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ABSTRACT 

BACKGROUND 

Peer review is a beneficial pedagogical tool.  Despite the preponderance of data instructors often 

have about their students, most peer review matching is done using simple random assignment. 

 

PURPOSE 

In fall 2008, a study was conducted to investigate the impact of an informed algorithmic 

assignment method when conducting peer review of Model-Eliciting Activities (MEAs).  An 

algorithm was developed that utilized peer review calibration scores and Graduate Teaching 

Assistant scores to assign higher quality reviewers to teams in greater need of feedback.  The 

algorithm showed no statistically significant impact on final response scores.  This paper aims to 

examine the assumptions guiding the algorithm and how the breakdown of those assumptions 

helped identify possible changes necessary for successfully making informed peer review 

matches. 



 



DESIGN/METHOD 

An expert rater evaluated the solutions of 147 teams’ responses to a particular implementation of 

MEAs in a first-year engineering course at a large mid-west research university.  The evaluation 

was then used to verify the algorithm’s operating assumptions, and how those assumptions broke 

down when compared to a randomly assigned control group. 

 

RESULTS 

Noting that an informed algorithm for assigning peer reviewers had no statistically significant 

impact on the quality of reviewed products, compared to simple random assignment, this work 

turns a lens on the assumptions of the informed peer review process to identify where that 

process broke down.  As such, guidelines for developing informed peer review matching 

algorithms emerged from this investigation. 

 

CONCLUSIONS 

Conducting informed peer review matching requires significant alignment between evaluators 

and experts to minimize deviations from the algorithm’s designed purpose. 

 

Keywords: Calibration, Model-Eliciting Activity, Peer-Review 



I. INTRODUCTION 

Peer review has demonstrated that it can be a beneficial tool for helping students learn course 

content (Topping 1998).  In recent years, the availability of computer-based tools to facilitate 

using peer review in the classroom has considerably increased (Chapman 2003; Gehringer 2001; 

Liu et al. 2001; Moreira and Silva 2003; Ngu, Shepherd, and Magin 1995; Sitthiworachart and 

Joy 2003; Trahasch 2004; Tsai et al. 2001).  While the availability of tools has increased, the 

mechanism for matching reviewers to reviewees has not substantially evolved, with most peer 

review utilities relying on simple random assignment. 

 

During the fall 2008 offering of the core introductory problem solving and computer tools at a 

Purdue University, an informed algorithm for making peer review assignments was developed 

and tested during a trained peer review of team solutions to a Model-Eliciting Activity (MEA).  

MEAs are open-ended, realistic, client-driven engineering problems where the artifact is a 

generalized written procedure for solving a problem.  MEAs are designed to foster a student’s 

mathematical modeling abilities (Zawojewski, Diefes-Dux, and Bowman 2008).  For a subset of 

the students, the scores given by the graduate teaching assistant on the first draft were used to 

establish the degree of help a team needed on their second draft to improve their solution.  

Likewise, the level of agreement between the individual reviewers and an MEA rating expert on 

a training exercise were used to establish the degree of helpfulness a reviewer could provide on a 

subsequent peer review.  One algorithm was explicitly designed to match more accurate 

reviewers to teams needing more assistance and, conversely, less accurate reviewers to teams 

needing less assistance.  The purpose of the algorithm was to make reviewer-reviewee matches 



that were more beneficial to reviewees than could be provided through simple random 

assignment. 

 

An individual with expertise evaluated the responses to an MEA of 74 teams assigned using an 

experimental algorithm and 73 teams assigned randomly as a control group to investigate the 

impact the algorithm would have on the quality of MEA Final Response scores.  While students 

did improve the quality of their products as a result of the peer review, the students assigned 

using the algorithm showed no statistically significant difference in improvement on MEA Final 

Response scores when compared to the randomly assigned control group.  The nature of 

informed peer review matching algorithms is such that there are often multiple assumptions 

fundamental to their use.  Once the algorithm was found to have no impact, an analysis was 

made to investigate what happened with each of the following assumptions associated with this 

algorithm: 

 

1) Students complete assigned work, 

2) Teaching Assistants can grade MEAs accurately, 

3) Accurate feedback in peer review is perceived by the reviewed team as being more helpful 

than inaccurate feedback, 

4) Teaching Assistant scores on the first draft of an MEA can be used to accurately predict where 

teams will need assistance on their second draft, and 

5) The error a peer review has in evaluating a sample MEA solution is an accurate indicator of 

the error they will have while subsequently evaluating a real team’s MEA solution. 

 



This research addresses the question “To what extent do the assumptions used in making 

informed peer review matches for the peer review of solutions to Model-Eliciting Activities 

decay?”  Answers to this question will help identify what needs to be done to increase the 

validity of the assumptions so that informed peer review matching algorithms can be more 

effectively used and studied. 



II. LITERATURE REVIEW 

A. Model-Eliciting Activities 

Model-Eliciting Activities (MEAs), first described by Lesh, Hoover et al. (2000), are realistic, 

open-ended, client-driven, team-based engineering problems designed to foster mathematical 

modeling abilities and reveal the development of modeling skills and construct development.  

Students work in teams to develop a procedure in the form of a memo to the direct user 

describing how to solve the problem, the limitations and assumptions of the solution, and the 

results from applying that solution to a given dataset. 

 

As a pedagogical tool, MEAs have been explored within the engineering context (Diefes-Dux et 

al. 2006) and found to be effective mechanisms for helping students develop deeper 

understanding engineering content.  They have primarily been studied in the context of very 

large first-year introductory engineering courses (Diefes-Dux and Imbrie 2008), though analysis 

on their effectiveness has also been done in higher discipline specific contexts (Bowman and 

Siegmund 2008).  A significant portion of the current research on their use has centered around  

developing formative and summative feedback mechanisms that are reliable across a wide 

variety of evaluators (Diefes-Dux, Zawojewski, and Hjalmarson 2009). 

