing of resources to ensure that all hazards have been mitigated.” Kelly J. Hayhurst, et al., Unmanned aircraft hazards and their implications for regulation, pp. 5B1-1, -12, Proc. of the 25th Digital
Hazardous payloads may also include the carriage of hazardous materials, or HAZMAT prohibited by 14 C.F.R. § 107.36 (“A small unmanned aircraft may not carry hazardous material. [T]he term hazardous material is defined in 49 C.F.R. 171.8.”).

The UAS Facility Maps are designed to identify permissible altitudes (above ground level) at which UAS, operating under the Small UAS Rule (14 C.F.R. § 107), can be authorized to fly within the surface areas of controlled airspace. These altitude parameters, provided by the respective air traffic control facilities, are criteria used to evaluate airspace authorization requests (14 C.F.R. § 107.41), submitted via FAA.GOV/UAS. Airspace authorization requests for altitudes in excess of the predetermined map parameters will require a lengthy coordination process. This dataset will be continually updated and expanded to include UAS Facility Maps for all controlled airspace by Fall 2017. This map is not updated in real time. Neither the map nor the information provided herein is guaranteed to be current or accurate. Reliance on this map constitutes neither FAA authorization to operate nor evidence of compliance with applicable aviation regulations in or during enforcement proceedings before the National Transportation Safety Board or any other forum.

37 Be prepared for flight termination, including the loss/destuction of the UAS, and understand procedures to mitigate loss or injury to life and damage to property. See flight termination, and lost link, UASPC, App. 2, Definitions.

UAS Pilots Code –Annotated Version 1.0

39 UAS pilots should perform a brief stability and controllability test immediately after launch to ensure the craft appropriately responds as expected to operator inputs, flight controllability is not adversely affected by UAS payloads or weight distribution loading, and the craft demonstrates characteristics of positive static and dynamic stability. See FAA, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-80-8335B, pp. 5-14,15 (2016), https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/. For non-standard payloads, uncertain weight and balance, or where UAS controllability is in question, recognize the enhanced need for such a test. Cf., FAA, ORDER 8130.34D, SUBJ. Airworthiness Certification of Unmanned Aircraft Systems and Optionally Piloted Aircraft, p. 3-2(4)(f) (Sept. 8, 2017), available at https://www.faa.gov/documentLibrary/media/Order/FAA_Order_8130.34D.pdf (“... the applicant must demonstrate control link and control station [and other associated elements] functionality by performing procedures such as turning on/off the aircraft lights, deflecting flight controls, and/ or conducting an engine run.”).

40 Consider the human factors implications of the belief harbored by some manned aircraft pilots that manned certification/training/experience alone is adequate for UAS operations.

41 The UAS pilot may make aeronautical decisions that increase risk to other NAS users, but is unlikely to share in the actual risk like manned pilots. That is, the UAS pilot’s decisions are influenced by being “safe, on the ground” rather than assuming the personal risks of flight. Indeed, training standards in development recognize the absence of the UAS pilot’s “shared fate” with the UAS. See ASTM Int’l, Comm. F38, https://www.astm.org/COMMITTEE/F38.htm.

44 Application of Threat & Error Management in UAS Operations - Voluntary standards are in development within ASTM Int’l, Comm. F38 that recognize and advance CRM and TEM principles using skill sets that include planning, decision-making, leadership and effectiveness, situation awareness, communications, monitor/cross-check, workload management, automation management, and general aeronautical decision making.

46 Power Reserve - The original proposal for 14 C.F.R. Part 107 included a requirement that the remote pilot ensure that the sUAS had sufficient power to operate for its intended operational time plus an additional five-minute reserve. In the Final Rule, however, “the FAA retains the requirement that the small UAS has enough power to operate for its intended operational time, but has eliminated the additional five minute requirement. . . . As such, a requirement for an additional five minutes of power is unnecessary.” Operation and Certification of Small Unmanned Aircraft Systems, 81 Fed. Reg. 42,155 (June 28, 2016) (amending 14 C.F.R. Part 107), https://www.gpo.gov/fdsys/pkg/FR-2016-06-28/pdf/2016-15079.pdf. Cf., Unmanned Systems Canada, Small RPAS Best Practices for BVLOS, v1.1, § 4.2, p. 22 (Feb. 16, 2017), https://www.unmannedsystems.ca/download/uscsmall-rpas-bvlos-best-practices/ (recommending “a 15% of flight time (up to 30 minutes) fuel/energy reserve be planned for VFR BVLOS operations.”).

Temperature Effect on Lithium-Ion Batteries - For electric aircraft, cold temperatures may dramatically diminish battery capacity. See, e.g., Sony, Lithium Ion Rechargeable Batteries Technical Handbook, Fig. 7, p. 21 (undated), available at http://dlmnh9ip6v2uc.cloudfront.net/datasheets/Prototyping/Lithium%20Ion%20Battery%20MSDS.pdf (presenting discharge curve demonstrating material reduction of power as a function of decreasing temperatures).

See ICAO, Manual on RPAS, § 10.2.2 (“For a single hazard, two risk analyses may be needed, one for manned aircraft and one for unmanned aircraft. One should not assume that the hazard, the severity of the risk or the mitigation strategies will be the same.”). See UASPC, n. 26 (on risk management).

See UASPC n.204 (addressing well clear regarding aircraft-to-aircraft separation and DAA). The FAA expects that most remote PICs will avoid operating in the vicinity of airports because their aircraft generally do not require airport infrastructure.

Notification - Unlike operations under 14 C.F.R. Part 101, commercial and other pilots operating under 14 C.F.R. Part 107 are not generally required to notify airports (including heliports and other types of aerodromes). Instead, their notification and authorization responsibilities are well-defined and directed to ATC. It may nonetheless be prudent to voluntarily provide airport authorities with such notice. As a practical matter, ATC and airport management sometimes neither have effective information sharing/reporting procedures nor do they necessarily coordinate safety management systems. See also UASPC, n.35 (addressing LAANC).

See, e.g., 14 C.F.R. § 107.43, Operation in the vicinity of airports; and 14 C.F.R. § 107.41, Operation in certain airspace. Sensitivity to operations near airports is also manifest in legislative initiatives such as the proposed Drone Operator Safety Act of 2017, H.R.3644 - 115th Congress (2017-2018), https://www.congress.gov/bill/115th-congress/house-bill/3644/text?q=%7B%22search%22%3A%5B%22unmanned+aircraft%22%5D%7D&r=1 (prohibiting unauthorized flight operations within a rectangular runway exclusion zone extending one sm from each end of the runway with a ½ sm width). See also UASPC, n.35 (addressing LAANC); and UASPC, n.49 (addressing notification).

The primary hazard in urban environments are operations over humans. See 14 C.F.R. § 107.39, Operation over human beings, “No person may operate a small unmanned aircraft over a human being unless that human being is: (a) Directly participating in the operation of the small unmanned aircraft; or (b) Located under a covered structure or inside a stationary vehicle that can provide reasonable protection from a falling small unmanned aircraft.” See also UASPC, n.35 (addressing LAANC); and UASPC, n.49 (addressing notification).

See ICAO, Manual on RPAS, § 9.5.16 (“Operations over heavily populated areas or over open air assemblies of people may require special considerations [including]: a) altitudes for safe operations, b) uncontrolled landings, c) obstructions, d) proximity to airports/emergency landing fields, e) local restrictions . . . and f) the emergency termination of an RPA flight.”).
52 See Public Safety Aviation Accreditation Comm., Standards for Small Unmanned Aircraft System (suas) Programs, Draft Ver. 6/5/17, § 02.03.06 (Over Water Operations), available at http://alea.org/images/Standards/tab_16_c_-_UAS_Stds_Draft___6-5-17.pdf:

Standard: If missions are routinely flown over water the UAS should be equipped for a water recovery.

Commentary: Programs that operate over water should have the ability to safely recover the UAS in the event that it lands in the water. As such, UAS should float or should be equipped with external flotation equipment.

In some cases certain systems will not function effectively in some environments and RPs need to understand those limitations and the subsequent risks they incur by proceeding.

53 See John Croft, NASA and industry tackle the next phase of drone flight, AviationWeek (Nov. 18, 2017), http://m.aviationweek.com/aircraft-design/nasa-anomalies-drive-uas-traffic-management (“vehicle performance degradations caused by hot and high conditions”).

54 See UASPC, n.80 (operations exceeding the standard limitations of 14 C.F.R. Part 107 that may require a waiver per 14 C.F.R. § 107.200, Subpart D-Waivers).

55 See ICAO, Manual on RPAS, § 6.8.1 (“[E]nsure that operational and emergency equipment necessary for the intended flight are serviceable.”).

56 Consider that aeronautical sectional charts do not include man-made obstructions below 200 ft. AGL. See FAA, FAA Aeronautical Chart User’s Guide, https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/aero_guide/. See email from Rex Alexander, Uber (Jan. 17, 2018) (“There may be errors in the FAA Airport Master Record database and some airports and heliport may be incorrectly located.”). Aeronautical products are generally updated on a 28- or 56-day cycle. Effective dates are listed on applicable charts and aeronautical products. Users can also consult the FAA’s Dates of Latest Editions webpage to determine chart currency and subsequent edition publication dates, at https://www.faa.gov/air_traffic/flight_info/aeronav/productcatalog/doles/.

57 Remote Pilots should consult a variety of map resources to better understand the layout, topography, obstructions, and other site hazards prior to commencing UAS operations. Such resources may include but are not limited to Google (satellite or street view) Maps, digital terrain elevation data charts, and other resources. See National Geospatial-Intelligence Agency, https://www.nga.mil/Pr oductsServices/TopographicalTerrestrial/Pages/DigitalTerrainElevationData.aspx.

58 Preventing Distraction - Such practices are widely recognized as maintaining a sterile cockpit. The concept of a sterile cockpit prohibits manned aircraft pilots from engaging in non-essential tasks or conversation during critical phases of flight such as taxi, takeoff, climb, descent and landing, i.e., high-task load or high-risk events. Remote pilots are also required to effectively manage similar critical, high task-load operations and must avoid unnecessary communication or activity that could cause distractions leading to human errors, and potentially, an incident or accident. See FAA, Order 8900.1 CHG 477, vol. 16-5-2-17, F. Mission and Operations (Oct. 17, 2016), http://fsims.faa.gov/wdocs/8900.1/v16%20unmanned%20aircraft%20systems/chapter%202005/16_005_002.htm (“It is important to observe . . . ‘sterile cockpit concept’”); NTSB, Safety Recommendation A–06–7 (Jan. 24, 2006), https://www.ntsb.gov/news/events/Pages/Collision_with_Trees_and_Crash_Short_of_the_Runway_Corporate_Airlines_Flight_S966_British_Aerospace_BAE-J3201_N875JX_Kirks.aspx (importance of strict
compliance with the sterile flight deck rule); 14 C.F.R. §§ 121.542, 135.100 (sterile cockpit rule for commercial manned aircraft); and S. A. Shappell, et al., The Human Factors Analysis and Classification System—HFACS, DOT/FAA/AM-00/7 (2000), available at https://www.nifc.gov/fireInfo/fireInfo_documents/humanfactors_classAnly.pdf (categorizing relevant “Adverse Mental States” including loss of situational awareness, task fixation, distraction, and mental fatigue).

