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Abstract: Introduction

The extremely low accident rate for U.S air carriers relative to that of general aviation
(~1 and ~60/million flight hours respectively) partly reflects advanced airman
certification, more demanding recurrency training and stringent operational regulations.
However, whether such skillset/training/regulations translate into improved safety for
airline pilots operating in the general aviation environment is unknown and the aim of
this study.

Methods

Accidents (1998-2017) involving airline pilots and instrument-rated private pilots (PPL-
IFR) operating non-revenue light aircraft were identified from the NTSB accident
database. An online survey informed general aviation flight exposure for both pilot
cohorts. Statistics used proportion testing and Mann-Whitney U tests.

Results

In degraded visibility, 0 and 40% (     p=0.043) of fatal accidents involving airline and
PPL-IFR airmen were due to in-flight loss-of-control, respectively. For landing
accidents, airline pilots were under-represented for mishaps related to airspeed
mismanagement (p=0.036) relative to PPL-IFR but showed a dis-proportionate count
(2X) of ground loss-of-directional control accidents (p=0.009) the latter likely reflecting
a preference for tail-wheel aircraft. The proportion of FAA rule violation-related mishaps
by airline pilots was >2X (7 vs. 3%) that for PPL-IFR airmen. Moreover, airline pilots
showed a disproportionate (p=0.021) count of flights below legal minimum altitudes.
Not performing an official preflight weather briefing or intentionally operating in
instrument conditions without an IFR flight plan represented 43% of airline pilot
accidents involving FAA rule infractions.

Conclusions

These findings inform safety deficiencies for: (i) airline pilots, landing/ground operations
in tail-wheel aircraft and lack of 14CFR 91 familiarization regulations regarding
minimum operating altitudes and (ii) PPL-IFR airmen in-flight loss-of-control and poor
landing speed management.

Practical Applications

For PPL-IFR airmen, training/recurrency should focus on unusual attitude recovery and
managing approach speeds. Airline pilots should seek additional instructional time
regarding landing tail-wheel aircraft and become familiar with 14CFR 91 rules covering
minimum altitudes.
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ABSTRACT 

 Introduction: The extremely low accident rate for U.S air carriers relative to that of general aviation (~1 

and ~60/million flight hours respectively) partly reflects advanced airman certification, more demanding 

recurrency training and stringent operational regulations. However, whether such skillset/training/regulations 

translate into improved safety for airline pilots operating in the general aviation environment is unknown and 

the aim of this study. Methods: Accidents (1998-2017) involving airline pilots and instrument-rated private 

pilots (PPL-IFR) operating non-revenue light aircraft were identified from the NTSB accident database. An 

online survey informed general aviation flight exposure for both pilot cohorts. Statistics used proportion testing 

and Mann-Whitney U tests. Results: In degraded visibility, 0 and 40% (χ2 p=0.043) of fatal accidents involving 

airline and PPL-IFR airmen were due to in-flight loss-of-control, respectively. For landing accidents, airline 

pilots were under-represented for mishaps related to airspeed mismanagement (p=0.036) relative to PPL-IFR 

but showed a dis-proportionate count (2X) of ground loss-of-directional control accidents (p=0.009) the latter 

likely reflecting a preference for tail-wheel aircraft. The proportion of FAA rule violation-related mishaps by 

airline pilots was >2X (7 vs. 3%) that for PPL-IFR airmen. Moreover, airline pilots showed a disproportionate 

(χ2 p=0.021) count of flights below legal minimum altitudes. Not performing an official preflight weather briefing 

or intentionally operating in instrument conditions without an IFR flight plan represented 43% of airline pilot 

accidents involving FAA rule infractions. Conclusions: These findings inform safety deficiencies for: (i) airline 

pilots, landing/ground operations in tail-wheel aircraft and lack of 14CFR 91 familiarization regulations 

regarding minimum operating altitudes and (ii) PPL-IFR airmen in-flight loss-of-control and poor landing speed 

management. Practical Applications: For PPL-IFR airmen, training/recurrency should focus on unusual 

attitude recovery and managing approach speeds. Airline pilots should seek additional instructional time 

regarding landing tail-wheel aircraft and become familiar with 14CFR 91 rules covering minimum altitudes.  

