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Abstract
We develop the Titchmarsh–Weyl theory for vector-valued discrete Schrödinger oper-
ators. We show that the Weyl m functions associated with these operators are matrix
valued Herglotz functions that map complex upper half plane to the Siegel upper half
space. We discuss about the Weyl disk and Weyl circle corresponding to these opera-
tors by defining these functions on a bounded interval. We also discuss the geometric
properties of Weyl disk and find the center and radius of the Weyl disk explicitly in
terms of matrices.

1 Introduction

The theory of Titchmarsh–Weylm functions has been an important tool in the spectral
theory of Jacobi and Schrödinger operators. In order to study the asymptotic behavior
of solutions of Jacobi and Schrödinger equations, one needs to study thesem functions.
Moreover, the absolutely continuous, singular continuous and essential spectrumof the
operators associated with these equations are well explained in terms of m functions.
These m functions were first introduced in 1910 by Weyl [16] for Sturn–Liouville
differential equations for finding a square integrable solution. These were further
studiedbyTitchmarsh [15]where he established the connectionbetween the analyticity
of solutions and the spectrum of the operator associated to Sturn–Liouville differential
equations. For further history ofm function, one can see [7]. The theory ofm functions
in one dimensional space has been widely studied, some of the studies can be found
in the papers [2,8,12–14], and the literature therein.

In this paper, we extend the Titchmarsh–Weyl theory for vector-valued discrete
Schrödinger operators. Consider d-dimensional discrete Schrödinger equations of the
form,
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y(n + 1) + y(n − 1) + B(n)y(n) = zy(n), z ∈ C (1)

where y(n) ∈ C
d , and the potential B(n) is a d × d matrix.

Equation (1) can be generalized to a d−dimensional Jacobi equation.

A(n)y(n + 1) + A(n − 1)y(n − 1) + B(n)y(n) = zy(n), z ∈ C (2)

with A(n), B(n) are sequences of d × d matrices bounded in l2 norm. An operator
induced by (2) can be expressed as a tri-diagonal block matrix, called block Jacobi
matrix, [10]. Notice that (1) is a particular case of Jacobi equation with A(n) ≡ I , a
d × d identity matrix.

Let l2(I,Cd) is a Hilbert space of square summable vector-valued sequences with
the inner product

〈u, v〉 =
∑

n∈I
u(n)∗v(n),

where ∗ stands for conjugate transpose, and denote the space of all d × d complex
matrices by C

d×d .
Equation (1) induces a vector-valued discrete Schrödinger operator J on l2(I,Cd)

as

J y(n) = y(n + 1) + y(n − 1) + B(n)y(n).

Usually I = Z or N. When I = N, we need to modify the operator J for n = 1 as

J y(1) = y(2) + B(1)y(1).

It can be easily observed that if B(n) is a Hermitian matrix, B(n)∗ = B(n), then J is
a self-adjoint operator on l2(N,Cd). The spectrum of J is then a set of real numbers
σ(J ) ⊂ R.

To get a solution u(n) of the Eq. (1), for fixed z ∈ C, we chose any two vectors
c, d ∈ C

d and fix the values u(k) = c, u(k + 1) = d and evolve according to (1).
In particular, we fix u(0) and u(1) then u(n) is obtained by solving the difference
equation (1) using transfer matrices

T (m; z) =
(
z I − B(m) −I

I 0

)
, m = 1, 2, . . . , n. (3)

Let

A(n; z) = T (n; z)T (n − 1, z) . . . T (1, z), (4)

then, u solves (1) for every n if and only if

(
u(n + 1)
u(n)

)
= A(n; z)

(
u(1)
u(0)

)
. (5)
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Similarly, A(n,m; z) = T (n; z)T (n − 1, z) . . . T (m; z), for m < n can be used to
get a solution u(n) from u(m) by the following equation

(
u(n + 1)
u(n)

)
= A(n,m; z)

(
u(m)

u(m − 1)

)
. (6)

For every pair of vectors ui (n), vi (n) ∈ C
d , there exists a solution of (1), therefore,

the space of solutions is a 2d-dimensional vector space. It is shown in [1], that there
are exactly d linearly independent solutions of (1) that are in l2(N,Cd).