59 **Conspicuity** - See ICAO, Manual on RPAS, § 9.5.4 (VLOS operation conspicuity “dependent on their colour, size, speed, lighting, etc.”); and J. M. Loffi, et al., Seeing the threat: Pilot visual detection of small unmanned aircraft systems in visual meteorological conditions, Int’l J. of Aviation, Aeronautics, and Aerospace, vol. 3.3, p. 19 (2016), available at http://commons.erau.edu/ijaaa/vol3/iss3/13/ (While not specifically studied during the experiment, 80% of the participants indicated that the white (contrasting) color of the UAS platforms aided in their detection. Conversely, 10% of the participants found the white color made the UAS more difficult to spot.).

60 **See-and-Avoid** - Recognize that even manned aircraft can be very challenging to see. See ICAO, Manual on RPAS, § 10-3-1 (“If a very small RPA is to be integrated into non-segregated airspace, it is doubtful that it will be visible to manned aircraft.”), § 14-3-1 (“Owing to the relatively small size and low conspicuity of some [UAS], it may be difficult for pilots of manned aircraft and other remote pilots to visually acquire the [UAS].”); NTSB, Safety Alert, No. SA-058 (Nov. 2016), https://www.ntsb.gov/safety/safety-alerts/Pages/default.aspx (“[T]he inherent limitations of this [see-and-avoid] concept, including human limitations, environmental conditions, aircraft blind spots, and operational distractions, leave even the most
diligent pilot vulnerable to the threat of a midair collision with an unseen aircraft.”); and UASPC, § VI. Use of Technology (addressing detect and avoid technology).

a. *Too Small to See*: Manned aircraft are typically at least an order of magnitude bigger than many small drones, and small drones cannot effectively be seen by pilots. As an analogy, consider the extent of helicopter wire-strikes which occur with unacceptable frequency even where there are multiple observers on-board.

b. *Half the Eyes*: As a practical matter, see-and-avoid for small drones has the benefit of only half the eyes watching effectively for other aircraft (that is, only the drone operator or observer, not the manned pilot can see-and-avoid). This arguably might make it only half as effective.

c. *Degraded Visual Environments*: Drone operator see-and-avoid is handicapped by degraded visual environments, obstacles, varying altitudes (between drone and operator), and slopes that may reduce the ability to see approaching aircraft.

d. *Reduced Safety Margins*: The ability of drone operators to see-and-avoid other traffic decreases with distance between operator and drone.

e. *Areas of Reduced Buffer*: There is a safety gap beyond the extreme edge of line-of-sight operation, precluding effectiveness of see-and-avoid.

63 **Drafting Considerations**: The term “mission” is used throughout the UASPC to denote flight operations performed with a specific operational objective or purpose. This usage is not necessarily synonymous with its recognized use in a military context.

62 Recognize that not all manned aircraft operate above 500 AGL. Even below 500 AGL, helicopters, agricultural applicators and other manned aircraft operate frequently—both in the airport environment and beyond. See 14 C.F.R. § 91.119(d), *Minimum safe altitudes: General* (helicopters, powered parachutes, and weight-shift-control aircraft “may be operated at less than the minimums prescribed [altitude]”). See Keith C. Heidorn, *Winds of the City* (2005), http://www.islandnet.com/~see/weather/elements/citywind.htm (urban canyon winds).

Emergency scenarios that are recommended for practice include: control surface failures, landing gear failures, engine failure for rotorcraft and fixed-wing, and loss of VLOS.

“A remote pilot is not expected to communicate with other aircraft in the vicinity of an airport, and should not do so unless there is an emergency situation.” FAA, *Remote Pilot - Small Unmanned Aircraft Systems Study Guide* (2016), FAA-G-8082-22, p. 42, https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/remote_pilot_study_guide.pdf. But see, 47 C.F.R. § 87.43, *Operation during emergency*, https://www.ecfr.gov/cgi-bin/text-idx?SID=f587a3bf77b94dacc8f18c5714ac487e&mc=true&node=se47.5.87_143&rgn=div8 (“A station may be used for emergency communications in a manner other than that specified in the station license or in the operating rules when normal communication facilities are disrupted.”); and 14 C.F.R. § 107.21 (specifying that the remote pilot may deviate from regulations in an in-flight emergency requiring immediate action).

Remote pilots who wish to transmit on an aviation frequency must hold an FCC ground station authorization in accordance with 14 C.F.R. Part 87 (radio station licensure for aviation services). “Ground station authorizations are usually only issued to aviation service organizations located on airports, businesses engaged in pilot training, aircraft manufacturers, or persons engaged in chase activities related to soaring and ballooning.” www.fcc.gov/wireless/bureau-divisions/mobility-division/aviation-radio-services/ground-stations.

“A distance that is within the formal airport environment, restricted by Part 107, that may create an unsafe condition, or that is otherwise imprudent.

See FAA, *Chart Supplements Basic Search*, https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dafd/search/. Consider that many private airports and heliports (such as hospitals) may not be listed in the Chart Supplements.

UAS Pilots Code –Annotated Version 1.0

72 See FAA, Advisory Circular, AC 107-2, Subj. Small Unmanned Aircraft Systems (June 21, 2016), ch. 5.5, https://www.faa.gov/пас/media/AC_107-2_AFS-1_Signed.pdf (requiring preflight inspection to verify aircraft is in a safe condition for flight), ch. 7.4 (listing recommended preflight inspection items), and app. C (sUAS maintenance and inspection best practices); and ICAO, Manual on RPAS, § 6.7.1 (before flight “ascertain[] by every reasonable means available that [facilities are available for] safe operation”) (emphasis added). See also Check3GP5, http://www.check3gps.com/ (providing a “quick and easy method to assess any activity or event for possible hazards and allow mitigation when required” -- Gear, Plan, Skills).

74 Additionally, understand any firmware/software updates before implementation—read the release notes. Consider performing a functional flight test following any system modifications.

75 See ICAO, Manual on RPAS, § 9.5.28, Diversion to alternate aerodromes (Among other factors in choosing an emergency landing site, consider fuel reserves, C2 reliability, and field conditions.), § 9.7, Emergencies and Contingencies; and NASA, Safe2Ditch, available at https://www.youtube.com/watch?v=kM_FFwPv_PQ (demonstrating autonomous crash management technology and emergency landing location resolution). See also ASTM Int’l, Operational Risk Assessment standard, F3178; and UASPC, n.26).

76 Checklists provide safety benefit for all phases of flight. See Atul Gawande, The Checklist Manifesto, Picador, p. 72 (2011):

For generations after the first aviation checklist went into use, a lesson is emerging: checklists seem able to defend anyone, even the experienced, against failure in many more tasks than we realized. . . . They provide a kind of cognitive net. They catch mental flaws inherent in all of us—flaws of memory and attention and thoroughness.

77 See FAA, Advisory Circular, AC 107-2, Subj. Small Unmanned Aircraft Systems, § 5.9.1, Prior to Flight (June 21, 2016), https://www.faa.gov/ufs/media/AC_107-2_AFS-1_Signed.pdf. Also, identify areas where your visibility may be obscured by structures or sun glare.

78 Drafting Considerations: The UASPC adopted “limitations” rather than “minimums” reflecting that some parametric values will be maximums rather than minimums.

79 See 14 C.F.R. § 107.19(c) (RP in command must ensure sUA poses no undue hazard to people, aircraft or property).

Federalism; Federal Preemption - Federalism is a system of government that (in the US) bifurcates governance between the states (including its subdivisions) and national government. See New York v. US,
Federal preemption is premised on Art. VI, cl. 2 (the Supremacy Clause) of the U.S. Constitution: “This Constitution, and the Laws of the United States which shall be made in Pursuance thereof; and all Treaties made . . . shall be the supreme Law of the Land; and the Judges in every State shall be bound thereby, any Thing in the Constitution or Laws of any state to the Contrary notwithstanding.” Available at https://www.archives.gov/founding-docs/constitution. It grants Congress power to preempt, or override state law that interferes with or are contrary to powers granted Congress. See McCulloch v. Maryland, 17 U.S. 316 (1819), available at https://www.law.cornell.edu/supremecourt/text/17/316 (“The Government of the Union, though limited in its powers, is supreme within its sphere of action, and its laws, when made in pursuance of the Constitution, form the supreme law of the land.”). The extent of federal preemption depends on Congress’s intent: field preemption arises where Congress intends to preempt an entire field; whereas conflict preemption arises where state-federal law conflicts to the extent of physical impossibility. Federal preemption affecting UAS operations is undergoing scrutiny. See, e.g., Singer v. City of Newton, Case No. 1:17-CV-10071-WGY (Sept. 21, 2017), available at https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=5a94599c486631fe22f2127461f38a26&mc=true&n=sp14.2.107.b&r=SUBPART&ty=HTML#se14.2.107_123 (conflict preemption).

Federal authority over navigable airspace appears in 49 U.S.C. § 40103(a), Sovereignty and use of airspace, available at https://www.law.cornell.edu/uscode/text/49/40103 (exclusive sovereignty; public right of transit through navigable airspace); and 49 U.S.C. § 40103(b) (FAA authorization; prescription of air navigation regulation). See Brian P. Wynne, Pres. and CEO, AUVSI, Letter to Pres. Donald J. Trump (Oct. 11, 2017) (“Federal control of the airspace is a bedrock principle of aviation law that dates back over 50 years, and is the primary reason the United States maintains an aviation safety record that is the envy of the world. Maintaining the FAA’s authority helps keep the skies safe for all aircraft – manned and unmanned.”). Nonetheless, the FAA recognizes limitations to federal preemption with regard to sUAS:

The FAA is not persuaded that including a preemption provision in the final rule is warranted at this time. Preemption issues involving small UAS necessitate a case-specific analysis that is not appropriate in a rule of general applicability. Additionally, certain legal aspects concerning small UAS use may be best addressed at the State or local level. For example, State law and other legal protections for individual privacy may provide recourse for a person whose privacy may be affected through another person’s use of a UAS.

Also, consider Fmr. FAA Adm’r Huerta’s acknowledgment of Federalist principles, suggesting the efficacy of certain limited local control on UAS: “…in addition to the FAA’s rules, there are existing state and local laws in areas of reckless endangerment, trespass, and privacy that could apply.” Statement by the Hon. Michael Huerta, Fmr. FAA Adm’r, Before the U.S. Senate Appropriations Subcomm. on Transp., Housing and Urban Dev., and Related Agencies (Oct. 28, 2015), https://www.appropriations.senate.gov/imo/media/doc/102815-Huerta-Testimony.pdf. See Drone Innovation Act of 2017, HR 2930, available at https://www.congress.gov/bill/115th-congress/house-bill/2930?q=%7B%22search%22%3A%5B%22unmanned%22%5D%7D&r=2 (requiring development of a policy framework that, inter alia, “preserve[s] the legitimate interests of State, local, and Tribal
governments including—(1) Protecting public safety; (2) protecting personal privacy; (3) protecting property rights; (4) managing land use; and (5) restricting nuisances and noise pollution.” And other limitations intended to advance such rights); and Sen. Feinstein’s introduction of the Drone Federalism Act of 2017, available at https://www.feinstein.senate.gov/public/_cache/files/d/b/dbf0d059-09d2-43ae-9e17-3ca960592798/88CC2E3D7D090130DE655B22BEA674C7.ros17470.pdf.