 

Keywords: general aviation, light aircraft, flying accidents, airline pilots, aviation safety  
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INTRODUCTION 

 Civil aviation can be arbitrarily divided into (i) revenue-based transportation comprised mainly of air 

carrier operations utilizing transport-category aircraft (>12,500 lbs.) and (ii) general aviation employing light 

aircraft (<12,500 lbs.) [1]. While air carrier operations have, over the last few decades, boasted a stellar safety 

record [1], alas general aviation, despite a modest decrease in accident rate over most recent years, still 

shows a lackluster record with a >60 times higher accident (herein also referred to as mishaps) rate [1, 2]. 

 The discrepancy in safety between airline and general aviation operations probably reflects multiple 

factors. First is the advanced certification and recurrency training requirements for airline aircrews. Presently, 

to exercise flying privileges for an air carrier, pilots must be air-transport pilot (ATP) certificated [3] whereas for 

general aviation operations the majority of general aviation airmen [4] hold a private pilot (PPL) certificate. In 

this regard, greater precision in regard to both instrument flight (i.e. operating the aircraft by sole reference to 

flight instruments) [5, 6] and landing operations are demanded for the ATP certificate. Specifically for 

instrument flight, a one quarter versus a three quarter scale lateral deflection of the course deviation indicator 

is allowed for the ATP [5] and private pilot instrument ratings [6] respectively. Similarly landing operations have 

tighter tolerances for ATP certification (a 100 versus 200 foot margin for spot landings). Transport-category 

aircraft spot landings (to mitigate against the possibility of a runway overrun) require precise energy-

management [7, 8] due to greater landing distances required than a light aircraft.  Recurrency training for air 

carrier pilots is also more frequent and demanding compared with general aviation [9]. Crews have to 

undertake such training every 6 (Captain) or 12 months (first officer) whereas a flight review for general 

aviation airmen operating light aircraft for non-revenue is only required once every 24 months [10]. Moreover, 

recurrency programs for airline pilots are more extensive typically consisting of a multi-day program (comprised 

of maneuvers, abnormal procedures, upset recoveries and line-oriented flight training [9]). In contrast a flight 

review for a PPL requires only 1 hour of flight and tasks are at the sole discretion of the instructor “as 

necessary for safe flight” [10]. A second reason for the superior safety of the air carriers is the more stringent 

regulations (14CFR 121) [11] governing their operations (relative to the corresponding rules (14CFR 91) 

governing general aviation [12]) as well as the use of standard operating procedures [13] the latter absent from 

general aviation. For instance, whilst airport minimum visibility requirements apply to departing air carrier flights 
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(14CFR 121.637), no such restrictions limit general aviation (14CFR 91) operations [11]. Third, although not 

mandatory, many US carriers have adopted safety management systems (SMS) and threat and error 

management training per Federal Aviation Administration recommendations [14, 15]. Lastly, aircraft employed 

for air carrier operations are certificated (14CFR 25) to a higher safety standard [16] with a greater level of 

equipment redundancy than airplanes (14 CFR 23) [17] used in general aviation.     

 Nevertheless, for the airline pilot operating light aircraft under 14CFR 91, certain aspects of air carrier 

operations could potentially offset the safety-promoting factors cited above. For example, automation, more 

prevalent for transport-category aircraft, has raised concern as to the erosion of manual flying skills with one 

research study demonstrating degraded Boeing 747 pilot performance when tasked with manual flying [18]. In 

addition, the typical general aviation light aircraft requires more control inputs of the primary flight control 

surfaces for any given wind conditions than a much heavier transport-category airplane subjected to identical 

conditions. Lastly, virtually all transport-category aircraft employed by air-carriers require two person crews 

(14CFR 25 certification [16]) allowing for a prescriptive division of tasks for the pilot flying and pilot monitoring 