It is now convenient to fix a basis of the solution space of (1). An easier way is to
prescribe a pair of initial conditions. For z ∈ C, let

U (n, z) = (u1(n), u2(n), . . . , ud(n)),

ui (n) = (u1,i (n), u2,i (n), . . . , ud,i (n))T

V (n, z) = (v1(n), v2(n), . . . , vd(n)),

vi (n) = (v1,i (n), v2,i (n), . . . , vd,i (n))T

be the sets of solutions of (1). BothU (n, z) and V (n, z) consist of d linearly indepen-
dent solutions of (1). Suppose τ is the expression on left side of (1) then U (n, z) and
V (n, z) are matrix valued solutions of

(τ − z)u(n) = 0. (7)

We further suppose that these solutions satisfy the following initial conditions

U (0, z) = −I , V (0, z) = 0, U (1, z) = 0, V (1, z) = I . (8)

By iterating (1), we see that for fixed n ∈ N,U (n, z), V (n, z) are polynomial matrices
in z of degree n − 2 over Cd×d . So U (n, z) = U (n, z̄) and V (n, z) = V (n, z̄).

Let

W(n, z) =
(
U (n + 1, z) V (n + 1, z)
U (n, z) V (n, z)

)
, (9)

then (5) can be generalized for matrix valued solutions U (n, z), V (n, z) as

W(n, z) = A(n; z)W(0, z) = A(n; z)J, (10)

where J =
(

0 I
−I 0

)
.

These solution sets satisfy the symplectic identity given by the following lemma.

Lemma 1 For any n ∈ N0 = N ∪ {0},W(n, z) satisfies

W(n, z)T JW(n, z) = W(n, z)JW(n, z)T = J. (11)
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Proof Notice that T (n; z)T JT (n; z) = T (n; z)JT (n; z)T = J for any n so that
A(n; z)T JA(n; z) = A(n; z)JA(n; z)T = J. Then

W
T
JW = (A(n; z)J)T JA(n; z)

= J
TA(n; z)T JA(n; z)J

= J
T
JJ

= J.

Exactly in the same we also have WJW
T = J. 	


We extend the definition of Wronskian for vector-valued sequences.

Definition 1 The Wronskian of any two sequences f (n), g(n) ∈ l2(N,Cd) is defined
by

Wn( f , g) = f (n + 1)T g(n) − f (n)T g(n + 1). (12)

In [1], it is shown that for fixed z ∈ C, if f (n, z), g(n, z) are any two solutions to
(1) then Wn( f , g) is independent of n. Moreover, the Wronskian Wn is linear in both
arguments.

For any two sequences f (n), g(n) ∈ l2(N0,C
d) theGreen’s identity corresponding

to Eq. (7) is given by

n∑

j=0

(
f ∗(τg) − (τ f )∗g

)
( j) = W0( f̄ , g) − Wn( f̄ , g). (13)

We extend the definition of Wronskian for matrix valued sequences F(n),G(n),
each contains d vector-valued sequence in l2(N0,C

d). The Wronskian Wn(F,G) is
a d × d matrix valued function defined by

Wn(F,G) = F(n + 1)T G(n) − F(n)T G(n + 1). (14)

A calculation shows that for fixed z ∈ C, if U (n, z) and V (n, z) are any two matrix
valued solutions of (1) then Wn(U , V ) is independent of n ∈ N.