The erosion of support for Federal preemption of the airspace was noted by Steven J. Brown, COO, NBAA, Presentation to NBAA’s Access Comm. (Oct. 9, 2017): “I’ve never before seen a time when local government had such an open disregard for Federal provisions. . . . This type of assertiveness and disregard is clearly a pattern that has been in place for a couple of years and is metastasizing.” As stated above, the limits of Federal authority over low-altitude airspace remain a work in progress.

There is a disconnect between preemption (which bars local municipalities from regulating) and the P.L. 112-95 limits imposed in Section 336 (which bars the FAA from rulemaking for model aircraft). Some model aircraft operators argue that preemption means local governments cannot create binding ordinances because the FAA has responsibility for regulating aviation. They then argue that enjoining the FAA from rulemaking means, in effect, that no one can create binding ordinances.

Aviation Apps Informing State/Local Rule Compliance - Separately, consider the extent to which aviation apps provide sufficient actionable local rule content. For example, the B4UFLY application (available at https://www.faa.gov/uas/where_to_fly/b4ufly/) is designed primarily to assist operator compliance with Federal airspace rules—not state and local rules. Operators should independently become familiar with available resources to ascertain applicable state and local rules.

83 See 14 C.F.R. § 107.9, Accident reporting, available at the FAADRoneZone Portal, https://faadronezone.faa.gov/ (UAS pilots must report accidents no later than 10 days after occurrence that meet designated criteria. UAS accidents are defined as any operation of a UAS involving at least: (a) serious injury or loss of consciousness, (b) or property damages greater than $500). And, FAA Hotline, https://hotline.faa.gov/ (for reports related to the safety of the NAS, violations of FAA regulations, safety issues, and FAA employees or facilities). Conversely, the NTSB defines an unmanned aircraft accident as “an occurrence associated with the operation of any public or civil unmanned aircraft system that takes place between the time that the system is activated with the purpose of flight and the time that the system is deactivated at the conclusion of its mission, in which (1) Any person suffers death or serious injury; or (2) The aircraft has a maximum gross takeoff weight of 300 pounds or greater and sustains substantial damage.” Events that do not meet the criteria for classification as accidents are considered incidents. NTSB, Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records, 49 C.F.R. § 830.2.

All accidents are required to be reported, whereas only some incidents—depending on the type—require reporting. See also FAA, Accident and Incident Reporting FAQs, https://www.faa.gov/uas/faqs/#air. Where practicable, preserve UAS data for accident or incident investigation purposes. ICAO, Manual on RPAS, § 9.10.8.

84 FAA, Near Mid Air Collision System (NMACS), FAA Aviation Safety Information Analysis and Sharing (ASIAS), http://www.asias.faa.gov/pls/apex/f?p=100:33:0:::NO. See FAA, Order 8900.1 vol. 7, ch. 4, § 1 (sUAS NMAC are to be processed with current aircraft NMAC report forms, pilot bill of rights and added sUAS items that address determining ownership of the UAS; the order references vol. 16, Unmanned Aircraft Systems, and FAA, Advisory Circular, AC 107-2, Subj. Small Unmanned Aircraft Systems).

NTSB Accident Reporting - NTSB accident reporting is not required for hobbyists, per FAA Modernization and Reform Act of 2012, § 336. See NTSB, Advisory to Operators of Civil Unmanned Aircraft Systems in the United States (“NTSB Advisory”) (July 29, 2016), https://www.ntsb.gov/investigations/process/Documents/NTSB-Advisory-Drones.pdf. The NTSB requires all other UAS operators to provide immediate notification of any accident involving serious injury or death, or if the aircraft has a maximum takeoff weight of 300 pounds or greater, and sustains substantial damage, or any serious incident involving UAS of any weight that meets the following criteria: flight control system malfunction or failure, inability of any required flight crewmember to perform normal flight duties as a result of injury or illness, in-flight fire, aircraft collision in flight, More than $25,000 in damage to objects other than the aircraft, Release of all or a portion of a propeller blade from an aircraft, excluding release caused solely by ground contact, Damage to helicopter tail or main rotor blades, including ground damage, that requires major repair or replacement of the blade(s), or an aircraft is overdue and is believed to have been involved in an accident. See 49 C.F.R. §§ 830.2, 830.5, and NTSB Advisory, above. See generally https://www.ntsb.gov/investigations/process/Documents/NTSB-Advisory-Drones.pdf.

Aviation Safety Reporting (ASRS) - See ASRS, https://asrs.arc.nasa.gov/ (NASA’s cooperative safety reporting program encourages reporting actual or potential discrepancies or deficiencies involving the safety of aviation operations); and FAA, Advisory Circular, AC-00-46E, Subj. Aviation Safety Reporting Program, p. 1 (Dec. 16, 2011), available at http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2000-46E.pdf (explaining the ASRS reporting system and that “[t]he FAA considers the filing of a report with NASA concerning an incident of occurrences . . . to be indicative of a constructive attitude [that] will tend to prevent future violations” and may preclude civil penalty or certificate suspension); and 14 C.F.R. § 91.25, Aviation Safety Reporting Program: Prohibition against use of reports for enforcement purposes (“The Administrator of the FAA will not use reports submitted to the National Aeronautics and Space Administration under the Aviation Safety Reporting Program (or information derived therefrom) in any enforcement action except information concerning accidents or criminal offenses which are wholly excluded from the Program.”). Cf., 14 C.F.R. § 13 (investigative and enforcement actions); and 14 C.F.R. § 13.19, Certificate Action. See also R. S. Sharma,

Whenever possible, the operator should maintain the sUAS and its components in accordance with manufacturer’s instructions. The aircraft manufacturer may provide the maintenance program, or, if one is not provided, the applicant may choose to develop one. . . . There may be components of the sUAS that are identified by the manufacturer to undergo scheduled periodic maintenance or replacement based on time-in-service limits (such as flight hours, cycles, and/or the calendar-days). All manufacturer scheduled maintenance instructions should be followed in the interest of achieving the longest and safest service. . . .

Product Registration/Warranty and Alerts - Laws such as the Consumer Product Safety Act (CPSA), 5 U.S.C. §§ 2051−2089, available at https://www.law.cornell.edu/uscode/text/15/chapter-47), provide for product registration by consumers and notification in the event of a product recall or safety alert. However, the CPSA expressly excludes “aircraft, aircraft engines, propellers, or appliances (as defined in section 101 of the Federal Aviation Act of 1958, section 40102(a) of title 49),” CPSA § 2052(A)(5)(F). Also, aircraft are not considered consumer products under the Magnuson-Moss Warranty Act, 15 U.S.C. § 2301, et seq. (available at https://www.law.cornell.edu/uscode/text/15/2301), a policy formulated on the premise that “no appreciable portion of new aircraft are sold to consumers, for personal, household or family purposes.” Modification of Implementation and Enforcement Policy, 41 Fed. Reg. 26,757 (1976). Given the dramatic proliferation of sUAS, and their substantial application for personal, household and family use, this policy should be reconsidered. Or, the FAA could qualify its definition for an “aircraft”, providing that sUAS weighing less than a weight threshold for registration would no longer be considered aircraft, thereby (presumably) invoking the CPSA.

Importantly, many sUAS do not undergo formal airworthiness certification, and thus may not benefit from direct notification of Airworthiness Directives (ADs) (14 C.F.R. Part 39, https://www.ecfr.gov/cgi-bin/retrieveECFR?n=pt14.1.39), and particularly by Emergency ADs. See https://www.faa.gov/aircraft/air_cert/continued_operation/ad/type_pub/type_emerg/. See UASPC, nn. 120 and 229 (airworthiness).

In sum, most UAS are neither subject to Airworthiness Directives, nor subject to product recall under the Consumer Product Safety Act. Thus UAS owners and operators should maintain a direct relationship with sUAS and component manufacturers and dealers by: (1) signing-up for product announcements on their websites, (2) configuring and updating sUAS apps, and (3) submitting product registration cards (and any updates to reflect change of address).

Navigation Database Discrepancy Reporting - Recognize that navigation and other database discrepancies may warrant reporting. The FAA encourages submission of charting error reports regarding

89 Communication of safety issues should be directed by law, an organization’s procedures, applicable SOPs and guidelines, and undertaken such that there is confidence of their communication to the intended recipient.

91 C2 Link Loss and Latency - Lost link involves two failures: a control link failure, followed by the unmanned aircraft’s failure to follow its lost link programming. These are unpredictable, potentially hazardous, and outside current certification thinking. Even lost links that follow their profiles represent autonomous operations until re-captured or terminated, and those are prohibited because of the inherent risk associated with them. Pilots should read and understand manufacturer’s documentation addressing lost link functionality, and that lost link protocols may vary greatly among each aircraft and operation. Such familiarity should include understanding any redundancy, timing/latency in lost link initiation, annunciations of lost link and lost link protocols, how the aircraft is programmed to function upon lost link, and how/whether to modify lost link factory settings. See R. Jay Shively, NASA Ames Research Center, et al., Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS), ICAO, Remotely Piloted Aircraft Systems Panel (RPASP), Second Mtg. (RPASP/2), Montréal, Human performance considerations for Remotely Piloted Aircraft Systems (RPAS) (June 15-19, 2015), § 2.4, p. 43-47, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150011435.pdf (addressing C2 latency and its human factors affects).
Recognize that C2 latency may diminish RP ability to respond timely to DAA alerts where such response requires RP inputs; and understand all surveillance system error and bias. Id., § 2.5, pp. 53-54. Additionally, RP SOPs should define the criteria triggering link loss protocol. See Unmanned Systems Canada, Small Remotely Piloted Aircraft System (RPAS) Best Practices for BVLOS Operations, v.1.1, § 4.7.2.1(3), p. 28 (Feb. 16, 2017), https://www.unmannedsystems.ca/download-usc-small-rpas-best-practices-document/ (“Unless otherwise authorized, alternative contingency planning measures must allow for safe termination of the flight under any circumstances during all phases of flight.”) (emphasis added). Id., § 4.7.2.3.5 (Lost link procedures when flying VFR in uncontrolled airspace include: executing lost link procedure, remaining in VMC and uncontrolled airspace, advising ATC as soon as possible, squawking appropriate lost link code if transponder equipped, where practicable broadcasting location and intent in plain language at regular intervals to advise local traffic, and landing as soon as practicable at nearest safe suitable site.). See UASPC, n.66 (regarding emergency reporting).

C2 Link Security - Consider “the security of the C2 link against hacking, spoofing and other forms of interference or malicious hijack, as well as unintentional interference. Mitigations must be implemented to prevent the C2 link from connecting the RPS [Remote Pilot Station] to an unintended RPA [Remotely Piloted Aircraft] or vice versa.” ICAO, Manual on RPAS, § 4.5.5. See UASPC, § IV. Security and Privacy (addressing C2 security).

Drafting Considerations: The UASPC contains a number of principles and SRPs that could have been placed in sections other than where they appear. For example, this SRP relating to learning lost control link and other automation failure procedures could have been placed in Section III. Training and Proficiency, or in Section VI. Use of Technology. The Drafting Team recognized that there would be overlap of subject matter across the UASPC’s sections and resolved questions of placement on the basis of context and intended meaning.