(14CFR 121.542-545 [11]). In contrast, the vast majority of light aircraft are operationally approved for, and 

piloted, by a single crew member [19] with an attendant increase in workload [19]  

 Thus, whether more rigorous airman certification/recurrency training/stringent operational rules for 

airline pilots translates into improved safety in the general aviation environment or conversely, whether lesser 

automation coupled with lighter aircraft performance (more subject to winds) offsets such safety benefits has 

yet to be determined. Accordingly, we undertook a study to determine the level of safety of airline pilots flying 

non-revenue, light aircraft in operational areas where their professional training/experience/regulations, as 

described above, would be expected to impact. Specifically, the following question was posed: are airline pilots 

superior to their instrument-rated private pilot (PPL-IFR) counterparts as evidenced by a reduced proportion of 

(i) accidents attributed to an in-flight loss-of-control in degraded visibility- an event [20] previously cited on the 

NTSB “Most Wanted List” [21] (ii) landing accidents ascribed to deficient pilot technique and (iii) mishaps 

involving violation of the general aviation operations regulations (14CFR 91).  
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MATERIALS AND METHODS 

Procedure 

 Accidents were identified from a retrospective search of the downloaded NTSB Microsoft Access 

database (2018 Oct release) [22] involving (i) airline pilots the latter defined as an ATP-certificated professional 

airman holding a Class 1 medical, a type rating in a transport-category aircraft (or employed by an air carrier) 

and 65 years or younger and (ii) as a control group, instrument-rated PPLs holding a Class 3 medical. It should 

be noted that  the PPL population was deliberately restricted to those airmen concurrently holding an IFR 

rating (hereafter referred to as PPL-IFR pilots) to afford a comparison for airman performance in degraded 

visibility - instrument flying proficiency representing a core element of the ATP certificate [5]. 

 The database was queried for accidents occurring over the period spanning 1998-2017 involving piston 

engine-powered airplanes (<12,500 lbs.) in which flights were conducted under general operating flight rules 

(14CFR 91 [12]) for personal missions. Accidents in Alaska were excluded from the query strategy. Data were 

exported to Excel and checked for duplicates (which were deleted). Accident causes were per the NTSB final 

report. Airline pilot type rating data was obtained from a variety of publicly available resources [23, 24] and by 

the FAA Office of Accident Investigation and Prevention. 

 High-energy landings were defined as those for which the NTSB final report cited porpoising, multiple 

bounces or floating of the accident airplane [25, 26]. Conversely, landings with inadequate airspeed (low-

energy) were those cited as such or for which an aerodynamic stall occurred above the runway again per the 

NTSB final report [25].  

 An anonymous online survey as to non-revenue, 14CFR 91 operations of light aircraft by PPL-IFR and 

airline pilots (approved by the Embry Riddle Aeronautical University Institutional Review Board) to inform flight 

times and ambient conditions was constructed in SurveyMonkeyR (www.surveymonkey.com) and pre-tested by 

four FAA Safety Team general aviation pilots as well as co-authors MS and DC. Responses from the airline 

and PPL-IFR pilot populations at large were collected over the period spanning Feb 14-April 05, 2020. 

Statistical Analysis 

 Proportion testing used contingency tables and a Pearson Chi-Square or Fisher’s Exact (2-sided) tests 

to determine where there were statistical differences [27, 28]. The contribution of individual cells in proportion 
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tests was determined using standardized residuals (Z-scores) in post-hoc testing. Differences in median values 

for non-normally distributed data (determined using a Shapiro Wilks test) were tested using a Mann-Whitney 

test. All statistical analyses were performed using SPSS (v24) software. 

RESULTS 

Accident Pilot Population 

 In the retrospective analysis, a query of the NTSB Access database for general aviation accidents in 

the USA involving light aircraft occurring over the period spanning 1998-2017 returned 124 and 934 airline and 

PPL-IFR pilots with median ages of 49 and 54 years respectively. These two airman cohorts had accrued a 

median total flight experience of 12,917 and 1,042 hours in all aircraft respectively. 