We also extend the Green’s Identity for these matrix valued sequences and the proof
of which is obtained by simple calculation.

n∑

j=0

(
F( j, z)∗(τG( j, z))−(τ F( j, z))∗G( j, z)

)
=W0(F̄,G)−Wn(F̄,G). (15)

2 Titchmarsh–Weylm function

The study of Titchmarsh–Weyl theory for the second order difference equations was
initiated by Hellinger [9] and Nevanlinna [11]. Their work focused on the existence of
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l2(C) solutions and their properties. They also discussed on limit-point and limit-circle
classification for the difference equations. Following their work, many scholars have
worked since then on the theory of Titchmarsh–Weyl m functions in one dimension,
which has been well developed. However, in higher dimensions, only few articles can
be found in the continuous case [4–6] which consider a matrix-valued potential. In [4],
the authors discussed the asymptotics of Titchmarsh–Weylm functions corresponding
to matrix valued Schrödinger operators and in [5], the Borg-type theorem for matrix
valued Schrödinger operators has been proved. In [6], authors showed that the diag-
onal Green’s matrix function and its derivative uniquely determine the matrix valued
potential.

In this paper,we focus ondeveloping the theory ofTitchmarsh–Weylm functions for
vector-valued discrete Schrödinger operators. First, the Weyl m function is expressed
in terms of resolvent operator similar to the one found in [1] and then show that such
Weyl m functions are matrix valued Herglotz functions that map the complex upper
half plane to the Siegel upper half space.

The Titchmarsh–Weyl m function for the vector-valued discrete Schrödinger oper-
ators associated to (1) is defined in terms of solutions as follows.

Definition 2 Let z ∈ C
+ = {z ∈ C : Im(z) > 0}. The Titchmarsh–Weyl m function

is defined as the unique complex matrix M(z) ∈ C
d×d such that

F(n, z) = U (n, z) + V (n, z)M(z) (16)

where U (n, z), V (n, z) are matrix valued solutions consisting of d linearly indepen-
dent solutions with initial values (8) and the matrix valued solution F(n, z) is a set of
d linearly independent solutions of (1) that are in l2(N,Cd).

This definition, is in fact well defined. As we mentioned above that there are only
d linearly independent solutions in l2(N0,C

d), if there is another M(z) satisfying (8),
then the solutions from both U (n, z) and V (n, z) will be in l2(N0,C

d). The solution
V (n, z) is such that V (0, z) = 0 which implies that V (n, z) is the set of eigen-
functions for the self adjoint operator J . This contradicts that the spectrum of J is a
set of real numbers. In [1], M(z) is solved explicitly in terms of a solution and in terms
of resolvent operator, the proof of which is worth presenting here for completeness of
the paper.

Theorem 3 Let z ∈ C
+. If (τ −z)F = 0 and F is a d×d matrix valued solution whose

d columns are linearly independent solutions of (1) that are in l2(N0,C
d). Then

M(z) = −F(1, z)F(0, z)−1. (17)

Moreover,

M(z) = (mi j (z))d×d ∈ C
d×d , mi j (z) = 〈δ j , (J − z I )−1δi 〉, (18)

where δi (n) ∈ l2(N,Cd) is such that δi (n) = (0, . . . , 0)T if n > 1 and δi (1) =
(0, . . . , 1, . . . 0)T for i = 1, 2, . . . , d.
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Proof If the matrix valued solution F is given by (16) then F(0, z) = −I and
F(1, z) = M(z). So (17) holds. Suppose G(n, z) is any d × d matrix valued solution
then it is a constant (matrix) multiple of the solution set F(n, z) from (16) because
(16) is a set of d linearly independent solutions. That is,

G(n, z) = F(n, z)C (19)

where C is a d × d scalar invertible matrix.

F(n, z) = G(n, z)C−1

so that

−G(1, z)G(0, z)−1 = −F(1, z)CC−1F(0, z)−1

= −F(1, z)F(0, z)−1

= M(z).

Let F(n, z) as in (17) and let

gi = (J − z I )−1δi .

Then (J − z I )gi = δi . So (τ − z I )gi (n) = 0 for n ≥ 2. Moreover gi ∈ l2 for all
i = 1, 2, . . . . . . ., d. Let

G(n, z) = (g1(n), g2(n), . . . . . . ., gd(n)).