92 See ICAO, Manual on RPAS, § 4.3 Governing Principles, 4.3.1 d) (“the remote PIC is expected to have continuous control over the RPA under normal operating conditions.”); FAA, Order JO 7110.65X, § 5-2-9, Unmanned Aircraft Systems (UAS) Lost Link (Oct. 12, 2017), available at https://www.faa.gov/documentlibrary/media/Order/OJO_7110_65X_Air_Traffic_Control.pdf. For larger (and some small) UAS, understand “lost link route of flight, lost link orbit points, lost link altitudes, communications procedures and pre-planned flight termination points if the event recovery of the UAS is deemed unfeasible.”); and FAA, ORDER 8900.1 CHG 468, Ch. 16-4-8-7, Contingency Planning, http://fsims.faa.gov/PICDetail.aspx?docId=8900.1,Vol.16,Ch4,Sec8 (addressing risk mitigation and lost link procedures).

93 See ASTM Int’l, F3005 Specification for Batteries for Use in Small Unmanned Aircraft Systems (sUAS), available (fee) at https://www.astm.org/search/fullsite-search.html?query=f3005& (re discharge, § 8.1.3 Storage, requiring “charge [] / discharge [] to a level that is optimal for storage based on the particular chemistry . . . stored at approximately one-half capacity or at the supplier-specified charge level for long term storage any time a pack is out of service for more than one month”); and UASPC, § V. Environmental Issues (environmental considerations regarding batteries). See also n.175 (addressing batteries), and UASPC, § V.c (addressing hazards and special handling procedures for batteries and other fuels).

94 See 14 C.F.R. § 107.19(c) (“The remote pilot in command must ensure that the small unmanned aircraft will pose no undue hazard to other people, other aircraft, or other property . . .”); Parimal Kopardekar, et al., Unmanned Aircraft System Traffic Management (UTM) Concept of Operations, p. 3 (June 2016), https://utm.arc.nasa.gov/docs/Kopardekar_2016-3292_ATIO.pdf (“The biggest risk is to people and assets on the ground and to manned aviation . . .”); Gerardo Olivares, et al., ASSURE, Volume III—UAS Airborne...
Drafting Consideration: The term “surface” is adopted rather than “ground” to include both bodies of water as well as solid land. See, e.g., 14 C.F.R. § 91.119(a) (addressing “hazard to persons or property on the surface”).

See 14 C.F.R. § 107.37, Operation near aircraft; right-of-way rules (“(a) Each small unmanned aircraft must yield the right of way to all aircraft, airborne vehicles, and launch and reentry vehicles. Yielding the right of way means that the small unmanned aircraft must give way to the aircraft or vehicle and may not pass over, under, or ahead of it unless well clear.”); 14 C.F.R. § 91.113(b) (general right-of-way rule); and FAA, Advisory Circular, AC 107-2, Subj. Small Unmanned Aircraft Systems (sUAS), § 5.8.1 (June 21, 2016), https://www.faa.gov/ufs/media/AC_107-2_AFS_1_Signed.pdf (“the remote PIC must yield right-of-way to all other aircraft, including aircraft operating on the surface of the airport.”).

Drafting Consideration: This SRP is relevant even when operations over people are not anticipated. Recognize that operations over people generally require explicit approval.

Understand that use of UAS non-manufacturer aftermarket devices may void warranties, potentially create unacceptable safety risks, or possibly lead to an accident.

Drafting Considerations: This SRP is relevant even when operations over people are not anticipated. Recognize that operations over people generally require explicit approval.

Jason Maddocks, et al., Avian, Colo. Ag. Avi. Ass’n, p. 1 (2015) available (upon request) at http://coagav.org/ (During the subject experiment “all pilots were easily able to see the prototype ground crew markings.” Pilots were less likely to see the actual drone in flight and more likely to see the crew or high-visibility markers indicating UAS operations were being conducted). See FAA, InFo 17018, Subj. Use of Reflective Vests by Small Unmanned Aircraft Systems (sUAS) Remote Pilots (Nov. 27, 2017), https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/info/all_infos/media/2017/inFO17018.pdf (urging use of reflective vests with suggested warning against distracting pilot, e.g., “Drone Pilot Please Do Not Disturb” or “Drone Pilot Stand Clear”).
Insurance - Although not included in 14 C.F.R. Part 107, commentators to the proposed sUAS Rule (NPRM for Part 107) urged an insurance requirement because: “(1) other countries require liability insurance for small UAS operations; (2) liability insurance would incentivize safe operations and encourage operators to keep pace with technological developments; and (3) small UAS operations are analogous to automobile operations, which require liability insurance.” FAA, Operation and Certification of Small Unmanned Aircraft Systems, Final Rule, K. Misc. Provisions, 1. Mandatory Insurance, p. 497, available at https://www.faa.gov/ufs/media/RIN_2120-AJ60_Clean_Signed.pdf. See NBAA, Integrated Operational Management and Oversight for sUAS (May 13, 2016), https://www.nbaa.org/ops/rias/integrated-operational-management-and-oversight-for-suas/NBAA-Resource-Integrated-Operational-Management-and-Oversight-for-sUAS.pdf (suggesting aviation liability coverage of at least $2 million per occurrence, and professional liability/errors and omissions insurance with limits of at least $1 million for each claim or wrongful act). Cf., AMA, 2017 Insurance Summary, https://www.modelaircraft.org/files/insurancesummarymembers.pdf (providing per occurrence coverage for members of “$2,500,000 involving bodily injury and/or property damage”). Separately, where indicated, urge [potential] customers to obtain non-owned UAS coverage in excess of the operator’s coverage limits.

Recognize your legal and ethical obligations to avoid injuring others and their property.

Drafting Considerations: The Drafting Team adopted the term “proficiency” over prescribed specific recurrency or recency requirements, acknowledging that proficiency is highly individualistic and encompasses elements of both recent experience and recurrent training and practice. See ICAO, Manual on RPAS, § 6.9.8 (training programme “should include: knowledge and skills related to the RPA operational procedures for the intended area of operations . . . remote flight crew coordination . . . abnormal and emergency situations . . . methods to maintain situational awareness . . . human performance
aspects [re CRM], threat and error management (TEM), and automation or human-machine interface (HMI) which are unique to unmanned aviation.”); R. Jay Shively, NASA Ames Research Center, et al., Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS), Report of the ICAO, Remotely Piloted Aircraft Systems Panel (RPASP), Second Mtg. (RPASP/2), Montréal (June 15-19, 2015), § 2.1.6, p. 13, available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150011435.pdf (“Retention of knowledge and skills is dependent on the level of expertise of the pilot when they are first developed, the frequency at which they are used in daily activities, the importance that is placed on retention during the training process, and other factors.”).

107 “Minimum requirements” that meet or exceed applicable law may be fashioned via private organization SOPs or other non-regulatory instrument. Minimum requirements are presented in 14 C.F.R. Parts 91, 101, 107, and elsewhere. See e.g., nn.8, 20, 115 & 122, and corresponding text (addressing minimum requirements and the ACS).

108 See UASPC, n.103 (operations manuals).

109 Securing payloads includes ensuring slung or towed payloads do not adversely affect unmanned aircraft control or flight stability, and are not susceptible to unintended payload release. Payloads should also create no unsafe electromagnetic radiation. See UASPC, n.34 (addressing hazardous payloads).

110 Placards provide necessary information to aid in the safe operation of UAS. See, e.g., ASTM Int’l, Committee F38, https://www.astm.org/COMMITTEE/F38.htm (developing standards assuring that placards are prominently available to the UAS pilot).

111 Some unmanned aircraft are equipped with orientation or system status lighting. For example, DJI platforms are equipped with front LED lights that provide the remote pilot with flight orientation information, and aft color-coded aircraft status lights indicating system status, operational limitations, or malfunctions. Users can reference the meaning of various lighting colors and flash patterns in the manufacturer’s UAS user manual.

Some sUAS may utilize position lighting modeled after manned aircraft. If seeking issuance of a special airworthiness certificate in the experimental category, UAS operators must present evidence of aircraft visibility acceptable for integration in the NAS. This may include high visibility paint, anti-collision lighting, or position lighting. See FAA, Order 8130.34D, App. D, Airworthiness Certification for Unmanned Aircraft Systems and Optionally Piloted Aircraft (9/8/2017), available at https://www.faa.gov/documentLibrary/media/Order/FAA_Order_8130.34D.pdf.

113 See UASPC, n.133 (addressing autonomous aircraft).

Standards in development for the design, construction and verification of various types of UAS recognize the efficacy of emergency training, where the standard requires the UAS to remain controllable, predictable or capable of performing a safe recovery maneuver following certain anomalies. See, e.g., ASTM Int’l, Comm. F38, https://www.astm.org/COMMITTEE/F38.htm.

“Water” may confuse optical or sonar-based stabilization sensors; and “urban areas” are recognized for pockets of poor GPS reception. See UASPC, n.62 (regarding “urban canyons”).

See Academy of Model Aeronautics, Charter Club Search, http://www.modelaircraft.org/clubsearch.aspx (providing a query search by zip code or city/state of available flying sites; and UASPC, § IV, addressing security and privacy issues.

Any simulated mission training for any size and type of UAS is valuable to rehearse and revise procedures and emergency situations. See David C. Ison, et al., Designing Simulation to Meet UAS Training Needs, Int’l Conf. on Human Interface and the Mgt. of Info., Springer-Berlin Heidelberg (2013), https://link.springer.com/chapter/10.1007/978-3-642-39215-3_67 (in part, describing best practices for simulation-based training); and ICAO, Manual on RPAS, § 8.4.38 (applicants for RPAS “license should have appropriate experience flying an RPA in actual or simulated flight”) (emphasis added).

See “Additional Resources” (providing information that includes UAS education).

Such organizations include UAS industry associations, advocacy, and user groups.

Such publications may include but are not limited to: Advisory Circulars, Chart Supplements U.S., and the extensive guidance on UAS provided at FAA, Unmanned Aircraft Systems (UAS) Regulations & Policies, https://www.faa.gov/uas/resources/uas_regulations_policy/.

New UAS models may have different flight or control characteristics and configurations, and automation features that, without familiarization, could adversely affect the safety of flight. See also UASPC, n.111 (differences in aircraft status lighting), and UASPC, n.133 (automation and autonomy).

Such training may also enhance discipline, and improved situational awareness. See, e.g., ACI, Flight Safety in the Drone Age, http://www.secureav.com/Drone-Listings-Page.html (describing challenges and

Autonomous Systems & Ethical Considerations - Autonomous systems increasingly rely on artificial intelligence (AI) or machine learning to give the appearance of intelligence. The algorithms underlying these systems, and the machines’ decisions, are generally opaque to their users—yet the algorithms may raise ethical issues. See U.S. Dep’t of Transp. & Nat’l Highway Traffic Safety Admin., *Federal Automated Vehicles Policy: Accelerating the next Revolution in Roadway Safety*, p. 26 (2016), https://www.transportation.gov/sites/dot.gov/files/docs/AV%20Policy%20Guidance%20PDF.pdf (“Even in instances in which no explicit ethical rule or preference is intended, the programming of a...
116

automated vehicle] may establish an implicit or inherent decision rule with significant ethical consequences.

