Corrigendum: The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

William C. Keel
University of Alabama

Terry Oswalt
Embry-Riddle Aeronautical University, oswaltt1@erau.edu

Peter Mack
Astronomical Consultants and Equipment, Inc

Gary Henson
4 East Tennessee State University

Todd Hillwig
Valparaiso University

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/publication

Part of the *Instrumentation Commons*

Scholarly Commons Citation

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Authors
William C. Keel, Terry Oswalt, Peter Mack, Gary Henson, Todd Hillwig, Daniel Batcheldor, Robert Berrington, Chris De Pree, Dieter Hartmann, Martha Leake, Javier Licandro, Brian Murphy, James Webb, and Matt A. Wood
Corrigendum: The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

William C. Keel1, Terry Oswalt2, Peter Mack3, Gary Henson4, Todd Hillwig5, Daniel Batcheldor6, Robert Berrington7, Chris De Pree8, Dieter Hartmann9, Martha Leake10, Javier Licandro11,12, Brian Murphy13, James Webb14, and Matt A. Wood15

1 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487, USA; wkeel@ua.edu
2 Embry-Riddle Aeronautical University, Daytona Beach, FL, USA; oswaltt1@erau.edu
3 Astronomical Consultants and Equipment, Inc., Tucson, AZ, USA; pmack@astronomical.com
4 East Tennessee State University, Johnson City, TN, USA; hensong@mail.etsu.edu
5 East Tennessee State University, Muncie, IN, USA; Todd.Hillwig@valpo.edu
6 Ball State University, Muncie, IN, USA; batcheldor@fit.edu
7 Ball State University, Muncie, IN, USA; rberring@bsu.edu
8 Agnes Scott College, Decatur, GA, Georgia; cdepree@agnesscott.edu
9 Clemson University, Clemson, SC, USA; hdieter@g.clemson.edu
10 Valdosta State University, Valdosta, GA 31698, Georgia; mleake@valdosta.edu
11 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38205 La Laguna, Spain; jlicandr@iac.es
12 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
13 Butler University, Indianapolis, IN, USA; bmfurmurphy@butler.edu
14 Florida International University, Miami, FL 33199, USA; webbj@fiu.edu
15 Department of Physics and Astronomy, Texas A&M University—Commerce, Commerce, TX 75429, USA; Matt.Wood@tamuc.edu

Received 2021 June 8; published 2021 June 24

Abstract

Bill Gray of Project Pluto brought to our attention an error of 0.03° in the listed latitude of our Kitt Peak telescope. While correcting the table where this occurred, we also take the opportunity to update the instrument properties and weather statistics of our remote telescopes.

Unified Astronomy Thesaurus concepts: Telescopes (1689); Remote telescope astrophotography (1395)

1. Telescope Sites

The SARA sites are summarized in Table 1.

Table 2 lists the properties of CCD systems used on the telescopes. For completeness it also includes imagers employed in the past. The locations of available guiding fields relative to the Andor imaging CCD at SARA-RM, newly determined, are shown in Figure 1. Figure 2 updates the weather statistics at each site with data from 2016–2021, now including SARA-RM.

Figure 1. Focal-plane map for the imager and guider fields at SARA-RM (the JKT), matching those previously published for the other SARA telescopes.
2. Telescope Usage and Performance

Table 3 gives magnitudes for stellar images with \(S/N = 10 \) in ten minutes for each telescope and current cameras, for representative seeing conditions at moderate airmass \(X = 1.3 \). These used simple aperture photometry, summing flux within a radius of \(2''5 \).

![Figure 2](image_path)

Figure 2. Monthly clear-weather statistics for all three SARA telescopes for the period 2011–2021 April (at La Palma, starting in 2016 April). Lines are monthly averages; dotted lines show the \(\pm 1\sigma \) range, while shaded regions encompass minimum and maximum over this period. The gap for Kitt Peak in August reflects the shutdown for the monsoon storm season. Hours lost for technical reasons are omitted from the calculation. These values reflect hours from nightly reports when filed by observers.

Table 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Name</th>
<th>Aperture (m)</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitt Peak</td>
<td>SARA-KP</td>
<td>0.96</td>
<td>111°35'58"0 W</td>
<td>+31°57'38"1</td>
<td>2073</td>
</tr>
<tr>
<td>Cerro Tololo</td>
<td>SARA-CT</td>
<td>0.6</td>
<td>70°47'57"11 W</td>
<td>-30°10'19"23</td>
<td>2012</td>
</tr>
<tr>
<td>Roque de los Muchachos</td>
<td>SARA-RM</td>
<td>1.0</td>
<td>17°52'41"1 W</td>
<td>+28°45'40"2</td>
<td>2369</td>
</tr>
</tbody>
</table>

2. Telescope Usage and Performance

Table 3 gives magnitudes for stellar images with \(S/N = 10 \) in ten minutes for each telescope and current cameras, for representative seeing conditions at moderate airmass \(X = 1.3 \). These used simple aperture photometry, summing flux within a radius of \(2''5 \).
3. Consortium Organization and Governance

New members of the SARA Consortium since 2016 are Florida Gulf Coast University (FGCU) and the University of Delaware, partnered with Mt. Cuba Astronomical Observatory.

Table 2
CCD Imager Properties

<table>
<thead>
<tr>
<th>Site/Camera</th>
<th>Pixel Scale (")</th>
<th>Field (")</th>
<th>Gain</th>
<th>Read Noise (ADU)</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARA-KP ARC</td>
<td>0.44</td>
<td>899</td>
<td>2.3</td>
<td>6.0</td>
<td>2012–present</td>
</tr>
<tr>
<td>SARA-KP U42</td>
<td>0.38</td>
<td>782</td>
<td>1.2</td>
<td>8.7</td>
<td>2006–2012</td>
</tr>
<tr>
<td>SARA-CT ARC</td>
<td>0.38</td>
<td>776</td>
<td>2.6</td>
<td>5.5</td>
<td>2013–present</td>
</tr>
<tr>
<td>SARA-CT E6</td>
<td>0.61</td>
<td>621</td>
<td>1.5</td>
<td>8.9</td>
<td>2010–2012</td>
</tr>
<tr>
<td>SARA-CT QSI</td>
<td>0.14</td>
<td>343 × 455</td>
<td>0.46</td>
<td>12.4</td>
<td>2012–2013</td>
</tr>
<tr>
<td>SARA-CT FLI</td>
<td>0.61</td>
<td>622</td>
<td>2.0</td>
<td>9.7</td>
<td>2015–2021</td>
</tr>
<tr>
<td>SARA-CT Andor Ikon-L</td>
<td>0.34</td>
<td>696</td>
<td>1.0</td>
<td>7.1</td>
<td>2021–present</td>
</tr>
<tr>
<td>SARA-RM Andor Ikon-L</td>
<td>0.34</td>
<td>697</td>
<td>1.0</td>
<td>6.3</td>
<td>2016–present</td>
</tr>
</tbody>
</table>

Table 3
Limiting Magnitudes at S/N = 10 in 10 minutes

<table>
<thead>
<tr>
<th>Site</th>
<th>B</th>
<th>V</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitt Peak</td>
<td>20.8</td>
<td>20.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Cerro Tololo</td>
<td>21.2</td>
<td>20.7</td>
<td>19.9</td>
</tr>
<tr>
<td>La Palma</td>
<td>21.4</td>
<td>21.6</td>
<td>21.1</td>
</tr>
</tbody>
</table>