In-Flight Loss-of-Control Accidents in 

Degraded Visibility. 

  We argued, that with the greater 

precision required for instrument flight 

per ATP certification [5, 6] and an 

increased exposure to degraded 

visibility concomitant with their 

professional occupation a reduced 

proportion of in-flight loss-of-control 

accidents in such visibility would be 

evident for airline pilots. Herein, 

degraded visibility was operationally 

defined as less than visual flight rules 

(i.e. cloud ceiling of < 3000 feet (AGL)) and/or ambient night lighting [29].  

 While 27% of instrument-rated private pilot (PPL-IFR) accidents occurred in degraded visibility (Figure 

1), airline pilots showed a lower proportion (11%) of such mishaps, a difference which was statistically 

significant (χ2 p<0.001). Loss-of-control accidents often have a fatal outcome [30] and indeed, this cause was 

previously cited on the NTSB “most wanted” list [21]. Perhaps not surprisingly, 40% of fatal accidents in 
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degraded visibility involving PPL-IFR airmen were ascribed to this event (Figure 2). In contrast, for airline 

pilots, there were no accidents in degraded 

visibility attributed to in-flight loss-of-

control. Again, this difference in 

proportions between the two pilot groups 

was statistically significant (χ2 p=0.043).  

 To determine if this absence of in-

flight loss-of-control accidents incurred by 

airline pilots was due to diminished general 

aviation flying in degraded visibility, the air 

carrier and PPL-IFR pilot populations at 

large were, in a prospective online survey, 

queried for their flight times and 

environmental conditions whilst operating 

light aircraft under 14CFR 91. Of 913 respondents, 295 airline and 618 PPL-IFR airmen completed the survey 

(Table 1). While indeed, the latter airmen showed an approximately 3 fold increase in annual IMC/night flight 

times compared with air carrier pilots, this difference unlikely accounts for the complete lack of in-flight loss-of-

control accidents involving airline pilots operating in degraded visibility.  

Landing Accidents. 

 Landing a transport category aircraft requires a higher degree of precision than a comparable operation 

with a light aircraft due to the greater weight and physical dimensions. Specifically, a substantially higher 

weight (e.g. maximum landing weight of a Boeing 737-800 is 146,275 lbs. [31] 57 fold higher than that of a 

Cessna 172S (2,550 lbs.) [32]) necessitates a faster landing speed which must be closely adhered to in order 

to avoid a runway overrun. Likewise, the greater lateral spacing of the main landing gear wheels also demands 

precision in directional control of a transport-category aircraft after touchdown. In contrast, operating a light 

aircraft at the majority of US civil aviation airports [33] with their relatively long and wide runways allow for 

deficiencies in the aforementioned skills with a reduced risk of a runway excursion. To determine if the airline 
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pilot landing skillset transferred to the operations of light aircraft, landing accidents were compared for the two 

pilot cohorts.  

 Across all phases of 

flight operations, landing 

accidents were the most 

frequent for both airline and 

PPL-IFR pilots accounting for 

39% (n=22) and 27% (n=259) 

of mishaps, respectively. 

Although the elevated 

proportion for air carrier airmen 

relative to the PPL-IFR cohort 

was not statistically different 

(χ2 p=0.069), nevertheless, it 

contravenes the notion that 

landing proficiency skills in 

transport-category aircraft 

transfers to light aircraft 

operations.  

Table 1. Prospective Survey of Airline 

and PPL-IFR Pilots. 

 Results of an online survey 

conducted of the airline (Airline) and 

instrument-rated private (PPL-IFR) 

pilot population-at-large. Data were 

non-normally distributed per a Shapiro-Wilk test and accordingly differences in median values tested using a Mann-Whitney U Test. 

Proportion differences for landing gear type was tested using a Chi-Square test.  h, hours; Q, quartile. IMC, instrument meteorological 

conditions.  