134 Additional issues deserving of attention in training may include: electrical load management, heat thresholds, controllers, battery performance, RF interference, frequency spectrum challenges, and satellite latency. See generally FAA, Remote Pilot - Small Unmanned Aircraft Systems Study Guide, FAA-G-8082-22 (Aug. 2016), https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/remote_pilot_study_guide.pdf, and JARUS, RPAS “Required C2 Performance” (RLP) concept, Doc. JAR_DEL_WGS-04, § 3.3.1, p. 22, http://jarus-rpas.org/sites/jarus-rpas.org/files/storage/Library-Documents/jar_doc_13_rpl_concept_upgraded.pdf (“[T]he RPAS C2 function is dependent on the C2 system design, including but not limited to transmission protocols, automation levels, message error correction, performance of the flight and ground computers and message criticality prioritization.” And, § 2.1.2, “Poor performance in the communications between the RPIL [Remote Pilot] and the RPA would for example lead to increased separation and reduced airspace capacity to maintain the current safety levels.”). Thus, training and understanding their limitations is essential.

135 See, e.g., Vampire® for Unmanned Air Systems, available at https://www.youtube.com/watch?v=tzEk1k0uvMk (simulation and related UAS training video); and UASPC, n.124 (addressing simulation).

136 See 14 C.F.R. § 107.49(c) (“Ensure that all control links between ground control station and the [SUAS] are working properly.”). Consider that some UAS do communicate cautions and warnings to ground stations. Be attentive to, and proactively and appropriately responsive to such cautions and warnings. See also ICAO, Manual on RPAS, § 13.4.3 (“All warnings and alerts currently provided for manned aircraft should be considered for inclusion in the RPS.”). Implement procedures for real-time monitoring of the control link, and awareness of its quality—and minimum acceptable quality. Many UAS control stations display (at least) signal strength graphically—typically as the corresponding number of “bars”. See Kerry Williamson, et al., FAA Interim Technical Report, Radio Line of Sight (RLOS) Coverage Field Tests with a 900 MHz Antenna (100mW), p. 23 (Feb. 2, 2017), http://www.assureuas.org/projects/deliverables/a2/FAA_Progress_Deliverable_RLOS_Testing.pdf (manufacturer radio specifications under ideal conditions may overestimate the RLOS link distance in real-world conditions; significant link margin (15 dBm or greater) as a closer estimate of a “safe” RLOS coverage area due to complexity / variability of RF signal attenuation at low AGLs; variability of battery life a factor; maintenance critical). Some experienced UAS operators propose a rule-of-thumb for signal strength: links should be capable of a reliable signal over a minimum range equivalent to twice the visible distance of the aircraft for VLOS operation.
Both UAS and manned aircraft pilots take responsibility for safety of the NAS.

Drafting Considerations: The Drafting Team sought to avoid the principle from being misinterpreted to mean that if the UAS operator observes anything suspicious or illegal via the UAS sensors, the UAS operator should report it. That is, the provision and associated SRPs do not imply "deputizing" UAS operators to report illegal activities based on their UAS feed monitoring or otherwise impinging on privacy rights. Instead, the intent is to cover activities that tend to threaten aviation safety. For example, if a UAS pilot becomes aware of someone pointing lasers at aircraft, or maliciously using an aviation transceiver, or other activities that may compromise the safety of the NAS, it should be reported immediately.

The **UASPC** embraces immutable elements of the proposed FAA Reauthorization Act of 2017, particularly:

> It is the policy of the United States that the operation of any unmanned aircraft or unmanned aircraft system shall be carried out in a manner that respects and protects personal privacy consistent with the United States Constitution and Federal, State, and local law.

UAS operators should take measures to manage security risks of covered data by implementing a program that contains reasonable administrative, technical, and physical safeguards appropriate to the operator’s size and complexity, the nature and scope of its activities, and the sensitivity of the covered data.

Examples of appropriate administrative, technical, and physical safeguards include those described in guidance from the Federal Trade Commission, the National Institute of Standards and Technology (NIST) Cybersecurity Framework, https://www.nist.gov/cyberframework, and the International Organization for Standardization’s 27001 standard for information security management, https://www.iso.org/isoiec-27001-information-security.html.

For example, UAS operators engaging in commercial activity should consider taking the following actions to secure covered data:

- Having a written security policy with respect to the collection, use, storage, and dissemination of covered data appropriate to the size and complexity of the operator and the sensitivity of the data collected and retained.
- Making a reasonable effort to regularly monitor systems for breach and data security risks.
- Making a reasonable effort to provide security training to employees with access to covered data.
- Making a reasonable effort to permit only authorized individuals to access covered data.
UAS Pilots Code – Annotated Version 1.0

As a practical matter, information security of UAS as IoT endpoints is largely the realm of equipment manufacturers and possibly network operators as more begin to use mobile networks for C2 and/or payload communications. From the remote pilot’s perspective, any kind of attack that renders the UAV unresponsive is the same as a lost link condition. Nonetheless, UAS pilots and operators should become aware of the attendant security threats to inform their overall flight risk decisions and mitigation strategies.

139 *Special Use Airspace* (SUA) is a subset of *Special Activity Airspace* (SAA), defined as “[a]ny airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations. . . .” Cf., SUA is defined as “[a]irspace of defined dimensions identified by an area on the surface of the earth wherein activities must be confined because of their nature and/or wherein limitations may be imposed upon aircraft operations that are not a part of those activities . . .” FAA, *Pilot/Controller Glossary* (Aug. 25, 2011), http://tfmlearning.faa.gov/Publications/atpubs/PCG/S.HTML (defining SUA).

140 ICAO, *Manual on RPAS*, § 9.11.1 (“Security is a vital issue for [RPAS]”).

143 There is an impetus to restrict UAS pilot access to certain safety and security features, such as those designed to limit unmanned aircraft to within line of sight and “return to home” functions. See UAS-ID ARC, *ARC Recommendations, Final Report*, p. 3 (dated Sept. 30, 2017, released Dec. 19, 2017). Additionally, many sUAS make use of a smartphone or tablet device, certain settings of which may adversely affect flight operations. Pilots should consider disabling screen auto-lock, and setting the device to airplane mode to avoid receiving phone or text messages on the device, which may interrupt critical flight operations or impede C2. Consult your UAS user guide, operating handbook or manual for additional information.

144 Some practical pilot actions may include, but are not limited to contacting and introducing yourself to nearby people to explain the intended mission, dressing professionally, carrying/wearing credentials,
posting signage near the intended mission, and presenting a postcard with the pilots (or, where applicable, operators) credentials and mission description.

Drafting Consideration: The Drafting Team sought to recommend practices that would not unreasonably constrain the legal rights and scope of legitimate UAS operations. “[A]voiding even the appearance of a security threat,” although a subjective determination, is intended to yield the most prudent course of action.

145 **Counter-UAS** - “The Small Unmanned Aircraft System (sUAS) is a disruptive commercial technology that poses a unique and currently undefined threat to U.S. national security. Although, as with any new technology, the parameters of the capabilities regarding military uses have yet to be fully discovered, recent events highlight the potential danger. . . . To effectively counter sUASs it will be necessary to refine and practice procedures and doctrine, while developing the capability to effectively detect, track, and positively identify the threat.” Anthony Tingle & David Tyree, *The Rise of the Commercial Threat:Countering the Small Unmanned Aircraft System*, JFQ 85 2nd Ed., pp. 30-31 (2nd Qtr 2017), available at http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-85/jfq-85-30-35_Tingle-Tyree.pdf.

Perceived Threats Precipitating Shoot-downs - The perceived threats by the public extend from privacy (see below) to the existential, perhaps exacerbated by widespread media focus on weaponized UAS. See, e.g., U.S. Dep’t of Homeland Security (DHS), *National Terrorism Advisory System Bulletin* (Nov. 9, 2017), https://www.dhs.gov/ntas/advisory/ntas_17_1109_0001 (“Some terrorist groups overseas are using battlefield experiences to pursue new technologies and tactics, such as unmanned aerial systems and chemical agents that could be used outside the conflict zones.”).

(d) RESTORATION OF RULES FOR REGISTRATION AND MARKING OF UNMANNED AIRCRAFT.—The rules adopted by the Administrator of the Federal Aviation Administration in the matter of registration and marking requirements for small unmanned aircraft (FAA-2015-7396; published on December 16, 2015) that were vacated by the United States Court of Appeals for the District of Columbia Circuit in *Taylor v. Huerta* (No. 15-1495), [dec. May 19, 2017, available at](https://scholar.google.com/scholar_case?case=15932350315687343901&hl=en&as_sdt=2006) shall be restored to effect on the date of enactment of this Act.

The following highlights a few proposals by industry, government, and NGOs that may contribute to effective UAS registration infrastructure and practices, and also interface and support identification, authorization and other security services addressed in UASPC, nn.146-7. See UAS-ID ARC Final Report, https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/UAS%20ID%20ARC%20Final%20Report%20with%20Appendices.pdf.

Domain Name System (DNS) - The Domain Name System (DNS), the internet’s hierarchical, decentralized naming system may in part enable UAS registration (in coordination with the ICAO registry initiative), recognizing the DNS’ extensible, scalable, and ubiquitous nature. See Hillman Mitchell Pres., Critical Infrastructure Cyber Security Consultants, Presentation at ICAO, DRONE ENABLE 2017, Cyber Threats: Initiatives to assist industry in building resilient system (Sept. 22, 2017), https://www.youtube.com/watch?v=TIJJbaqsPyc (“We think the addressable entities within aviation in the future need to actually be scaled . . . up to 10 billion entities.” emphasis added. Identifying namespace conventions and schemes are essential to a UAS ecosystem.). See also ICANN, Global UAS Registry initiative, https://www.icann.org/resources/pages/registries/registries-en; and IoT, Air: The Next Frontier for the IoT (Oct. 7, 2016), available at https://ipv6.net/news/air-the-next-frontier-for-the-iot/; and UASPC, n.138 (regarding IoT).

Legacy Services - Various traditional manned aviation service providers have proposed using aviation-centric databases and related capabilities to support UAS registration.

147 Identification, Tracking, and Authorization - The remote identification, tracking, and authorization (for specific privileges such as entry to particular airspace) requires use of diverse technologies. The choice of such technologies may impact flight safety, cost, operational efficiency/effectiveness/ease-of-use, interoperability, mission and equipment, national security, public safety, and technology
UAS Pilots Code –Annotated Version 1.0

availability/readiness. Pilots and operators must have at least a basic understand of the applicable technologies and their associated limitations, recognizing that each may affect flight safety, operations, and efficiency.

https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/UAS%20ID%20ARC%20Final%20Report%20with%20Appendices.pdf. Key recommendations include: “two methods for UAS to provide remote ID and tracking information -- (1) direct broadcast (locally, e.g., ADS-B, Low-Power Direct RF, Unlicensed Integrated C2, and Visual Light Encoding); and (2) network publishing (e.g., Networked Cellular, Satellite, and SW [software]-based Flight Notification w/ Telemetry) to an FAA-approved internet-based database,” UAS-ID Final Report, § 6.2, p. 33; “a tiered approach” to direct broadcast and network publishing requirements, UAS-ID Final Report, § 6.3, p. 35; and minimum data requirements, UAS-ID Final Report, § 6.5, p. 39. The ARC’s recommendations did not include a third option (or means) that would have provided for proven, developed, or designed systems fitting safely into the existing or a future version of an ATM framework.