Then G(n, z) = F(n, z)C,C ∈ C
d×d . By comparing values at n = 1,

G(1, z) = (g1(1), g2(1), . . . . . . . . . , gd(1))

where

g1(1) = (J − z I )−1δ1(1),

and

g1(1) = (g11, g21, . . . , . . . , . . . , gd1)
T , gi1 = 〈δi , g1(1)〉, i = 1, 2, . . . ., d.

ThenM(z) = G(1, z)C−1 andM(z) = (mi j (z)) is a d×d matrix such that (mi j (z)) =
(〈δ j , (J − z I )−1δi 〉)C−1. To find the value of C , we compare values at n = 2. First
(J − z)G(1, z) = (δ1, δ2, . . . . . . , δd) so

(J − z I )G(1, z) = I .
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It follows that,

G(2, z) = (z − B(1))G(1, z) + I . (20)

Since F(n, z) is a solution to (1) we have

F(2, z) = (z − B(1))F(1, z) − F(0, z). (21)

From (19) for n = 2 and from (21) we obtain

G(2, z) = (z − B(1))F(1, z)C − F(0, z)C . (22)

Comparing (20) and (22), we obtain−F(0, z)C = I , and since−F(0, z) = I ,C = I .
Hence (18) holds. That is

M(z) = (〈δ j , (J − z I )−1δi 〉).

	

Theorem 3 connects M(z) with a matrix valued Borel measure using functional

calculus for the resolvent operators 〈δ j , (J − z)−1δi 〉.
By functional calculus, for each i, j,

mi j (z) = 〈δ j , (J − z)−1δi 〉
=

∫

R

1

t − z
dμi j (23)

where μi j is a spectral measure for the vectors δ j and δi . Therefore,

M(z) =
∫

R

1

t − z
dμ, μ = (μi j )d×d ,

and

M(z) =
∫

R

1

t − z
dμ =

( ∫

R

1

t − z
dμi j

)

d×d
.

The matrix valued measure μ is a spectral measure of the operator J .
For each i, j and z ∈ C

+,

Immi j (z) = 1

2i
(mi j (z) − mi j (z̄)) =

∫

R

y

|t − z|2 dμi j > 0. (24)

Therefore, mi, j (z) maps the complex upper half plane to itself.
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Suppose M(z) denotes the complex conjugate of M(z). Then by (23), we have
mi j (z) = mi j (z̄) so that M(z) = M(z̄). Also, M(z) = (〈δ j , (J − z I )−1δi 〉) so that

mi j (z) = 〈δ j , (J − z I )−1δi 〉
= 〈(J − z̄ I )(J − z̄ I )−1δ j , (J − z I )−1δi 〉
= 〈(J − z̄ I )−1δ j , (J − z̄ I )∗(J − z)−1δi 〉 (25)

Since J is self adjoint, (J − z̄ I )∗ = (J − z I ). Then (25) becomes

mi j (z) = 〈(J − z̄ I )−1δ j , δi 〉
= 〈δi , (J − z̄ I )−1δ j 〉
= m ji (z̄)

= m ji (z) (26)

for all i, j . It follows that M(z) is symmetric.
Let S be a subspace of Cd×d , consisting of all symmetric matrices with positive

definite imaginary part. That is,

S =
{
M ∈ C

d×d : 1

2i
(M − M∗) > 0

}
.

The space S is so called the Seigel upper half space and can be considered as a
generalization of complex upper half plane. The following theorem shows the Weyl
m functions associated with the Schrödinger equations in higher dimensions are the
matrices in S.

Theorem 4 For z ∈ C
+, the map z �→ M(z) maps C+ to S.

Proof Equation (26) shows thatM(z) is symmetric.Moreover, in (24)we see that every
entry ofM(z)has positive imaginarypart. Therefore, Im M(z) = 1

2i (M(z)−M(z)∗) >

0. 	