 

Airline Pilots PPL-IFR P Value
n 295 618

Median (h) 53 60 <0.001

Q1 (h) 43 48

Q3 (h) 60 68

n 293 615

Median (h) 500 730 0.011

Q1 (h) 260 323

Q3 (h) 1350 1700

n 292 613

Median (h) 75 80 0.005

Q1 (h) 44 50

Q3 (h) 100 120

n 295 618

Median (h) 10 16 <0.001

Q1 (h) 5 9

Q3 (h) 20 30

n 295 618

Median 8 10 0.069

Q1 3 5

Q3 15 17

n 295 618

Median (h) 2 7 <0.001

Q1 (h) 0 2

Q3 (h) 10 15

n 295 618

Median (h) 2 7 0.005

Q1 (h) 0 2

Q3 (h) 10 15

Tail-Wheel (n) 90 32

% 31 5

Nose-Wheel (n) 205 586

% 69 95

p<0.001

Annual Night Time (h) 

Light Aircraft Most 

Commonly Used

Age

Total Time Light Aircraft 

(h) Most Commonly Flown

Annual Light Aircraft Time 

(h) Airplane Most 

Frequently Flown 

Last 90 Days Flight Time 

(Make-Model)

Annual IMC Time (h) Light 

Aircraft Most Frequently 

Operated

Number of Flights in Light 

Aircraft Most Commonly 

Operated Last 90 Days

Landing Gear Type
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 Landing accidents ascribed to deficiencies in pilot stick and rudder skills were then categorized as to 

cause. Airline pilots were superior to their PPL-IFR counterparts in energy management with zero landing 

mishaps ascribed to either excessive (High-energy Approach) or insufficient speed (Low-Energy Approach) 

(Figure 3). On the other hand, 

approximately 26% of landing 

mishaps by PPL-IFR airmen 

were due to a high-energy 

approach (defined as any in 

which the aircraft porpoised, 

floated or bounced multiple 

times) a difference which was 

statistically significant (χ2 

p=0.036).  

 Conversely, a higher 

(χ2 p=0.009) proportion of 

landing accidents which the 

NTSB binned into the “ground 

loss of directional control” 

category (0.92 vs. 0.53) was 

evident for airline pilots (Figure 3). This was unexpected as managing this vector component is more critical for 

a transport category aircraft with its substantially wider main wheel base compared with that of a light aircraft. 

We considered the possibility that this surprising finding was related to the type of aircraft landing gear. Tail-

wheel (conventional) and tricycle (nose) landing gear-equipped aircraft exhibit different handling characteristics 

and are well recognized as more challenging to maintain ground directional control particularly in a cross-wind 

[34]. Indeed, consistent with this argument, while over 70% of landing accidents involving air carrier pilots were 
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incurred with tail-wheel airplanes, this proportion was substantially lower (<30%) for such mishaps involving 

PPL-IFR airmen  (Figure 4). This difference in accident aircraft landing gear type was statistically significant for 

the two pilot cohorts (χ2 p<0.001). Presumably, the over-representation of this type of landing accident for 

airline pilots reflects their preference for such-equipped aircraft for general aviation operations (Table 1). It is 

worth noting that none of the ground loss of directional control accidents involving airline pilots in tail-wheel 

equipped airplanes 

was due to an 

exceedance of the 

maximum 

demonstrated cross-

wind component. 

 

Violation of FAA 

Regulations. 

 Airline 

operations are under 

strict vigilance for 

infringement of the FAA regulations via a variety of mechanisms including flight quality assurance programs 

[35] and audio recordings of the flight deck [11]. In contrast, little comparable oversight exists for general 

aviation. Moreover, airline pilots are well aware that infractions of the regulations leading to an incident or 

accident may culminate in the revocation of flying privileges and hence income. With these factors in mind, we 

hypothesized that a diminished fraction of FAA violation-related general aviation accidents would be evident for 

these airmen whilst operating light aircraft. 

 Contrary to expectations, the proportion of 14CFR 91 rules transgression-related mishaps by airline 

pilots, although low, was more than double (7 vs. 3% respectively) that for accidents involving PPL-IFR airmen. 