There is an expectation for robust interoperability of an ID and tracking system with ATC. UAS-ID Final Report, § 6.6, p. 44. And yet, there may be limitations on interoperability with ATC that may not fit the autonomous UTM framework. To this extent, perhaps UAS flight operations should remain entirely invisible to ATC.

A schema to manage personally identifiable information is also proposed. UAS-ID Final Report, § 7.1, p. 46. And, it was recognized that “it is important to protect the privacy of UAS owners and operators,” UAS-ID Final Report, § 6.5.3, p. 41; and recommending three levels of data access, UAS-ID Final Report, § 7.1.

The UAS-ID Final Report states that the committee failed to reach consensus on certain ID and tracking threshold requirements, such as exemptions for model aircraft users. UAS-ID Final Report, § 5.2.3, pp. 29-30. See, e.g., The Comm. Drone Alliance, The Comm. Drone Alliance Dissents from the Key Recommendations of the UAS ID and Tracking Aviation Rulemaking Committee (Dec. 19, 2017),

Another “direct broadcast” technology facilitating network publishing is Automatic Dependent Surveillance Broadcast (ADS-B) that uses GPS signals and aircraft avionics to transmit aircraft location to ATC and aircraft receivers to support aircraft separation and traffic flow mgt. FAA, Fact Sheet—Automatic Dependent Surveillance-Broadcast (ADS-B), https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=7131; and FAA, ORDER 8200.85, Subj: Automatic Dependent Surveillance-Broadcast (ADS-B) Flight Inspection (Oct. 19,
UAS Pilots Code –Annotated Version 1.0

The UAS-ID Final Report’s discussion of “Network publishing (to an FAA-approved internet-based database)”, and, among other recommendations, urges that the “FAA should leverage internet-based database infrastructure that exists or that is already under development and that could integrate with the FAA’s future UTM roadmap . . . [and] could result in the rapid deployment of internet-based database publishing capability by leveraging technologies that already exist.” Different or competing technologies could coexist so long as they could be published “to an API” and satisfy “the internet-based database publishing requirement.” UAS-ID ARC Final Report, § 6.2.2, p. 34.

148 See 49 C.F.R. § 171.8, available at https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec171-8.pdf (defining hazardous material as “a substance or material [including] hazardous substances, hazardous wastes, marine pollutants, elevated temperature materials, materials designated as hazardous in the Hazardous Materials Table (see 49 CFR 172.101) . . . “); and 14 C.F.R. § 107.36, Carriage of hazardous materials (prohibiting the carriage of certain agricultural materials, such as pesticides or other products by small unmanned aircraft systems). This provision is not eligible for waiver under 14 C.F.R. § 107.205, List of regulations subject to waiver. 49 C.F.R. § 171.8, Hazardous material means a substance or material that the Secretary of Transportation has determined is capable of posing an unreasonable risk to
health, safety, and property when transported in commerce, and has designated as hazardous under section 5103 of Federal hazardous materials transportation law (49 U.S.C. § 5103).

149 See, e.g., ASTM Int'l, F3201, Standard Practice for Ensuring Dependability of Software Used in Unmanned Aircraft Systems (UAS), available (fee) at https://www.astm.org/COMMITTEE/F38.htm; RTCA SC-228, Minimum Operational Performance Standards for Unmanned Aircraft Systems, available (fee) at www.rtca.org; and JARUS, RPAS “Required C2 Performance” (RLP) concept, Doc JAR_DEL_WG5_D.04, § 2.1.2 (Jan. 5, 2016), http://jarus-rpas.org/sites/jarus-rpas.org/files/storage/Library-Documents/jar_doc_13_rpl_concept_upgraded.pdf (“Poor performance in the communications between the RPIL [Remote Pilot not co-located] and the RPA would for example lead to increased separation and reduced airspace capacity to maintain the current safety levels.”); and presenting possible safety requirements, including time stamping. Table B-4 Safety reqs., pp. 45-46). See also Richard M. Lusk, et al., An Early Survey of Best Practices for the Use of Small Unmanned Aerial Systems by the Electric Utility Industry, § 4.3.5 (asserting power line inspection industry best practices to “Encrypt Aircraft Control Signal Frequencies” and “Encrypt Datalink Frequencies”); and UASPC, n.147 (introducing PKI).

150 Such requirements may derive from, among other sources, UAS operator / enterprise-client contract, regulation, standards, and industry best practices. See ICAO, Manual on RPAS, § 6.4.7 (“When contracting or purchasing service as part of its activity . . . ensure that such services or products conform to the applicable requirements.”). Security assurances extend to safety-critical service providers. See JARUS, JARUS OPS, Recommendations for Unmanned Aircraft Systems (UAS), Operations for Category A and B, JAR_DEL_WG2_D.03, Art. 10.—Safety-critical services, ¶ 1 (Oct. 7, 2017), available at http://apant.pt/wp-content/uploads/2017/10/jar_doc_14_draft_d3_ops_cat_a_extcons_251017.pdf (“The provider of any safety-critical services is responsible for the accuracy and integrity of the provided information and data, and for the quality of the services.”).

152 Public agencies, operators with a Certificate of Authorization or Special Government Interest Addendum, or private commercial operators may issue NOTAMs to advise pilots of their activities. For NOTAMs defining
UAS operating areas (UOAs), see www.1800wxbrief.com; and may also be referred to as “DROTAMS”. See Gen. Aviation News (Mar. 21, 2016), https://generalaviationnews.com/2016/03/21/skyvector-adds-realism-to-drone-movie-adds-drotams/ (introducing DROTAMS).

153 See 14 C.F.R. § 107.47, Flight restrictions in the proximity of certain areas designated by notice to airmen (requiring compliance with: 14 C.F.R. §§ 91.137 Temporary flight restrictions in the vicinity of disaster/hazard areas, 91.138 Temporary flight restrictions in national disaster areas in the State of Hawaii, 91.139 Emergency air traffic rules, 91.141 Flight restrictions in the proximity of the Presidential and other parties, 91.143 Flight limitation in the proximity of space flight operations, 91.144 Temporary restriction on flight operations during abnormally high barometric pressure conditions, and 91.145 Management of aircraft operations in the vicinity of aerial demonstrations and major sporting events); and UASPC, n.139 (addressing Special Activity Airspace).

Trespass to Land - “One is subject to liability to another for trespass, irrespective of whether he thereby causes harm to any legally protected interest of the other, if he intentionally (a) enters land in the possession of the other, or causes a thing or a third person to do so, or (b) remains on the land, or (c) fails to remove from the land a thing which he is under a duty to remove.” Restatement (Third) of Torts § 158 (2013).

Aerial Trespass - “Flight by an aircraft in the air space above the land of another is trespass if [the aircraft] enters the immediate reaches of the air space next to the land, and (1) [it] interferes substantially with the other’s use and enjoyment of the land.” Restatement (Second) of Torts § 159(2). Unlike in surface land cases where “two-dimensional surface boundary lines are usually perfectly clear [t]he analysis is far less straightforward in the murky realm of aerial trespass because the upper boundaries of landowners’ airspace rights are largely undefined [a]nd courts must engage in subjective and unpredictable inquiries into whether the alleged aerial intrusion penetrated the amorphous ‘immediate reaches’ of the plaintiff’s airspace and whether such intrusion substantially interfered with the plaintiff’s ‘use’ of her land.” Troy A. Rule, Airspace in an Age of Drones, B.U. L. Rev. vol. 95, pp. 155, 170 (2015), http://www.bu.edu/bulawreview/files/2015/02/RULE.pdf; and Hillary B. Farber, Keep Out! The Efficacy of Trespass, Nuisance and Privacy Torts as Applied to Drones, 33 Ga. St. U. L. Rev. 359 (2017), available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2852083.

Private Nuisance - “One is subject to liability for a private nuisance if, but only if, his conduct is a legal cause of an invasion of another’s interest in the private use and enjoyment of land, and the invasion is either (a) intentional and unreasonable, or (b) unintentional and otherwise actionable under the rules controlling liability for negligent or reckless conduct, or for abnormally dangerous conditions or activities.” Restatement (Third) of Torts (2013), § 822, General Rule.

Intrusion Upon Seclusion - “One who intentionally intrudes, physically or otherwise, upon the solitude or seclusion of another or his private affairs or concerns, is subject to liability to the other for invasion of his privacy, if the intrusion would be highly offensive to a reasonable person.” Restatement (Third) Torts, § 652B, available at https://cyber.harvard.edu/privacy/Privacy_R2d_Torts_Sections.htm. Such invasion may be physical or by “use of the defendant’s senses, with or without mechanical aids, to oversee or overhear the plaintiff’s private affairs.” Id., Comments b.

See Troy A. Rule, Airspace in the age of drones, 95 B.U. L. Rev. vol. 95, p. 155 (2015), http://www.bu.edu/bulawreview/files/2015/02/RULE.pdf (There is unavoidable tension between the permissible scope of available airspace and the low-altitude rights of landowners—such rights are not yet clearly defined.). A uniform law is under development that might provide a measured, incremental extension of traditional trespass law addressing low altitude flight (most likely at or below 200 AGL) by the Nat’l Conf. of Comm. on Uniform State Laws (NCCUSL), http://www.uniformlaws.org/.
160 See FAA, ORDER JO 7110.65x, Subj. Air Traffic Control (Oct. 12, 2017), https://www.faa.gov/documentLibrary/media/Order/JO_7110.65X_Air_Traffic_Control.pdf (§ 2−1−21, TRAFFIC ADVISORIES: describing general reporting instructions for ATC; and § 2−1−22, UNMANNED AIRCRAFT SYSTEM (UAS) ACTIVITY INFORMATION for ATC: “Issue UAS advisory information for known UAS activity, when in your judgment their proximity warrants it. If known, include position, distance, course, type of unmanned aircraft (UA), and altitude. . . . b. Issue UAS advisory information for pilot−reported or tower−observed activity, when in your judgment, their proximity warrants it. If known, include position, altitude, course, and type. Continue to issue advisories to potentially impacted aircraft for at least 15 minutes following the last report. . . .”); and FAA, Flight Service, https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/fs/ (describing mission, services and use).

161 See FAA, AIM, Pilot/Controller Glossary, Special Activity Airspace, http://www.faraim.org/aim/aim-705.html (“Any airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations.”).

surveillance with a device not in general public use is a Fourth Amendment “search”, presumptively unreasonable without a warrant). See also UK, ANO 2016 (CAP 393), § 167, Small unmanned surveillance aircraft, http://www.legislation.gov.uk/uksi/2016/765/contents/made (“... must not fly the aircraft . . . (a) over or within 150 meters of any congested area, (b) over or within 150 meters of an organization open-air assembly of more than 1,000 persons, (c) within 50 meters of any vessel, vehicle or structure which is not under the control of the person in charge of the aircraft, or (d) . . . within 150 meters of any congested areas . . .”); and UK, Dep’t of Transp., Unlocking the UK’s high tech economy: Consultation on the safe use of drones in the UK, p. 21 (2016), https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/579562/consultation-on-the-safe-use-of-drones.pdf (“Whilst the rule was introduced for safety reasons, it also has benefits for privacy.”).

166 Minimizing data capture duration and location may prevent unintended privacy violations and optimize data storage use on the UAS. See UASPC n.167.