As shown above, the entries of M(z) are Herglotz functions mapping complex

upper half plane to itself, thereforeM(z) is a matrix valued Herglotz functionmapping
complex upper half plane to Siegel upper half space.

3 Titchmarsh–Weyl circles and disks

In this section, we define the Titchmarsh–Weyl circles and disks. We consider (1) on
N− = {0, 1, 2, . . . . . . , N }. Suppose U (n, z), V (n, z) are the matrix valued solutions
of (1) with initial values (8). For z ∈ C

+, define

F(n, z) = U (n, z) + V (n, z)Mβ
N (z) (27)
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satisfying a boundary condition

β2F(N , z) + β1F(N + 1, z) = 0 (28)

where β = (β1, β2) ∈ R
d×2d satisfying

βTβ = I , β JβT = 0. (29)

The unique coefficient Mβ
N (z) is called the Weyl m function on N−.

Finding Mβ
N (z) and using the boundary conditions (28), we have

Mβ
N (z) = −(

β2V (N , z) + β1V (N + 1, z)
)−1(

β2U (N , z) + β1U (N + 1, z)
)
. (30)

Note that β2V (N , z) + β1V (N + 1, z) is invertible. Since z, N , β varies, Mβ
N (z)

becomes a function of these arguments.

Lemma 2 The Weyl m function Mβ
N (z) is symmetric.

Proof Let U(z) =
(
U (N + 1)
U (N )

)
and V(z) =

(
V (N + 1)
V (N )

)
, then

U(z) = A(N ; z)
(
U (1)
U (0)

)
= A(N ; z)

(
0

−I

)
,

and

V(z) = A(N ; z)
(
V (1)
V (0)

)
= A(N ; z)

(
I
0

)
.

Using (30), the Weyl m function can be written as Mβ
N (z) = −(βV(z))−1(βU(z)).

Suppose E = βU(z) and F = βV(z) so that Mβ
N (z) = −F−1E . Now,

Mβ
N (z)T − Mβ

N (z)

= (−F−1E)T − (−F−1E)

= F−1E − ET F−T

= F−1(EFT − FET )F−T

= F−1
(
βU(βV)T − βV(βU)T

)
F−T

= F−1β
(
UV

T − VU
T
)
βT F−T

= F−1β

(
A(N ; z)

(
0

−I

) (
A(N ; z)

(
I
0

) )T

−A(N ; z)
(
I
0

)(
A(N ; z)

(
0

−I

) )T
)

βT F−T
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= −F−1β

(
A(N ; z)

( (
0

−I

) (
I 0

) −
(
I
0

) (
0 −I

) )
A(N ; z)T

)
βT F−T

= −F−1β
(
A(N ; z)JA(N ; z)T

)
βT F−T

= −F−1β JβT F−T

= 0,

since β JβT = 0, according to (29). 	


Lemma 3 For a matrix valued solution F(n, z) = U (n, z) + Mβ
N (z)V (n, z) of (1) we

have

WN (F̄, F) = 2i Im M − 2i Im z
N∑

j=0

F( j, z)∗F( j, z). (31)

Proof We use the Green’s identity (15) with G = F .

N∑

j=0

(
F( j, z)∗(τ F( j, z)) − (τ F( j, z))∗F( j, z)

)
= W0(F̄, F) − WN (F̄, F).

It follows that,

(z − z̄)
N∑

j=0

F( j, z)∗F( j, z) = W0(F̄, F) − WN (F̄, F). (32)

Using the linearity of the Wronskian given by (14) for F(n, z) = U (n, z) +
Mβ

N (z)V (n, z) we have

(z − z̄)
N∑

j=0

F( j, z)∗F( j, z) = W0(F̄, F) − WN (F̄, F)

= W0(U + V M,U + V M) − WN (F̄, F)

= W0(U ,U ) + W0(U , V M) + W0(V M,U )

+W0(V M, V M) − WN (F̄, F). (33)

Since W0(U ,U ) = W0(V M, V M) = 0,W0(V M,U ) = −M̄, W0(U , V M) = M ,
then (33) becomes

(z − z̄)
N∑

j=0

F( j, z)∗F( j, z) = M − M̄ − WN (F̄, F)
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which implies

WN (F̄, F) = 2i Im M − 2i Im z
N∑

j=0

F( j, z)∗F( j, z).