 

One approach for evaluating MEAs is the use of peer review.  Due primarily to the complexity of 

the problems, teams typically require multiple iterations of feedback and revision to converge on 

a high quality solution (Verleger and Diefes-Dux 2008).  Through the use of peer review, teams 

are able to explore a wider variety of perspectives than could be seen through traditional student-

grader interaction.  The use of peer review also aligns with the recommendations and goals of 



IEEE (2007) and ASCE (2008), as well as functioning as possible evidence for meeting ABET’s 

a-k criterion (Zawojewski et al. 2008; Diefes-Dux et al. 2004). 

B. Peer Review 

Peer review has demonstrated that it can be a valuable tool for helping students learn, but it is not 

without its challenges.  One of the greatest challenges in utilizing peer review in the classroom is 

getting students to accept that their peers can be considered valid sources for feedback and 

assessment.  In Moreira and Silva’s (2003) survey of 30 computer science undergraduate and 18 

computer science graduate students, 10% expressed concerns about having clear judging criteria, 

specifically with the fact that the individuals evaluating them may not all be applying the criteria 

in the same way.  Liu et al. (2001) showed similar results with 9% of the 143 third-year 

computer science students surveyed questioning the fairness of peer evaluations and having 

fellow students be in control of a significant portion of their overall grade. 

 

While student’s concerns are not entirely baseless, Billington (1997) found a statistically 

significant correlation of 0.80 in marks given on posters describing major ecosystem processes 

by final-year biology students compared to marks given by instructors.  While there was high 

correlation between students and instructors, there was also a significant difference between the 

mean mark given by students and that given by the instructors.  The average instructor grade was 

59% while the average peer review mark was 70%.  This suggests that despite students and 

instructors ranking the artifacts in approximately the same order while evaluating, they used 

different interpretation of the criteria to perform that evaluation.  Cheng and Warren (1999) 

found that of the 16 scales (3 dimensions used in 3 different courses, each with an “overall” 

calculation for a 4x4 matrix) used in their study of the oral and written assignments produced by 



51 first-year electrical engineering students, all of the scales showed positive score correlation 

between summative peer and instructor ratings, however only 11 of them were significant.  Just 

as Billington noted in his study, while there was positive correlation in all of the scales, 11 of 

them (although not the same 11 significantly correlated scales) also showed significant 

differences in the means.  This would imply that, while students would tend to rank products in 

the same order of quality as expert raters, they do not assign the same scores to those products. 

 

Despite students’ concerns about peer review, multiple studies indicate that the quality of the 

products being submitted improved subsequent to the review.  Ballantyne et al. (2002) reported 

that the majority of the 939 respondents “agreed that peer assessment was an awareness-raising 

exercise because it made them consider their own work more closely, highlighted what they 

needed to know in the subject, helped them make a realistic assessment of their own abilities, 

and provided them with skills that would be valuable in the future.”  Similarly, Sitthiworachart 

and Joy (2003) indicated that 69% of first-year undergraduate students in computer science 

reported that they discovered mistakes in their own code while reviewing code written by their 

peers.  Eighty percent of the students felt that seeing other students’ work, both high- and low-

quality work, was helpful for their learning. 

 

In addition to the immediate skills provided by peer review, many researchers recognize the 

long-term benefits provided to reviewers.  Boud (2000) posited that the focus of assessment as a 

whole must be rethought to promote lifelong learning skills.  Learning to perform peer review 

and to respond to formative feedback given by both peer and self review are essential skills for 

succeeding in a continuous working world that doesn’t assign an end-of-project grade.  Teaching 



students how to perform peer review and how to utilize constructive criticism for improvement is 

essential for their future.  Yet despite the obvious long-term benefits recognized by academic 

researchers, students are largely unfamiliar with peer review.  Sitthiworachart and Joy (2004) 

reported that of their 215 first-year students taking a computer programming course, 89% of 

them had never experienced peer review prior to the start of the course.  Guilford (2001) found 

that only 39% of undergraduate engineering students understood peer review as it related to 

scientific publishing.  Ballantyne et al. (2002) indicated that only 10% of all the students studied 

recognized the value of peer review towards their future employment. 

 

Despite numerous studies on effective peer review, there has been little research into how to 

make effective reviewer-reviewee mappings.  Crespo, Pardo, and Kloos (2004) proposed the 

most ambitious attempt at producing higher quality reviewer-reviewee mappings.  They 

developed an adaptive model that assigns students a “proficiency score”.  They then utilized a 

genetic algorithm to map reviewers to reviewees in such a way as to produce complementary 

proficiencies, i.e. high proficiency reviewers mapped to low proficiency reviewees and vice-

versa.  This strategy produced “promising experimental results”, however no discussion of the 

educational impacts have since been published.  What makes their model flawed is that it reduces 

a participant down to a single numerical value that assumes a reviewer is an equally capable 

reviewee.  Furthermore, their approach was designed for individual-to-individual reviews, 

generally preventing teams from being used in the process. 

III. METHODS 

Peer review using random assignment represents a baseline method for providing feedback.  This 

research began as an attempt to improve peer review beyond that baseline.  In that attempt, 



multiple necessary assumptions were made; and upon discovering that the resulting attempt was 

no different than the baseline, an investigation into those assumptions ensued.  What follows is a 

description of the context in which this study took place, followed by a discussion of what 

happened in each of the five fundamental assumptions necessary for our implementation of 

informed peer review matching. 