There was little evidence of a temporal trend in such accidents as 3 and 4 of mishaps involving an infraction of 

the FAA regulations occurred over the 1998-2007 and 2008-2017 periods respectively, The infractions of the 
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FAA regulations were then sub-categorized (Table 2). Interestingly, there was a disproportionate (χ2 p=0.021) 

number of violations involving airline pilots in which the light aircraft was 

 

Table 2. Categories of FAA Violations for Airline and PPL-IFR Pilots. 

 The count (n) and proportion (fraction) of accidents in which the NTSB cited the specified FAA violation is tabulated. P values 

were derived from adjusted residuals from a Fisher’s Exact Test. Wx, weather. 

 

operated below the legal minimum altitude -accounting for 57% of FAA rule infractions. In contrast, this 

subcategory accounted for 17% of all PPL-IFR accidents in which the FAA regulations were breached. 

Interestingly, the second most common (constituting 43% of all FAA transgressions) violation of the FAA 

regulations for accidents involving airline pilots was the “No Pre-Flight WX Briefing OR Intentional Flight 

Operations in Instrument Conditions.” However, in statistical testing, the proportions corresponding to this 

violation category for the two groups of accident pilots were comparable (p>0.005). 

DISCUSSION AND CONCLUSIONS 

 We show herein that, for general aviation operations, airline pilots show both safety improvements and 

deficits relative to PPL-IFR airmen. Regarding improvements the absence of in-flight loss-of-control accidents 

in degraded visibility was notable for airline pilots. Conversely, and initially surprising, these airmen were more 

likely to experience a ground loss of directional control during the landing roll. Finally, in regard to violations of 

the FAA regulations, despite the regimented nature of air carrier operations, airline pilots showed a greater 

proclivity for disregarding the minimum altitudes prescribed by 14CFR 91.    

 The safety of the airline pilots operating in degraded visibility, as witnessed by an absence of any in-

flight loss-of-control accidents, merits some discussion especially since such mishaps under corresponding 

FAA Violation Count (n) Fraction Count (n) Fraction Pvalue

Disqualifying Medical Condition/Use of Illegal Drugs 0 0.00 4 0.10 >0.05

Intentional Visual Flight Departure into Instrument 

Conditions OR No Pre-Flight WX Briefing 3 0.43 22 0.54 >0.05

Lack of IFR Currency 0 0.00 2 0.05 >0.05

Maneuvering Flight below Legal Minimum Altitude 4 0.57 7 0.17 0.021

Un-Airworthy aircraft 0 0.00 6 0.15 >0.05

>0.05

TOTAL 7 1 41 1

Airline Pilots PPL-IFR
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conditions in the general aviation sector are frequent and moreover carry a high fatality rate [30]. Certainly, 

these professional airmen have a high exposure to such weather conditions as part of their professional 

occupation. In contrast PPL-IFR pilots eschew operating in such weather [36] and struggle to maintain 

currency to legally operate in instrument conditions [37]. Nevertheless, transport-category aircraft are highly 

automated and there is current debate as to whether such automation adversely affects stick-and-rudder skills. 

Indeed, in a study of Boeing 747 aircraft pilots tasked with performing an instrument approach in which aircraft 

automation was progressively degraded [18], 44% were in error in identifying the missed approach fix and 16% 

descended below the minimum altitudes prescribed by the approach chart. How then do these findings 

reconcile with the stellar performance of airline pilots operating light aircraft with less automation [36] in 

degraded visibility in the general aviation environment? We suspect that a combination of increased 

experience operating transport-category aircraft under such conditions and ATP certification [38, 39] 

demanding a higher level of proficiency in instrument flight (relative to the IFR rating held by PPL airmen) more 

than offset any decrements caused by frequent automation usage.  