	


Let W(n, z, M) = W(n, z)

(
I
M

)
and define a matrix function

E(M, N ) = −iW(N , z, M)∗ JW(N , z, M) (34)

then

E(M, N ) = −i
(
F(N + 1, z)∗, F(N , z)∗

)
J

(
F(N + 1, z)
F(N , z)

)

= −iWN (F̄, F)

= −2 Im M + 2 Im z
N∑

j=0

F( j, z)∗F( j, z). (35)

Definition 5 Let z ∈ C
+. The sets

D(N , z) = {M ∈ C
d×d |E(M, N ) ≤ 0} and C(N , z) = {M ∈ C

d×d |E(M, N ) = 0}

are respectively called the Weyl disk and Weyl circle.

Clearly, C(N , z) = {Mβ
N (z) : β ∈ R

d×d , for someβ satisfying (29)}.

Theorem 6 The map z �→ Mβ
N (z) maps complex upper half plane C+ to Seigel half

space S.

Proof By Lemma 2, Mβ
N (z) is symmetric. Since Mβ

N (z) ∈ C(N , z), E(M, N ) = 0.
It follows that −iWN (F̄, F) = 0. By Lemma 3, we have

2 Im M − 2 Im z
N∑

j=0

F( j, z)∗F( j, z) = 0.

That is

Im M

Im z
=

N∑

j=0

F( j, z)∗F( j, z) > 0,

which implies that Im M is positive definite. 	
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Lemma 4 (Nesting property of Weyl disks) Let z ∈ C
+. Then

D(N + 1, z) ⊂ D(N , z), N ∈ N0

Proof Let M ∈ D(N + 1, z). From (35) we have

E(M, N ) = −2 Im M + 2 Im z
N∑

j=0

F( j, z)∗F( j, z)

≤ −2 Im M + 2 Im z
N+1∑

j=0

F( j, z)∗F( j, z)

= E(M, N + 1) ≤ 0.

This shows that M ∈ D(N , z). Hence the result. 	

From (34) we have

E(M, N )

= −i(I , M∗)
(
U (N+1, z)∗ U (N , z)∗
V (N+1, z)∗ V (N , z)∗

)
J

(
U (N+1, z) V (N+1, z)
U (N , z) V (N , z)

) (
I
M

)

= −i(I , M∗)
(
WN (Ū ,U ) WN (Ū , V )

WN (V̄ ,U ) WN (V̄ , V )

) (
I
M

)

= −i
(
WN (Ū ,U ) + WN (Ū , V )M + M∗WN (V̄ ,U ) + M∗WN (V̄ , V )M

)
(36)

Note that

WN (Ū ,U )∗ = −WN (Ū ,U ),

WN (V̄ , V )∗ = −WN (V̄ , V ),

WN (V̄ ,U )∗ = −WN (Ū , V ). (37)

Using (37) in (36), E(M, N ) can be written as

E(M, N ) = −i

((
M − WN (V̄ , V )−1WN (Ū , V )∗

)∗
WN (V̄ , V )

(
M − WN (V̄ , V )−1WN (Ū , V )∗

)

+ WN (Ū ,U ) + WN (Ū , V )WN (V̄ , V )−1WN (Ū , V )∗
)

(38)

Lemma 5 For z ∈ C
+,

WN (Ū , V )WN (V̄ , V )−1WN (Ū , V )∗ + WN (Ū ,U ) = −WN (V , V̄ )−1. (39)
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Proof Let � = W
∗ JW. Notice that W∗ JW =

(
WN (Ū ,U ) WN (Ū , V )

WN (V̄ ,U ) WN (V̄ , V )

)
. From

Lemma 1 we see that

W
∗ JW̄ = J .