167 See Int’l Ass’n of Chiefs of Police, Aviation Comm., Recommended Guidelines for the use of Unmanned Aircraft (Aug. 2012), www.theiacp.org (“IMAGE RETENTION: 1. Unless required as evidence of a crime, as part of an ongoing investigation, for training, or required by law, images captured by a UA should not be retained by the agency. 2. Unless exempt by law, retained images should be open for public inspection.”).

169 See NTIA, Voluntary Best Practices for UAS Privacy, Transparency, and Accountability, § 1(b) (addressing privacy policy and its recommended content).

170 Despite their typically smaller footprint than manned aircraft, UAS’ potential environmental impacts require assessment.

Noise - “To date, there have not been any objective studies published to gain even a coarse view of annoyance due to SUAS noise specifically. Further, it is clear that the noise of these machines does not resemble, qualitatively, the noise of contemporary aircraft. This difference in sound quality introduces an unknown factor into the prediction of the resultant annoyance.” Andrew Christian, et al., NASA Langley Research Center, Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise, Am. Inst. of Aeronautics and Astronautics (2017), available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005870.pdf.

“[T]he FAA is measuring noise of different UAS to help determine an appropriate certification plan.” FAA, Environment and Energy, https://www.faa.gov/nextgen/where_we_are_now/nextgen_update/progress_and_plans/environment/.

Internationally, ICAO’s Committee on Aviation Environmental Protection (CAEP) has investigated “the current state of noise certification for remotely piloted aircraft systems (RPAS) and will continue monitoring certification issues in this fast-growing sector.” ICAO, CAEP, Annual Report (2015), https://www.icao.int/annual-report-2015/Pages/progress-on-icaos-strategic-objectives-safety-environmental-protection-caep.aspx.

One helpful analogy (to UAS noise characteristics) is that presented by helicopters. Helicopter noise research found that helicopters tend to annoy people differently than straight-wing aircraft, both in terms
of frequency and operational characteristics. See HAI, *Fly Neighborly/Noise Abatement Training*, https://www.rotor.org/Operations/FlyNeighborly/NoiseAbatementTrainingCD.aspx. Consider also that UAS will operate in more environments than do manned aircraft since they are not confined to aerodromes—and thus may impact a broader scope of environments that have not been the subject of current research. These differences suggest that in the future, separate UAS requirements or recommendations for noise may deserve consideration, whether via certification, or voluntary industry standards, *e.g.*, ASTM Int’l, Comm. F38, www.astm.org. “The FAA is gathering data for all UAS on which it may base future certification standards At this time, however, the FAA does not believe there is sufficient evidence to warrant such a standard. . . . For similar reasons, the FAA lacks sufficient evidence at this time to justify imposing operating noise limits on small UAS.” Final Rule, Discussion, 81 Fed. Reg. 42,186-7 (June 28, 2016).

The lack of a comprehensive regulatory response reflects the unprecedented/unexpected growth of UAS, a lack of data and modeling, and government personnel resource constraints. Notwithstanding, the FAA’s internal work plan for the next fiscal year anticipates further research and response. The FAA’s primary office on environmental issues is the Environmental Policy and Operations Division, Office of Environment and Energy, Environmental Policy and Operations Division, https://www.faa.gov/about/office_org/headquarters_offices/apl/research/.

171 Among other protected/sensitive areas are national parks. See Sarah Gray, *Drones banned from Yosemite National Park, for negative impact on environment and safety*, Salon.com (May 5, 2014), http://www.salon.com/2014/05/05/drones_banned_from_yosemite_national_park_for_negative_impact_on_environment_and_safety/ (describing Yosemite National Park’s UAS prohibition, citing 36 C.F.R. § 2.17(a)(3), *Resource Protection, Public Use And Recreation, Aircraft And Air Delivery*, and noting an “impact [on] the natural soundscape” and “creating an environment that is not conducive to wilderness travel.”); and NPS, *Policy Memorandum, Unmanned Aircraft-Interim Policy* 14-05 (June 19, 2014),
Drone Noise May Affect Wildlife Studies

UAS Pilots Code – Annotated Version 1.0

https://www.nps.gov/policy/PolMemos/PM_14-05.htm (recognizing “potential to cause unacceptable impacts such as harming visitors, interfering with rescue operations, causing excessive noise, impacting viewsheds, and disturbing wildlife”).

UAS Pilots Code – Annotated Version 1.0

(prohibiting disturbing, agitating or bothering bald or golden eagles—which includes injuring, or interfering with breeding, feeding, sheltering, or leading to nest abandonment, “killing, injuring, inflicting harm, or harassing protected wildlife,” impairing wildlife behavior patterns, or annoying wildlife by disrupting their normal behavior). See also Oceans Unmanned, ECO Initiative, http://oceansunmanned.org/eco-drone/ (Best practices “to advance and encourage Environmentally Conscious Operations of drones to protect and limit disturbances to marine resources.”).

179 Technologies required to make UAS pervasive “are not just in the realm of aeronautics but also information technology, computer science, perception, autonomy ….” Juan J. Alonso, PhD, Prof. of Aeronautics and Astronautics, Stanford U., Testimony before the House Subcomm. on Aviation, Unmanned Aircraft Systems Integration: Emerging Uses in a Changing National Airspace (Nov. 29, 2017), https://transportation.house.gov/calendar/eventsingle.aspx?EventID=402013.

180 See ICAO, Manual on RPAS, §§ 11.4.7-11.4.9 (addressing considerations for redundant C2 link); and UASPC, n.183, (addressing graceful degradation).

181 For example, where applicable, use a transponder with altitude encoding and keep it operable unless otherwise authorized or directed by ATC. Confirm that UAS “ID Settings” are accurately set. 14 C.F.R. § 91.215, ATC transponder and altitude reporting equipment and use.

185 UTM includes recognition of and support for certain VLOS sUAS operations. As such, it contributes to general VLOS (rather than only BVLOS) operational safety. Similarly, selected BVLOS standards and guidelines have informed the UASPC to the extent such standards and guidelines are extensible to VLOS operations. See, e.g., Unmanned Systems Canada, Small RPAS Best Practices for BVLOS, v1.1 (Feb. 16, 2017), https://www.unmannedsystems.ca/download/usc-small-rpas-bvlos-best-practices/.

186 See ICAO, Manual on RPAS, § 11.1.3 (“C2 link should support a range of data link health monitoring functions, including a heartbeat, or positive and negative acknowledgements of messages exchanged in either direction.”); and UASPC, n.72 (addressing preflight).

187 See ICAO, Manual on RPAS, § 11.6.11 (listing possible causes of C2 link loss, including: obstacles, ground clutter, natural (weather) interference, unintentional interference such as by television broadcast, intentional interference such as by jamming, out of range, equipment failure, human error, and aircraft maneuvers), § 11.3.10-11.3.15 (addressing C2 link spectrum protection from interference and available bands), and § 11.3.18 (identifying performance parameters, including: communications transaction time, continuity, availability, and integrity); NOAA, Space Weather Prediction Center, http://www.swpc.noaa.gov/ (indicating impact of solar storms on GPS and radio communications); UASPC, n.196 (addressing GPS interference); and FAA, ORDER 8130.34D, SUBJ. Airworthiness Certification of Unmanned Aircraft Systems and Optionally Piloted Aircraft, p. D-3 (Sept. 8, 2017), available at https://www.faa.gov/documentLibrary/media/Order/FAA_Order_8130.34D.pdf (requiring manufacturer to disclose: “... how the radio signal strength, signal error rate, or similar information is computed and displayed to the pilot. Identify the threshold values that represent a critically degraded signal.”). Also, recognize the possibility of interference between two UAS operating in close proximity. See UASPC, n.207 (address GPS anomaly reporting).

See 47 C.F.R. Part 15, Subpart D—Unlicensed Personal Communications Service Devices, https://www.ecfr.gov/cgi-bin/text-idx?SID=5e2a156ecddf773e7c470324e2b7df7e&mc=true&node=sp47.1.15.d&rgn=div6 (requirements for use of unlicensed spectrum); and Letter to Ricardo Durham, Acting Chief, Spectrum Enforcement Div., FCC, from Christopher D. Imlay, General Counsel, ARRL (Jan. 11, 2017), available at https://tinyurl.com/y9ol3unp (drones illegally transmitting on licensed spectrum, causing interference and “representing a significant hazard to public safety”).

189 See ICAO, Manual on RPAS, §§ 9.4.3, -5 (Impacts on radio frequencies), & § 11.6.24 (C2 link contingency options); Harrison Wolf, Drones: Safety Risk Management for the Next Evolution of Flight, p. 120 (Routledge, 2017) (“Electro-magnetic interference that can cause lost-link procedures when coming close to transformers or towers of different sizes provide a need for policies, procedures, and training that consider such environmental issues.”); and FCC, Accessing Spectrum, https://www.fcc.gov/general/accessing-spectrum (addressing, in part, Licensed Spectrum for Commercial Services). See UASPC, n.207 (address GPS anomaly reporting).

131
A tool is available to predict the performance of WAAS for other GNSS, RTK, especially for airports. It exploits the signal phase outages of the WAAS signal at airports for a particular date. This leads to improved accuracy and reliability of position estimates.

Reference Sites compare, correct, and transmit augmented information to GPS receivers to enhance the accuracy of the navigation system developed for civil aviation covering the NAS. WAAS is a highly accurate navigation system for civil aviation, covering the NAS and employing Real-Time Kinematics (RTK) technology. WAAS is a variant of the Wide Area Augmentation System (WAAS) and is used for civil aviation.

Augmentation System (WAAS) or employing Real-Time Kinematics (RTK) technology. WAAS is a highly accurate navigation system, covering the NAS. Precisely surveyed Wide Area Reference Sites compare, correct, and transmit augmented information to GPS receivers to enhance the accuracy and reliability of position estimates. A tool is available to predict the performance of WAAS, including signal outages, at airports for a particular date.

A localized variant of WAAS for other GNSS, RTK, exploits signal phase-shift rather than only GPS time data.

191 See 14 C.F.R. § 107.49, *Preflight familiarization, inspection, and actions for aircraft operation* (requiring RP to evaluate local weather conditions during preflight assessment and satisfy requirements of 14 C.F.R. § 107.51(c) & (d), addressing flight visibility and distance from clouds, respectively). Particularly for longer-duration missions, weather resources are essential—in addition to complying with applicable regulations. See generally NOAA, *Aviation Weather Center*, https://www.aviationweather.gov/ (comprehensive aviation weather resources); and NOAA, *Helicopter Emergency Medical Services (HEMS)* Tool, https://new.aviationweather.gov/hems (providing low-altitude aviation weather information).

192 See, e.g., *Drone Compiler*, available at https://www.youtube.com/watch?v=3Wz-dBPdxpg&t=4s; Skyward Fleet Management, https://skyward.io/commercial-drone-software/ (UAS planning and compliance tools); and Jonathan Edwards, CEO, Skyward, https://www.youtube.com/watch?v=jvG7MGkcmLg (discussion).