A. Course 

This study was conducted during the fall 2008 semester of a required introductory problem-

solving and engineering computer tools course at Purdue University.  Students in the course 

attended a paired 110-minute lecture and 110-minute lab each week in sections of 120.  Each 

lecture was taught by an engineering faculty member, while each lab was taught by a team of 

four graduate teaching assistants (TAs), with additional help from a group of two to four 

undergraduate teaching assistants.  The course was limited to students currently enrolled in the 

first-year engineering program.  Each TA in a given lab was responsible for seven or eight teams 

of three to four students each in that lab.  TAs taught a total of two lab sections and were 

responsible for assessing and providing feedback to a total of 14 to 16 teams across their two 

labs. 

B. Participants 

Ten divisions of the class were taught during the fall 2008 semester.  Each division was divided 

into four quadrants, with one TA assigned to each quadrant, for a total of 40 quadrants.  Ten 

quadrants were selected and assigned one of four algorithms.  Only two algorithms (Random and 

UON, each described subsequently) are included as part of this study.  The remaining two 

algorithms utilized different metrics but a similar design philosophy as the UON algorithm but in 

preliminary analysis of TA scores did not appear to have as significant an impact on final scores 



as the UON algorithm. The assignment of an algorithm to a particular quadrant was strategically 

done to minimize issues related to course-specific deadlines and to be able to statistically resolve 

potential TA interactions.  The gender and ethnic demographics of the students in the course and 

the sample population studied can be seen in Table 1. 

  
Whole 
Class 

Sample 
Population 

  Fe
m

al
e 

M
al

e 

Fe
m

al
e 

M
al

e  

Caucasian 
American 189 702 91 357 

Asian American 22 80 10 37 
Spanish 
American 6 26 3 16 

Other American 12 20 6 7 
African 
American 10 20 6 11 

American 
Indian 3 6 1 3 

Unspecified or 
International 20 48 10 26 

  262 902 127 457 

Table 1 Gender and Ethnicity of Students (N = 1164) 

Twenty graduate teaching assistants were involved with the course and acted as the primary 

contact for students during the lab time.  As seen in Table 2, the majority of the TAs were male 

international students.  Seven TAs had been a TA for the course in one or more prior semesters.  

Those seven TAs all had experience with MEAs during their prior experience as TAs for the 

course. 



 

 

 

Table 2. Graduate Teaching Assistant Attributes 

C. Model Eliciting Activity (MEA) 

1) Selected MEA: In this study, student team responses to the Purdue Paper Plane Challenge 

(PPPC) MEA were analyzed.  The PPPC MEA, a variant of which is described in Wood, 

Hjalmarson et al. (2008), requires that students develop a procedure to assist the judges of a 

paper airplane contest in selecting the award winning team in four categories, Most Accurate, 

Best Floater, Best Boomerang, and Best Overall, given measurements of time in air, distance 

from target, and length of throw for multiple throws on a straight path and a boomerang path.  

This MEA represented 5% of a student’s course grade. 

 

2) Student Introduction to MEAs: Prior to the MEA, students were introduced to open-ended 

problem solving and MEAs during a lecture led by their lecture instructor.  This lecture focused 

on an image tiling problem (also known as the Sports Equipment problem) (Verleger et al. 2009; 

Zawojewski, Diefes-Dux, and Bowman 2008) as a means of demonstrating expectations for 

MEA solutions.  The lecture began with a discussion of mathematical models, model 

development, and MEAs as a vehicle for developing mathematical models to solve open-ended 

 Whole Class Study 
Population 

  

N
ew

 

Re
tu

rn
in

g 

N
ew

 

Re
tu

rn
in

g 

Male International 7 5 6 4 
Domestic 1 2 1 1 

Female International 5 0 3 0 
Domestic 0 0 0 0 

  13 7 10 5 



problems.  Students then worked in teams to scope the problem and develop a generalized 

solution for shape fitting.  The focus of the lecture is then shifted from simply solving the 

problem to developing a high quality, generalizable and share-able procedure which meets the 

client’s immediate and future needs, with particular emphasis placed on understanding how the 

MEA Rubric dimensions relate to developing a high quality solution. The lecture was concluded 

by highlighting the role of the TA as a facilitator in the process (as opposed to the more 

traditional teacher role) and providing an overview of the sequence of MEA related events which 

would take place over the next five weeks of MEA 1 implementation. 

 

3) MEA Feedback and Assessment Rubric:  A full discussion on the development, reliability, and 

validity of the MEA Rubric can be found in Diefes-Dux, Zawojewski et al. (2010).  MEAs were 

evaluated using two variants of a rubric developed specifically for assessing MEAs: (1) a Full 

MEA Feedback and Assessment Rubric and (2) a Reduced MEA Feedback and Assessment 

Rubric. The full version was used by the students; the reduced version was used by the TAs. 

Both variants were divided along three dimensions; Mathematical Model, Re-Usability / 

Modifiability, and Audience (Share-ability).  Each dimension contained numeric and free 

response feedback items.  The numerical items were the same for both the full and reduced 

versions of the MEA Rubric; however the free-response items were different.  On the reduced 

MEA Rubric, there was one large text box for each dimension for written feedback, each with a 

general prompt.  On the full version of the MEA Rubric, the prompts were more specific, asking 

for explicit items such as a summary of the mathematics used or recommendations for improving 

the rationales.  These prompts were intended to help students engage in the review of a piece of 

student work by directing their attention to certain aspects of a team’s solution so that better 



feedback would be generated.  The students always used the full MEA Rubric. The TAs used the 

full MEA Rubric during their assessment training, but only used the reduced MEA Rubric for 

providing feedback on their first draft and final response.  The reduced rubric was designed to 

decrease the level of summarizing of student work (and thereby time) required from the TAs in 

the feedback, as grading can between 30-60 minutes per team, depending on the procedure 

complexity.  While the reduced version was not as specific in its requests as the full version, TAs 

were explicitly trained to consider all the elements of the full version in providing their feedback, 

even while using the reduced version. 