Then,

�T J� = (W∗ JW)T J (W∗ JW)

= W
T J TW∗T JW∗ JW

= −W
T JW

= J . (40)

On the other hand,

�T J� =
(
WN (Ū ,U )T WN (V̄ ,U )T

WN (Ū , V )T WN (V̄ , V )T

)
J

(
WN (Ū ,U ) WN (Ū , V )

WN (V̄ ,U ) WN (V̄ , V )

)

=
(
WN (U , Ū )∗ WN (V , Ū )∗
WN (U , V̄ )∗ WN (V , V̄ )∗

)
J

(
WN (Ū ,U ) WN (Ū , V )

WN (V̄ ,U ) WN (V̄ , V )

)
. (41)

Using (40) and (41) we have

− WN (V , V̄ )∗WN (Ū ,U ) + WN (U , V̄ )∗WN (V̄ ,U ) = −I , (42)

and

− WN (V , V̄ )∗WN (Ū , V ) + WN (U , V̄ )∗WN (V̄ , V ) = 0. (43)

From (43) we obtain

WN (Ū , V )∗ = WN (V̄ , V )∗WN (U , V̄ )WN (V , V̄ )−1

= −WN (V̄ , V )WN (U , V̄ )WN (V , V̄ )−1. (44)

Using (44) on the left side of (39) we obtain

WN (Ū , V )WN (V̄ , V )−1WN (Ū , V )∗ + WN (Ū ,U )

= WN (Ū , V )WN (V̄ , V )−1( − WN (V̄ , V )WN (U , V̄ )WN (V , V̄ )−1)

+ WN (Ū ,U )

= −WN (Ū , V )WN (U , V̄ )WN (V , V̄ )−1 + WN (Ū ,U ). (45)

It follows from (42) that

WN (U , V̄ )∗WN (V̄ ,U ) = −I + WN (V , V̄ )∗WN (Ū ,U ),
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and by using (37), it yields

−WN (U , V̄ )∗WN (Ū , V )∗ = −I + WN (V , V̄ )∗WN (Ū ,U ). (46)

Taking the complex conjugate on both sides of (46) we have

WN (Ū , V )WN (U , V̄ ) = I − WN (Ū ,U )∗WN (V , V̄ )

which, by (37), becomes

WN (Ū , V )WN (U , V̄ ) = I + WN (Ū ,U )WN (V , V̄ ).

Then the right side of (45) becomes

− WN (Ū , V )WN (U , V̄ )WN (V , V̄ )−1 + WN (Ū ,U )

= −(I + WN (Ū ,U )WN (V , V̄ ))WN (V , V̄ )−1 + WN (Ū ,U )

= −WN (V , V̄ )−1.

Thus, we have

WN (Ū , V )WN (V̄ , V )−1WN (Ū , V )∗ + WN (Ū ,U ) = −WN (V , V̄ )−1.

	

Using Lemma 5 and (38) we can express E(M, N ) in the form

E(M, N ) = −i

((
M − WN (V̄ , V )−1WN (Ū , V )∗

)∗
WN (V̄ , V )

(
M − WN (V̄ , V )−1WN (Ū , V )∗

) − WN (V , V̄ )−1
)

. (47)

Thus, (47) is

E(M, N ) = −(
(M − CN (z))∗R(N , z)−2(M − CN (z)) − R(N , z̄)2

)
(48)

where CN (z) = WN (V̄ , V )−1WN (Ū , V )∗ and R(N , z) = (iWN (V̄ , V ))−1/2.
So the equation of Weyl circle can be written as

(M − CN (z))∗R(N , z)−2(M − CN (z)) = R(N , z̄)2. (49)

Theorem 7 For all z ∈ C
+, limN→∞ R(N , z) exists and limN→∞ R(N , z) ≥ 0.