196 GPS Accuracy - GPS-based navigation aid precision can be improved by using the Wide Area Augmentation System (WAAS) or employing Real-Time Kinematics (RTK) technology. WAAS is a highly accurate navigation system, developed for civil aviation covering the NAS. Precisely surveyed Wide Area Reference Sites compare, correct, and transmit augmented information to GPS receivers to enhance the accuracy and reliability of position estimates. A tool is available to predict the performance of WAAS, including signal outages, at airports for a particular date. http://www.nstb.tc.faa.gov/AirportSchedules/. A localized variant of WAAS for other GNSS, RTK, exploits signal phase-shift rather than only GPS time data.

See, e.g., R. J. Stone, et al., *Standard Operating Procedures Small Unmanned Aerial Vehicles (sUAVs) and Small Unmanned Surveillance Vehicle (sUSVs)*, Human Interface Technologies Team School of Electronics, Electrical & Systems Engineering U. of Birmingham, v. 1.2 (Nov. 2014) available at https://www.birmingham.ac.uk/Documents/college-eps/ece/research/bob-stone/sUAV-standard-operating-procedures.pdf ("Propeller guards, if available, should be used at all times."). Also, ASTM Int’l, Comm. F38 is developing a new specification for sUAS parachutes. *See https://www.astm.org/COMMITTEE/F38.htm.*

See UASPC, n.58 (addressing the sterile cockpit and distractions).

"**Complex Functions** are defined as software functions or algorithms that may cause the UAS to operate in a manner that is difficult to predict due to compounded implications from factors such as sensor measurement precision, algorithm complexity, environmental variables, multi-core processing, probabilistic algorithms, fuzzy logic, machine learning, genetic algorithms, resource availability, and aircraft system state. These functions may contain algorithms that are sometimes referred to as ‘autonomous’, ‘non-deterministic’, ‘artificial intelligence’, ‘adaptive’, or ‘intelligent’ algorithms, and there is an industry demand to employ these technologies in UAS. And, an acceptable level of flight safety maintained through use of a ‘run-time assurance (RTA) architecture’. “ *ASTM Int’l, F3269, Standard Practice for Methods to Safety Bound Flight Behavior of Unmanned Aircraft Systems (UAS) Containing Complex Functions*, available (fee) at https://www.astm.org/Standards/F3269.htm?A&utm_source=tracker&utm_campaign=20171005&utm_medium=email&utm_content=standards.

This may include backup or alternative control stations, as well as integrating the functional status of such devices into standard preflight checks. *See Alan Hobbs, PhD., San José State U. Research Found., NASA Ames Research Ctr., Human Factors Guidelines For Remotely Piloted Aircraft System Remote Pilot Stations*,

203 Drafting Considerations: While the UASPC makes primary reference to GPS, the same limitations apply to all Global Navigation Satellite Systems (GNSS), which include GPS, GLONAS, Galileo, Beidou, and other systems. Also, because the term “GPS” is more familiar than “GNSS” to a broader audience, “GPS” is presented throughout the UASPC to represent all GNSS systems. Implementers are free to substitute “GNSS” or specific GNSS systems.

204 Well Clear - The limitations, in part, should be understood in terms of their objectives and parameters to resolve “well clear” requirements. While there are no universally accepted criteria that establish aeronautical standards for “well clear,” pilots are required to adhere to 14 C.F.R. § 91.111 that state “(a) no person may operate an aircraft so close to another aircraft as to create a collision hazard; (b) no person may operate an aircraft in formation flight except by arrangement with the pilot in command of each aircraft in the formation.” Additionally, pilots should consider the potential risk associated with the proximity of operations to other aircraft, which may constitute a violation of 14 C.F.R. § 91.13, Careless or reckless operations: “No person may operate an aircraft in a careless or reckless manner so as to endanger the life or property of another.” Finally, specific guidance regarding UAS operations is contained in 14 C.F.R. Part 107, which states, “No person may operate a small unmanned aircraft in a manner that interferes with operations and traffic patterns at any airport, heliport, or seaplane base. Additional guidance is available in FAA, Order 7110.65X, Air Traffic Control (Oct. 12, 2017), https://www.faa.gov/documentLibrary/media/Order/JO_7110.65X_Air_Traffic_Control.pdf (defining minimally acceptable vertical and lateral separation distance between aircraft).

Right-of-way protocols should also be understood. See 14 C.F.R. § 91.113(b); “General When a rule of this section gives another aircraft the right-of-way, the pilot shall give way to that aircraft and may not pass
over, under, or ahead of it unless well clear.” (emphasis added) And, 14 C.F.R. § 91.181(b): “On any other route . . . this section does not prohibit maneuvering the aircraft to pass well clear of other air traffic . . . “ (emphasis added); Andrew Weinert, et al., A Well Clear Recommendation for Small Unmanned - Aircraft Systems based on Unmitigated Collision Risk, Lincoln Lab (2016) (copy on file with Drafting team); Dallas Brooks, et al., UAS Excom, Science and Research Panel (SARP) Update, Presentation at AUVSI, XPONENTIAL (April 2017) (recommending 2000’ horizontal, and 250’ vertical distance for safe separation between sUAS and manned aircraft).

205 See generally ACI, Commentary to AMCC VII.e., Promote Ethical Behavior within the GA Community (Mar. 16, 2006), http://www.secureav.com/Commentary-AMCC-VII-e-Ethics.pdf; and Ass’n of Remotely Piloted Aircraft Systems UK, Code of Conduct, https://www.arpas.uk/mem-code-of-conduct/ (“As an industry, it is incumbent upon us to hold ourselves and each other to a high professional and ethical standard.”). See also, Email from Parimal Kopardekal (“PK”), Sr. Tech. Air Transport, NASA (Jan 17, 2018) (“The overall theme [of the UASPC] could be “share and care” share information about your intent and care about safety all airspace users and assets on the ground.”). See ACI, Recent Developments, http://www.secureav.com/newdevelopments.html (presenting, in part, noteworthy code of conduct implementations).

206 See AUVSI, Code of Conduct, http://www.auvsi.org/code-conduct (“We will respect the rights of other users of the airspace.”).

Brooks?utm_source=drone&utm_medium=email&utm_campaign=170613drone (urging participation in local unmanned clubs):

What you lose [in online communities], however, is the discipline—you can take the information you want without caveats, without conditions, and apply it instantly. Sometimes that makes it easy for people to do irresponsible things. Not because they are irresponsible people, but because they could get to the information on how to do something without having to truly understand the context and the consequences of what they are doing. . . .

[Y]ou don’t have to be a manned pilot to understand and embrace a safety culture. We all share the same sky, and we must all consider the impact of what we do on everyone. That’s what a community does—they look out for one another.

See Additional Resources (for a nonexclusive list of recognized UAS associations).

210 Facility Map errors can be submitted to the FAA at: 9-AJV-115-EmergTech@faa.gov.

211 FAA, FAA Safety Team (FAA Team), www/faasafety.gov/about/mission.aspx.

See ICAO, RPAS Toolkit, https://www4.icao.int/uastoolkit/Home/UAS2. See Mike Lissone, UAS ATM Integration Manager, Eurocontrol, Presentation at ICAO, RPAS2017 (Sept. 17, 2017) (observing that “18 of 19 ICAO Annexes are affected [by UAS]”).

ISO, TC 20/WG 16, https://www.iso.org/committee/5336224.html (“Standardization in the field of unmanned aircraft systems (UAS) including, but not limited to, classification, design, manufacture, operation (including maintenance) and safety management of UAS operations.”).

Source documents for this appendix include, but are not limited to:

- ASTM Int’l, Committee F38, https://www.astm.org/COMMITTEE/F38.htm,
- FAA, 14 C.F.R. Part 107,

JARUS, SORA, Annex I Glossary of Terms.

14 C.F.R. § 1.1, General definitions.

14 C.F.R. § 1.1, General definitions.

14 C.F.R. § 1.1, General definitions.

JARUS-SORA.

Small UAS - Noncertificated - See FAA, FSIMS 8900.1, Vol. 16, Unmanned Aircraft Systems, § 2(A), Definitions (“The FAA has determined that small Unmanned Aircraft Systems (sUAS) (less than 55 lbs.) will not be required to obtain airworthiness certification if satisfying the regulatory requirements of part 107.
However, in the absence of an airworthiness certification process, the FAA was still required to establish maintenance and inspection criteria that support safe operations. In establishing these criteria the FAA took into consideration the significantly reduced risk posed by sUAS operations as compared to that of typical manned aircraft.”); FAA, Advisory Circular, AC 107-2, Subj. Small Unmanned Aircraft Systems (sUAS) (providing guidance to determine sUAS condition for safe operation); and 14 C.F.R. § 107.15, Condition for safe operation.

231 ICAO; JARUS-SORA. Cf., UK, Unmanned Aircraft System Operations in UK Airspace - Guidance, CAP 722, Ch. 2 (Mar. 2016), http://publicapps.caa.co.uk/modalapplication.aspx?appid=11&mode=detail&id=415 (“Autonomy is the capability of the system to make decisions based upon an evaluation of the current situation (often referred to as situation awareness). The system must take account of situational awareness data that is pertinent to the decision about to be made. Autonomous systems should make a rational evaluation of the choices available and the possible courses of action that could be taken, in light of this situation awareness in order to make its decision. We expect such a rational system to then make “good” decisions in terms of a human’s assessment of those available choices.”). See UASPC, n.133.

232 Cf., JARUS-SORA; and see ASTM Int’l, Comm. F38.

234 ICAO, Manual on RPAS, § 11.6.4.

235 14 C.F.R. § 1.1, and JARUS-SORA.

236 See UASPC, n.233.

237 Cf., UAS-ID ARC Final Report, “the process by which the owner/operator sets up a device to communicate the appropriate unique ID.”

238 JARUS-SORA.

239 14 C.F.R. § 1.1.

244 “Hazards are often mischaracterized as errors or events, neither of which are useful for development of effective interventions. Telling people not to make errors or sanctioning them for making them won’t prevent them. Addressing the conditions under which they are performing will reduce the likelihood of these failures or errors. We want to get people to focus on the conditions that can affect performance,
understand why they have these effects, and what they can do about them.” Email from Don Arendt, PhD, PEB Member, ACI (Sept. 12, 2017).

246 14 C.F.R. § 1.1.

247 14 C.F.R. § 1.1.

249 14 C.F.R. § 1.1.

251 14 C.F.R. § 1.1.

253 ICAO, Manual on RPAS, Definitions. Cf., UAS-ID ARC Final Report, “the person or organization responsible for ensuring compliance with the ID and tracking regulation.”

256 Adapted from 14 C.F.R. § 1.1.

257 14 C.F.R. § 1.1.

258 ICAO, Manual on RPAS, § 1.1.1 ("Remotely piloted aircraft are one type of unmanned aircraft. All unmanned aircraft, whether remotely piloted, fully autonomous or combinations thereof, are subject to the provisions of Article 8 of the Convention on International Civil Aviation (Doc 7300), signed at Chicago on 7 Dec. 1944 and amended by the ICAO Assembly.").

262 Per 14 C.F.R. Part 5.5, Definitions.

14 C.F.R. § 1.1.

14 C.F.R. § 1.1, and 14 C.F.R. § 107.3.

ICAO, Annex 1. Note that as here defined, threats may result from errors committed by actors other than flight crewmembers. In the threat and error management model (TEM), errors committed by crewmembers are considered distinct from threats.

Uncontrolled airspace may include Class G and, where applicable, Class F.

14 C.F.R. § 1.1, and 14 C.F.R. § 107.3.