 The sub-classification of landing accidents related to pilot technique informs performance deficiencies 

for both the PPL-IFR and airline pilot cohorts. Indeed, the preponderance of landing accidents caused by poor 

landing speed control (mainly high-energy) for the former airmen contrasting with the absence of such mishaps 

for the latter pilots is noteworthy. Our findings are congruent with those of prior studies [25, 26] reporting on the 

tendency of general aviation pilots to carry excessive landing speeds (higher than V-Ref –airplane speed in the 

landing configuration, at the point where it descends through the 50 ft. height) [40]. Such a practice with 

transport category aircraft would lead to an abundance of runway overruns and air carrier pilots must adhere 

closely to the approach speed regimen. On the other hand, airline pilots relative to their PPL-IFR counterparts 

showed a greater deficiency in maintaining ground directional control during the landing roll. We argue that 

several reasons likely underlie this observation. First, airline pilots accrued a lower amount of time-in-type as 

evident from both a prospective survey of the airline pilot population-at-large as well as that for the accident 

airmen (median make-model flight times-132 and 261 hours for airline and PPL-IFR respectively). Second, 

compared with operating a transport category aircraft, light aircraft demand more control inputs for identical 

landing wind conditions. Third, and likely most important, is the preference of airline pilots for operating light 



12 
 

aircraft with tail-wheel landing gear (conventional undercarriage). It is well established that such airplanes 

show ground handling characteristics at variance with tricycle aircraft [41]. Specifically, conventional aircraft 

are inherently unstable on the ground and exhibit an exaggerated tendency to weathervane during ground 

operations in a cross-wind [41]. In regard to this latter point, we considered the possibility that the involved 

conventional under-carriage aircraft had unique ground handling characteristics based on (i) being of 

experimental build or (ii) less rigorous certification standards in effect for older aircraft. However, these 

arguments are unlikely for two reasons. First none of the ground loss of directional control mishaps involved 

experimental (i.e. non-certificated) aircraft. Second, whilst indeed the involved aircraft were of older vintage 

and subject to earlier certification regulations (i.e. civil air regulations-CARs [42]), such standards with respect 

to ground handling were identical to those promulgated for later aircraft certification per 14CFR 23.231-233 

[43] effective up to 2017. 

 Surprisingly, airline pilots involved in accidents did not show greater compliance with the FAA 

regulations than PPL-IFR airmen. For this accident category, more than half of mishaps were due to these 

airmen operating the aircraft below the minimum altitudes prescribed by 14CFR 91.119 (500 and 1,000 feet 

above ground for other-than-congested and congested areas respectively) [12]. Why is this? One must 

consider that airline operations are all conducted under IFR rules requiring adherence to minimum altitudes 

defined by jet routes, standard arrivals and departures [44] absent for VFR operations. Whether airline pilots 

were unfamiliar with the minimum altitudes for VFR operations per 14CFR 91 [12] or were deliberately 

operating contrary to such regulations is currently unknown. Based on anecdotal information we suspect the 

former. Thus, for three of the four minimum altitude infractions, in their NTSB statements one pilot admitted to 

flying “ along a creek” another, “through a valley” with the third airman stating descending to what he ”thought 

was a safe VFR altitude.” Notably, none of these accidents were due to degraded visibility ruling out “scud-

running” as a causal factor. Another question raised by this infraction relates to the role of surveillance evident 

in the airline industry but absent from general aviation. Consequently, general aviation pilots may be tempted 

to infringe such minimum altitudes with immunity nevertheless developing a greater skillset with respect to 

operating below legal minimum altitudes. 
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 Also noteworthy was the disregard by airline pilots for the FAA regulations necessitating preflight 

weather briefings and intentional flight into instrument conditions. We entertain the possibility that the former 

transgression relates to the role of the airline dispatcher in preparation of a weather briefing for their pilots. It 

may be that (i) the airline pilot is so habituated to receiving this prepared material that such a task is 

overlooked for general aviation and/or (ii) he/she may be unaware of the tools to obtain a weather brief via 

official sources typically used by the general aviation pilot. 