Proof By Green’s identity we have

2 Im z
N∑

j=0

V ( j, z)∗V ( j, z) = iWN (V̄ , V ) = R(N , z)−2 > 0.
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Thus, R(N , z) is non increasing and limN→∞ R(N , z) exists. 	

Theorem 8 For all z ∈ C

+, limN→∞ CN (z) exists.

Proof Let M ∈ C(N , Z), then using (49) we get

(M − CN (z))∗R(N , z)−2(M − CN (z)) = R(N , z̄)2.

It follows that
(
R(N , z)−1(M − CN (z))R(N , z̄)−1

)∗(
R(N , z)−1(M − CN (z))R(N , z̄)−1

)
= I .

Suppose U =
(
R(N , z)−1(M − CN (z))R(N , z̄)−1

)
so that U∗U = I that is U is

unitary. Also,

M = CN (z) + R(N , z)UR(N , z̄).

Suppose M ∈ CN+1(z) ⊂ CN (z) then we have

M = CN+1(z) + R(N + 1, z)UN+1R(N + 1, z̄), (50)

and

M = CN (z) + R(N , z)UN R(N , z̄). (51)

Equating (50) and (51) and taking the norm we obtain

‖CN+1(z) − CN (z)‖
= ‖R(N + 1, z)UN+1R(N + 1, z̄) − R(N , z)UN R(N , z̄)‖
≤ ‖R(N + 1, z)UN+1R(N + 1, z̄) − R(N , z)UN+1R(N + 1, z̄)‖

+ ‖R(N , z)UN+1R(N + 1, z̄) − R(N , z)UN R(N + 1, z̄)‖
+ ‖R(N , z)UN R(N + 1, z̄) − R(N , z)UN R(N , z̄)‖

≤ ‖R(N + 1, z) − R(N , z)‖‖UN+1‖‖R(N + 1, z̄)‖
+ ‖R(N , z)‖UN+1 −UN‖‖R(N + 1, z̄)‖
+ ‖R(N , z)‖‖UN‖‖R(N + 1, z̄) − R(N , z)‖.

This shows that CN (z) is a Cauchy sequence, hence converges. 	

Let C0(z) = limN→∞ CN (z) and R0(z) = limN→∞ R(N , z).

Define

D0(z) = {M ∈ C
d×d : (M − C0(z))

∗R0(z)
−2(M − C0(z)) ≤ R0(z̄)

2} (52)

then

D0(z) = ∩N≥1D(N , z). (53)
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Theorem 9 Let z ∈ C
+ and M ∈ C

d×d . Then for F(N , z) = U (N , z) +
V (N , z)M, M ∈ D0(z) if and only if

∞∑

N=1

F(N , z)∗F(N , z) ≤ Im M

Im z
.

Proof Let M ∈ D0(z). Then by (53), M ∈ D(N , z) for all N , and from (35) we have

E(M, N ) = −2 Im M + 2 Im z
N∑

j=0

F( j, z)∗F( j, z) ≤ 0

which yields

N∑

j=0

F( j, z)∗F( j, z) ≤ Im M

Im z
.

Taking the limit as N → ∞ we get

∞∑

N=1

F(N , z)∗F(N , z) ≤ Im M

Im z
.

Conversely, for any N we have

N∑

j=1

F( j, z)∗F( j, z) ≤
∞∑

j=1

F( j, z)∗F( j, z) ≤ Im M

Im z
.

So E(M, N ) ≤ 0 for all N and hence M ∈ D0(z). 	


4 Conclusion

This paper generalized the classical Titchmarsh–Weyl theory of Schrödinger operators
from one dimension to higher dimensions and it provided a foundation for studying
spectral theory of multi valued discrete Schrödinger operators. The spectrum of these
operators can be described in terms of Weyl m functions as such we can study the
asymptotic behavior of solutions. Moreover, these Weyl m functions are the building
blocks for extending the Breimesser–Pearson’s results [3], and Remling’s result [12],
for vector-valued Schrödinger operators.
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