 

Each quantitative MEA Rubric item was assigned point values which corresponded with levels 

of achievement.  Items are divided into two categories; true/false items and mutually exclusive 

items.  True/False items are assigned one of two possible point values depending on the item.  

Mutually exclusive items are items where multiple statements are presented, each with its own 

associated point value, and only a single statement may be selected.  All of the items are 

presented in Table 3.  The evaluator selects the statement which best describes the solution being 

evaluated.  The score for each dimension is the minimum of the items in that dimension; the 

overall score is the minimum score of the three dimensions. 

 

As an example, assume an evaluator selects “True” for the No Progress, Level 2 for the 

Mathematical Model Complexity, “False” for Data Usage, and “True” for Rationales.  As the 

Mathematical Model dimensional score is calculated as a minimum of the dimension’s items, the 

Mathematical Model dimension score is a minimum of 0 (No Progress), 2 (Mathematical Model 

Complexity), 3 (Data Usage), and 4 (Rationales), resulting in a score of 0 for the Mathematical 



Model Dimension.  The overall score is then calculated as a minimum of the three dimensional 

scores, meaning that regardless of how this theoretical team performs on the remainder of the 

items, this team will receive an overall score of 0 (the lowest possible score) because of the 0 

given for the Mathematical Model Dimension. 

 

Minimums are taken for the dimensional and overall scores to encourage continuous 

improvement.  This is also a philosophical stance – the student work is only as good as the 

weakest dimension.  

 



 
Dim. Item Label Full Item Wording Points 

M
at

he
m

at
ic

al
 M

od
el

 

No Progress 

No progress has been made in developing a model. Nothing has 
been produced that even resembles a poor mathematical model. 
For example, simply rewriting the question or writing a "chatty" 
letter to the client does not constitute turning in a product. 

True 0 

False 4 

Mathematical 
Model 

Complexity 

The procedure fully addresses the complexity of the problem. 4 
A procedure moderately addresses the complexity of the problem 
or contains embedded errors. 3 

A procedure somewhat addresses the complexity of the problem 
or contains embedded errors. 2 

Does not achieve the above level. 1 

Data Usage 
The procedure takes into account all types of data provided to 
generate results OR justifies not using some of the data types 
provided. 

True 4 

False 3 

Rationales The procedure is supported with rationales for critical steps in the 
procedure. 

True 4 
False 3 

Re
-U

sa
bi

lit
y/

M
od

ifi
ab

ili
ty

 

Re-Usability/ 
Modifiability 

The procedure not only works for the data provided but is clearly 
re-usable and modifiable. Re-usability and modifiability are made 
clear by well articulated steps and clearly discussed assumptions 
about the situation and the types of data to which the procedure 
can be applied. 

4 

The procedure works for the data provided and might be re-usable 
and modifiable, but it is unclear whether the procedure is re-
usable and modifiable because assumptions about the situation 
and/or the types of data that the procedure can be applied to are 
not clear or not provided. 

3 

Does not achieve the above level. 2 

A
ud

ie
nc

e 
(S

ha
re

- a
bi

lit
y)

 

Results Results from applying the procedure to the data provided are 
presented in the form requested. 

True 4 
False 1 

Audience 
Readability 

The procedure is easy for the client to understand and replicate. 
All steps in the procedure are clearly and completely articulated. 4 

The procedure is relatively easy for the client to understand and 
replicate.  One or more of the following are needed to improve 
the procedure: (1) two or more steps must be written more clearly 
and/or (2) additional description, example calculations using the 
data provided, or intermediate results from the data provided are 
needed to clarify the steps. 

3 

Does not achieve the above level. 2 
Extraneous 
Information There is no extraneous information in the response. True 4 

False 3 

Table 3. MEA Rubric – Numerical Items 



4) MEA Sequencing: In the fall 2008 semester, MEA administration followed the sequence 

shown in Figure 1.  In lab, students began to work through the sequence with the goal of 

producing the first draft of a memo to the client that contains a generalizable and shareable 

procedure.  To achieve this goal, they were first given an individual warm-up activity in the form 

of a mock-newspaper article describing the PPPC MEA and a memo from the client explaining 

the problem.  Upon reading this, students were asked to respond to three free-response questions 

asking who the client was, what the client needed, and what issues needed to be considered when 

producing a solution (Diefes-Dux and Salim 2009).  After all team members had responded to 

the individual questions, the members came together as a team to develop a solution to the 

client’s problem.  The deliverable at the end of the lab period was the first draft of a memo to the 

client detailing the solution to the problem. 

 

Following the lab, the graduate teaching assistants provided their student teams with feedback 

using the Reduced MEA Feedback and Assessment Rubric.  After student teams received 

feedback on their first draft from their TA, the teams made revisions to their memo and 

submitted a second draft. 

 

As part of the revision process for the first MEA, time was spent in lecture helping students 

understand how to interpret feedback.  This was only done for the first MEA and was focused on 

helping students to frame their feedback in terms of how it impacted each of the MEA Rubric 

items.  The structure of this lecture had faculty working through a list of common feedback 

statements for PPPC procedures and discussing how to interpret that feedback.  Because the 

PPPC has been used multiple times in the course, typical responses and the problems associated 



with those types of responses were able to be anticipated.  Likewise, the corresponding feedback 

was also anticipated.  For example, students were shown the feedback “Why does the lowest 

mean win “Most Accurate”?”  A brief discussion was led by the faculty member asking students 

to explain what they think this feedback means.  The faculty member then explains how this is a 

prompt toward developing rationales within the procedure, and by extension improving their 

performance on the Rationales MEA Rubric item, by justifying the use of the “lowest mean” as 

opposed to the “highest mean” or some other statistical test.  At the conclusion of this lecture, 

teams are told to review the feedback from their TA on their first draft and make appropriate 

revisions before submitting their second draft. 