 Although our research is the first to report on airline pilot safety in general aviation, an older study of 

accidents spanning the 1973-1983 period merits discussion [45]. The authors of that report noted that most 

ATP-certificated pilot accidents were due to aerobatics whereas, in the current study, aerobatics was cited for 

a single airline pilot accident. Moreover, only 4% of the airline pilot population-at-large survey respondents 

indicated this as the primary purpose of their general aviation flights. How can the differences in the results 

between the two studies be reconciled? A key difference in study design is pertinent. Specifically, the Salvatore 

and co-author study was not limited to airline pilots per their two inclusion criteria: (i) ATP-certificated and (ii) a 

self-description as a “professional pilot.” Thus, the cohort would also include pilots engaged in charter 

operations (14CFR 135), corporate flying and other non-air carrier professions with corresponding lower levels 

of training/recurrency/oversight. In addition, much has changed in general aviation over the intervening three 

decades in regard to technology such as in-flight data-linked weather and in the case of general aviation 

scenario-based training [46]. 

 Our study was not without limitations. First, the absence of denominator data for both pilot cohorts 

operating under 14CFR 91 regulations precluded the determination of accident rates. Second, the count of 

airline pilot accidents was, in some cases, small. Third, risk exposure was determined in a prospective study 

with accident data obtained in a retrospective query. Fourth, type rating data, used as one of the criteria to 

operationally define an airline pilot, was in some instances based on information current at the time (2019-

2020) over which the research was conducted. As a result, for a subset of non-fatal accident pilots, a type 

rating may have been achieved after the mishap. Fifth, we accept that the multiple criteria used concurrently 

(ATP certification, a Class 1 Medical and type rating in a transport category aircraft) to operationally define an 

airline pilot  might also lead to the inclusion of a few airmen who do not fly for an air carrier. Finally, (and not 
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addressed in the current study) it would be of particular interest in a future survey to determine how airline and 

PPL-IFR pilots’ views compare with respect to safe operations of a light aircraft. In a similar vein, endeavors to 

capture accident pilot attitudes in NTSB reports with respect to “thrill-seeking” in an environment absent for 

surveillance are lacking.  

 Although the objective of the current study was to determine the safety of airline pilots in the general 

aviation environment, the findings inform performance deficiencies for both these and PPL-IFR pilots which 

warrant redress. Notably, regarding the preponderance of in-flight loss-of-control fatal accidents involving PPL-

IFR pilots, such airman would be well served by increasing the frequency of recovery from unusual attitudes 

maneuvers by reference to instruments in recurrency training. Moreover, for airmen with deficient IFR 

proficiency skills, safety could be improved by development of computer-based training systems which provide 

pilots with skills to recognize cues (e.g. cloud bases, visibility, darkening) associated with impending IMC as 

reported elsewhere [47]. The wide availability of advanced aviation training devices should make for a cost-

effective means of achieving/maintaining such proficiency. PPL-IFR safety would also benefit from an 

increased emphasis on landing energy/speed management in training/recurrency. As to airline pilot safety, 

airmen seeking to operate a light aircraft with tail-wheel landing gear should consider, post tail-wheel 

endorsement, additional dual time with an instructor (well experienced in conventional landing gear operations) 

focusing on landing/ground operations particularly under crosswind conditions. This recommendation would be 

on par with the initial operating experience required (14CFR 121.913) for airline pilots [11]. Finally, it would 

behoove airline pilots to adhere more closely (and if necessary familiarize themselves with) to 14CFR 91 

regulations pertinent to general aviation operations (in particular minimum altitudes) towards improving their 

safety whilst operating light aircraft. 

PRACTICAL APPLICATIONS 

 For PPL-IFR airmen, training/recurrency should focus on unusual attitude recovery and managing 

approach speeds. Airline pilots should seek additional instructional time regarding landing tail-wheel aircraft 

and become familiar with 14CFR 91 rules covering minimum altitudes. Lastly, future accident reporting should 

seek to capture airline pilot attitudes in the “overconfidence/misplaced motivation” nano-codes in the 
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Preconditions for Unsafe Acts/Adverse Mental States domain per the established Human Factor Classification 

System [48, 49]. 
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