 

Figure 1. Fall 2008 MEA Sequence 



The second draft entered a calibrated double-blind peer review.  For this process, individual 

students used the Full MEA Rubric to evaluate a randomly selected prototypical student solution 

from a pool of five sample solutions.  Prototypical work was selected by the second author from 

the database of student work from prior semesters.  After being selected, the prototypical works 

were updated to remove any identifying information and to reflect any changes to the problem, 

including updating results to accommodate changes in the dataset.  Care was taken to ensure that 

the essence of the memos did not change and that the memos appeared to come from a team of 

peers currently in the class.  After students submitted their evaluation of the prototypical work, 

they were shown their review next to the second author’s review of that same memo.  They were 

asked to reflect on how they could improve their ability to review an MEA.  During the week 

following the calibration, students were assigned a solution developed by a team of their peers to 

review using the same rubric as the calibration. 

 

Because individuals review a team’s procedure, each team typically received three or four peer 

reviews.  Teams used these reviews, their own experiences in the review process, and any TA 

feedback from their first draft (which may or may not have been used in creating their second 

draft) to make final revisions to their memo.  This final response to the client was submitted for 

evaluation and grading by the TA.  Again, the TA used the Reduced MEA Rubric for this 

evaluation. 

 

In the closing steps, teams evaluated the quality and helpfulness of the peer reviews they 

received by completing the Team Critique of MEA Critique by Peers (TCMCP).  It consisted of 

targeted items, which can be seen in Table 5, broken down by MEA Rubric dimension evaluated 



on a 5 point “Strongly Disagree” to “Strongly Agree” Likert scale.  This feedback was given 

back to the peer reviewers in an effort to increase the quality of the reviews they provided during 

the peer review stages of future MEAs.  As students received this feedback after they had 

submitted their final response, it served no direct purpose toward the PPPC MEA.  After 

providing this feedback to their reviewers, participants individually completed the Peer Review 

Reflection, reflecting on how comfortable and capable they were in the peer review process. 

 

D. Graduate Teaching Assistant MEA Training 

During the week prior to the start of the fall semester, TAs participated in an 8-hour training 

session split across two days to introduce them to MEAs.  They began by working in ad-hoc 

teams on the PPPC MEA.  This served as an opportunity for TAs to develop an understanding of 

the student experience at solving MEAs.  After this, they were given an introduction to the 

underlying theory surrounding MEAs with a focus on the application of the six design principles 

of MEA development (Lesh and Doerr 2003) and the goals of using MEAs in the classroom.  

This presentation transitioned into the TAs discussing the challenges of evaluation and feedback 

on students’ solutions to open-ended problems.  This discussion was then used as a platform for 

introducing the MEA Feedback and Assessment Rubric and the Instructors’ MEA 

Assessment/Evaluation Package.  The package provides task-specific guidance for applying the 

MEA Rubric to a particular MEA.  Using the MEA Rubric, TAs individually evaluated two 

pieces of student work.  A discussion comparing and contrasting the TAs’ scores to the expert 

rater’s scores ensued.  As a follow-up assignment to the training session, TAs were given 

electronic access a TA Professional Development Portal.  The portal consisted of 5 pieces of 

student work for which the TAs were required to apply the MEA Rubric.  The TAs submitted 



these reviews to the expert and received feedback on their strengths and weaknesses at applying 

the MEA Rubric.  With feedback, TAs also received access to a side-by-side comparison of their 

reviews with the expert rater’s reviews and were strongly encouraged to use the expert rater’s 

reviews as guides for their own reviews. 

E. Assignment Algorithm 

All peer review assignments being considered were made using one of two algorithms:  

• Random (N = 295 students on 73 teams) 

• UON - Unweighted Overall Need (N = 289 students on 74 teams) 

Students assigned using the random algorithm served as the control group, as this is the de-facto 

standard for making peer review assignments.  Students assigned using the UON algorithm were 

considered an experimental group.  At no point were the students made aware of the matching 

process or the quantitative values used to make those matches.  Two additional algorithms were 

used for a portion of the class (N = 580 students on 148 teams), but not studied as part of this 

research. 

 

1) Random Assignment: The reason random assignment has become the de-facto standard for 

making peer review assignments is that it does not rely on prior knowledge to make assignments.  

Because it does not utilize information about the reviewer or the reviewee, assignments can be 

made dynamically at the point in time that the reviewer starts the peer review process.  As such, 

it is not affected if students fail to participate in the review process. 

 

2) Un-weighted Overall Need (UON): To inform the UON algorithm, a set of base calculations 

were performed.  TA first draft scores were used to assess the degree of assistance a team 



needed.  It was assumed that teams who scored lower (i.e., performed poorly) on the first draft 

would also need more assistance on their second draft, as they had more work to do to improve 

the quality of their solution than those teams who scored higher on the first draft.  Coupled with 

this was the assumption that TA first draft scores were accurate, and thus could be effectively 

used as an indicator of a team’s need for assistance. 

 

Next, a comparison of the scores on the calibration exercise between the individual reviewers 

and the expert rater was performed.  This was done to assess the accuracy of the reviewer.  It was 

assumed that reviewers who were accurate were also providing more helpful feedback.  Coupled 

with this was the assumption that calibration score accuracy was an accurate indicator of how 

well a reviewer would perform on the peer review exercise. 

 

The UON algorithm attempts to holistically improve how students perform on the MEA by 

utilizing a calculation which is based on all three MEA Rubric dimensions.  First, each team is 

assigned one of the most accurate overall reviewers.  This step is done to ensure that every team 

receives at least one accurate review.  The remaining reviewers are evenly divided between all of 

the teams, with the team needing the greatest assistance being reviewed by the most accurate of 

the remaining reviewers and the teams needing the least amount of assistance being matched to 

the least accurate reviewers.  The UON algorithm attempts to provide the best help to those 

teams with the greatest need for assistance while not overly penalizing teams that need less 

assistance.  By design, each team should receive an equal number of reviewers with an uneven 

distribution in review accuracy, assuming that all students who participate in the calibration also 

complete their peer review. 



F. Evaluators 

Two evaluators were used for this research. The first author re-evaluated the control and 

experimental groups.  The second author provided the evaluations for the TA training and 

prototypical work used in the calibration (including the feedback seen by students during the 

“Comparison to Expert” step). 

G. Reliability of Re-evaluation of PPPC Responses 

To verify that the algorithm assumptions were valid, the first author re-evaluated all three drafts 

of both the control and experimental groups.  The 147 teams in the Random (N = 73) and UON 

(N = 74) groups were randomly ordered and assessed without the author being aware of which 

algorithmic group each team was a member.  All of the first drafts were assessed, followed by 

the second drafts, then the final responses.  Re-evaluations took place over the span of 13 weeks. 

 

For each of the two studied groups (Random and UON), 21 teams were randomly selected (for a 

total of 42 teams).  Seven of those 21 (10% of the treatment group’s total size) were randomly 

selected to have their first drafts re-evaluated a second time.  Seven of the remaining 14 were 

randomly selected to have their second drafts re-evaluated a second time, while the final seven 

teams had their final responses re-evaluated a second time.  This re-evaluation occurred 10 

weeks after the original re-evaluations were completed.  Spearman’s Rho correlation coefficients 

(α = 0.05) were calculated between the author’s original re-evaluation (the first evaluation 

having been done by the TAs and peer reviewers) and the second re-evaluation, as seen in Table 

4 (A).  All 12 items are sufficiently high enough for the author’s evaluation to be considered 

acceptably reliable. 



 (A) (B) (C) (D) (E) 
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Mathematical Model Dimension 0.66 0.000 0.25 0.003 -0.06 0.464 0.05 0.292 0.000 0.005 -0.053 

No progress has been made in developing a model. 1.00 0.000 0.71 0.000 0.40 0.000 0.16 0.001 0.536 0.265 0.045 
The procedure fully addresses the complexity of 
the problem. 0.63 0.000 0.22 0.007 -0.11 0.206 0.02 0.719 0.083 0.649 -0.085 

The procedure takes into account all types of data 
provided to generate results OR justifies not using 
some of the data types provided. 

0.78 0.000 0.38 0.000 0.24 0.004 0.05 0.248 0.049 0.834 0.065 

The procedure is supported with rationales for 
critical steps in the procedure. 0.69 0.000 0.10 0.240 0.20 0.018 0.05 0.319 0.000 0.139 -0.245 

Re-Usability / Modifiability Dimension 0.97 0.000 0.53 0.000 0.09 0.263 0.11 0.017 0.000 0.001 -0.261 

The procedure not only works for the data 
provided but is clearly re-usable and modifiable. 0.97 0.000 0.53 0.000 0.09 0.263 0.11 0.017 0.000 0.001 -0.261 

Audience (Share-ability) Dimension 0.80 0.000 0.31 0.000 0.41 0.000 0.09 0.052 0.000 0.057 -0.229 

Results from applying the procedure to the data 
provided are presented in the form requested. 0.77 0.000 0.27 0.001 0.51 0.000 0.03 0.583 0.000 0.006 -0.575 

The procedure is easy for the client to understand 
and replicate. 0.75 0.000 0.32 0.000 0.21 0.010 0.01 0.839 0.142 0.299 -0.058 

There is no extraneous information in the 
response. 0.61 0.000 0.40 0.000 0.19 0.025 0.05 0.261 0.000 0.000 0.305 

Overall Score 0.77 0.000 0.21 0.013 0.10 0.209 0.10 0.029 0.018 0.039 0.149 

Table 4. Item/Dimension/Overall Score Calculations 



H. Inter-Rater Reliability on PPPC Calibration Exercises 

Two evaluators were used throughout the MEA process.  The second author was responsible for 

providing the feedback on the five prototypical calibration samples, while the first author 

performed all of the remaining evaluations.  To identify the inter-rater reliability, the five 

prototypical calibration samples were re-evaluated by the first author.  Of the 60 total markings 

(5 samples * [8 items + 3 dimensions + an overall score]), both authors were in perfect 

agreement on 52 items (87%) and within one level on 7 (12%).  One Audience Readability item 

(2%) had a difference of two levels. 

IV. RESULTS 

Using the first author’s evaluations of the control and experimental groups, the assumptions 

surrounding the algorithm’s implementation are evaluated in the following sections and 

recommendations based on those findings are made subsequently. 

 

A. Lower First Draft Scores Imply the Need for More Assistance during Peer Review 

One of basic premises of the algorithm is that first draft scores provided by the TAs can be used 

to identify teams who will need greater assistance in revising their second draft.  Shown in Table 

4 (B), Spearman’s Rho correlation coefficients (α = 0.05) were calculated between the first 

author’s first draft scores and second draft scores.  The higher the correlation value, the more 

likely it is that the first draft scores can be used as an accurate predictor for the second draft 

scores 

 

The only correlation value that would traditionally be considered “meaningfully significant” (i.e., 

ρ > 0.60) involves the “No progress has been made” item, though the trend seen across the other 



items should not be ignored.  That the “No Progress” item showed the greatest correlation is not 

surprising, as, based on the first author’s evaluation, only two teams did not obtain a level 4 in 

the first draft and only one of those teams allowed that problem to persist into the second draft.  

The remaining 145 teams all received scores of 4 on both the first draft and second draft. 

 

Aside from the rationales item, which showed no statistically significant correlation between 

drafts, the remaining six MEA Rubric items all showed statistically significant low-level positive 

correlations, averaging 0.35.  While none of these could individually be considered 

“meaningfully significant”, the collectively positive values would seem to indicate that, while 

first draft scores can be used as a partial indicator of the degree of help a team may need on their 

second draft, other factors may need to be investigated to adequately predict the degree of 

assistance a team needs.  These results would indicate that the validity of this assumption is 

weak, but is also not grossly violated. 

B. TA First Draft Scores are Accurate 

To justifiably use first draft scores as an indicator for the degree of assistance needed, the TA 

scores must be accurate. Spearman’s Rho correlation coefficients (α = 0.05) were again used to 

investigate this assumption.  As shown in Table 4 (C), only six of the eight MEA Rubric items 

and only one of the three dimensions are statistically significantly correlated, and none of them 

correlate at a meaningfully significant level.  The only MEA Rubric item that even approaches 

meaningfulness is the presence or absence of results, an item which has a clearly “correct” 

answer and should thus be easier for TAs to properly assess.  A detailed analysis using this data 

of the problems TAs have in applying the MEA Rubric can be found in Diefes-Dux, Verleger et 

al., (2009). 



C. Reviewers Who are More Accurate are Providing More Helpful Feedback 

An implied assumption of the algorithm is that more accurate reviewers are providing more 

helpful feedback.  To investigate this assumption, an error metric of the difference between peer 

review and first author’s scores was calculated for each MEA Rubric item (N = 438 peer reviews 

of the 144 Random and UON assigned teams – three teams did not complete the TCMCP).  The 

dimensional and overall accuracy was calculated as the sum of the squares of those calculated 

differences. For all items, dimensions, and the overall score, scores closer to zero are an indicator 

that the peer reviewer is more accurate.  The TCMCP scores issued by the reviewed teams to the 

reviewers were used as an indicator of helpfulness of the peer review that team received, as this 

is the only mechanism for distinguishing the impact of individual reviews.  This does assume the 

TCMCP is a valid indicator of helpfulness. 

 

Stepwise linear regression analysis (α = 0.05) was used to predict TCMCP scores based on the 

Peer Review Overall Error sum score.  The results are presented in Table 5.  None of the R2 

values are large, indicating that the overall error can only account for a small portion of the 

TCMCP variability.  Collectively, these results would seem to indicate that, while more accurate 

feedback is at least partly beneficial for some items, overall accuracy does not represent a large 

contributing factor towards helpfulness. 



 

TCMCP Item β t 
(437) p R2 

This peer critique included an honest attempt to use our 
procedure to produce a solution to the test case. -0.257 -5.544 0.000 0.066 

This peer critique was clearly written. -0.188 -3.989 0.000 0.035 
The Mathematical Model portion of this peer critique was a 

fair and accurate assessment of our team's procedure. -0.188 -4.004 0.000 0.035 

The Audience (Share-ability) portion of this peer critique 
was a fair and accurate assessment of our team's 
procedure. 

-0.144 -3.039 0.003 0.021 

The Re-usability/Modifiability portion of this peer critique 
was a fair and accurate assessment of our team's 
procedure. 

-0.084 -1.766 0.078 0.007 

The Mathematical Model portion of this peer critique 
resulted in our making substantive changes to our MEA 
solution. 

-0.051 -1.076 0.283 0.003 

The Audience (Share-ability) portion of this peer critique 
resulted in our making substantive changes to our MEA 
solution. 

-0.031 -0.639 0.523 0.001 

The Re-usability/Modifiability portion of this peer critique 
resulted in our making substantive changes to our MEA 
solution. 

-0.014 -0.299 0.765 0.000 

Table 5. Results of TCMCP Prediction from Peer Review Overall Error

D. Calibration is an Accurate Indicator of Peer Review Accuracy 

Similar to the assumption that TA first draft scores are an accurate indicator of the degree of help 

a team needs, there is an equivalent assumption that calibration accuracy is a good indicator of 

how accurate a peer reviewer will perform on the actual peer review.  Saterbak and Volz (2008) 

found students do align closely with instructors during both calibration and peer review, but only 

after significant revisions were made to both the prototypical works and the rubric.  The need for 

those revisions highlights how this assumption is highly context dependent.  For this study, the 

authors had reason to believe that this assumption would be valid based on the fact that 

calibration and peer review were explicitly designed to be nearly identical, with the only 



indicator that the calibration exercise did not involve rating a peer team being the use of the term 

“Calibration” instead of the term “Peer Review”. 

 

Spearman’s Rho correlations (α = 0.05) were calculated between error on calibration and the 

error in peer review for the 449 peer reviews of the 147 teams.  As seen in Table 4 (D), there is 

very little correlation between the degree of error a reviewer makes on the calibration exercise 

and the error they make on the actual peer review, with none of the items being meaningfully 

significant.  This would indicate that calibration accuracy is a poor predictor of peer review 

accuracy.  Further analysis found that calibration had a positive, though non-uniform, impact on 

peer review error, reducing the gross error by a statistically significant 19%.  As seen in Table 4 

(E), paired t-tests and F-tests (α = 0.05) were calculated for all eight MEA Rubric items between 

the error measurement for the calibration and the error measurement for the peer review. 

E. Students Will Complete their Assigned Tasks 

The nature of informed algorithms is such that assignments must typically be made in advance, 

which means that individuals must be assigned based on the assumption that they will be 

completing their assigned work. One of the most attractive attributes of random assignment is 

that reviewer-reviewee assignments can typically be made dynamically on demand, preventing 

the uneven distributions of reviewers that can occur in informed algorithms when assigned 

reviewers do not complete their review. 

 

Only 1049 (90%) of the 1164 students enrolled in the course completed the calibration.  Because 

participants who do not complete calibration are automatically prevented from participating in 

the peer review, they are not assigned a team to review.  Only 84.3% (885/1049, 76% of the 



overall course enrollment) of those individuals who were assigned a team to peer review 

completed the assignment. 

V. DISCUSSION AND SUGGESTIONS FOR APPLYING INFORMED PEER REVIEW 

Despite the breakdown of the assumptions resulting in the informed algorithm not performing as 

desired, a number of important lessons emerged which can help guide future research on 

calibration and informed peer review. 

A. Calibration 

It was expected that students, as a result of calibration, would improve the accuracy of their peer 

reviews.  One of the assumptions for the algorithm was that students who were less accurate than 

their peers on calibration would typically continue to be less accurate than their peers on the peer 

review.  This assumption, as discussed above, was violated more than expected.  However, in 

spite of this, the average sum of squares error decreased by a statistically significant 19% 

between calibration and peer review (p < 0.001, N = 449).  The implication is that calibration 

was typically helping improve accuracy, though not in a uniform enough manner to make peer 

review errors reliably predictable.   

 

As this research demonstrated, under certain circumstances, calibration can reduce the error a 

reviewer makes on subsequent peer reviews.  The most likely contributor that allowed calibration 

to be successful was how closely it resembled the actual peer review.  Multiple individuals, when 

asked in their Peer Review Reflection to comment on the challenges encountered during the peer 

review process, made reference to “the first team” or “both teams”, demonstrating that many 



individuals were possibly not aware that the review they were completing of the calibration’s 

prototypical procedure was not for a peer team. 

B. Informed Peer Review 

The UON algorithm studied in this research utilized the sum of the eight MEA Rubric items to 

establish reviewee need and reviewer skill levels.  The algorithm’s functionality was built around 

five basic assumptions: 

1) Students complete assigned work, 

2) TA’s can grade MEAs accurately, 

3) Accurate feedback in peer review is perceived by the reviewed team as being more helpful 

than inaccurate feedback, 

4) First Draft scores can be used to accurately predict Second Draft areas of need, and 

5) Calibration error is an accurate indicator of Peer Review error. 

 

For our implementation, all five of the assumptions lacked the validity necessary for the 

algorithm to operate as desired.  The first two assumptions could potentially be resolved through 

changes to the MEA implementation and the MEA Rubric and training process.  The third 

assumption, based on the discussion found above, is at least partially valid, though additional 

work is needed to better understand what makes for the most helpful feedback. 

 

The last two assumptions are specific to the UON algorithm, and while neither could be 

considered reasonably valid for this research, both are predictive modeling problems that are 

specific to the UON algorithm’s implementation.  Their breakdown represents a failure in the 

UON algorithm, but does not close the door for other informed algorithms. 



Certainly a limitation of this study is that there are other assumptions that could be impacting the 

results.  Three assumptions for which the authors currently lack either the data or the resources 

needed to properly validate are: (1) that students are putting forth the same level of effort on all 

three attempts at developing a solution, (2) that improvements in the second draft and final 

responses are the result of students having received feedback and not purely a result of students 

revisiting their work, and (3) that the quality of the numerical responses is highly correlated to 

the quality of the qualitative feedback a reviewer provides.  Any of these assumptions could 

potentially have an impact on how students progress through the MEA sequence and the quality 

of the work they are producing.  Each also represents a larger set of research questions dealing 

with (1) the motivation to always produce high quality work, (2) a team's ability to self-evaluate 

their work and improve it without external influences, and (3) a student’s quantitative versus 

qualitative evaluation skills and the correlation between those two skills. 

 

The most critical aspect to the future success of informed matching algorithms is in fully 

identifying and minimizing the number of critical assumptions.  In the case of the UON 

algorithm, assumptions two and five were critical to the basic functionality of the algorithm and 

the degree of violation represents a breakdown in how the algorithm functioned.  Because the 

algorithm relied on these two independent assumptions, both of which exhibited non-trivial 

degrees of decay, there was not a large enough subset of participants for which the assumption 

held true to do an independent analysis of the algorithm’s impact.  Improving the conditions so 

that the impact of these assumptions is minimized could lead to an increased ability to make sure 

that teams are being assigned the reviewer that will best be able to help them improve the quality 

of their work. 



C. Implications for Engineering Educators 
 
In an age of growing class sizes and shrinking budgets, peer review is an attractive mechanism 

for instructors to use to provide feedback to even the largest classes without a corresponding 

increase in time or teaching staff.  While the premise of assigning better reviewers to those 

reviewees that need more help seems like an important and viable method for maximizing the 

value of peer review, the practice of doing so proves more complex than anticipated.  Indeed, the 

act of making those assignments demonstrated to be no better than simple random assignment.   

 

For engineering educators, this presents a critical lesson that, while peer review can be 

beneficial, blind random assignment still represents the easiest and fairest mechanism for making 

reviewer/reviewee assignments.  The UON algorithm generally tried to pair the highest quality 

reviewers to the teams with the greatest need, and likewise it paired the lowest quality reviewers 

to the teams with the least amount of need.  To combat this clearly unfair bias, the algorithm first 

assigned each team a single high quality reviewer before making the biased informed 

assignments.  The fatal flaw was that, because the mechanism for predicting reviewer quality 

was not accurate enough, the initial round of assignments did not guarantee that all teams 

received at least one high quality reviewer.  While random assignment does not guarantee that all 

teams will receive a high quality reviewer, it does not have a clear bias against receiving one. To 

develop, explore, and ultimately reap the potential benefits of informed peer review matching 

algorithms, means of accurately predicting reviewer quality are needed. 
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