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Frequency, intensity, and sensitivity to sea surface temperature

of North Atlantic tropical cyclones in best-track and simulated data
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[1] Synthetic hurricane track data generated from a downscaling approach are com-
pared to best-track (observed) data to analyze differences in regional frequency, inten-
sity, and sensitivity of limiting intensity to sea surface temperature (SST). Overall, the
spatial distributions of observed and simulated hurricane counts match well, although
there are relatively fewer synthetic storms in the eastern quarter of the basin. Addition-
ally, regions of intense synthetic hurricanes tend to coincide with regions of intense
observed hurricanes. The sensitivity of limiting hurricane intensity to SST computed
from synthetic data is slightly lower than sensitivity computed from observed data
(5.5 6 1.31 m s21 (standard error, SE) and 8.6 6 1.57 m s21 (SE), respectively); how-
ever, the synthetic data produce sensitivity values that are much closer to the observed
values than those obtained from two global climate models (GCMs) in a previous
study. Despite a close match in the magnitude of basin wide sensitivities, the spatial
variability of sensitivities do not match. These values tend to be highest in the western
portion of the basin for the observed data, while the opposite is true for the synthetic
data.

Citation: Strazzo, S., J. B. Elsner, J. C. Trepanier, and K. A. Emanuel (2013), Frequency, intensity, and sensitivity to sea surface temperature of

North Atlantic tropical cyclones in best-track and simulated data, J. Adv. Model. Earth Syst., 5, 500–509, doi:10.1002/jame.20036.

1. Introduction

[2] Throughout the past century, tropical cyclones
(TCs) have caused considerable damage to both human
life and property. As global climate change continues to
be an area of concern and significant scientific inquiry,
many question how TC frequencies and intensities may
be affected by a warming climate [e.g., Emanuel, 2005;
Elsner et al., 2008; Vecchi et al., 2008; Knutson et al.,
2010]. In recent years, several methods for addressing
questions about TCs and climate change have emerged.
One such method employs statistical models built on
observational hurricane data [e.g., Mann and Emanuel,
2006; Elsner et al., 2008; Kossin et al., 2010]. These
models yield insight into the current state while also
providing evidence for potential future changes. Despite
these benefits, uncertainty associated with statistical
model parameters is large owing to short, heterogene-
ous data records [e.g., Landsea et al., 2004].

[3] In addition to statistical models, global climate
models (GCMs) have been proposed as potentially

useful tools for studying tropical cyclone climate [e.g.,
Broccoli and Manabe, 1990; Bengtsson et al., 1996]. In
fact, recent model analyses demonstrated that some
GCMs are capable of reproducing aspects of the
observed TC climatology [e.g., Camargo et al., 2005;
Oouchi et al., 2006; LaRow et al., 2008; Zhao et al.,
2009; Strazzo et al., 2013]. Models with horizontal grid
spacing as low as 20 km have been employed to exam-
ine TC frequencies and intensities under various global
warming scenarios [e.g., Oouchi et al., 2006; Murakami
et al., 2011]. However, despite some promising results,
hurricane eyewall structure is still not adequately
resolved [Chen et al., 2007]. Because of this limitation,
caution must be exercised when interpreting model
results, particularly with respect to TC intensity.

[4] Another method for assessing tropical cyclone cli-
mate has recently been added to the repertoire. This
technique makes use of the National Center for Envi-
ronmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data set to gener-
ate synthetic hurricane track data [Emanuel, 2006]. The
synthetic data consist of a series of potential tracks and
intensities covering the period 1980–2010, inclusive.
Synthetic TCs are generated using a random seeding
method [Emanuel et al., 2008], and then tracked using a
separate method that employs NCEP/NCAR reanalysis
data. Storm intensity along the tracks is simulated using
a deterministic numerical model. Variants on this
method have been applied in Emanuel et al. [2008] and
Emanuel [2010]. Results from these papers indicate that
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tracks generally conform to the spatial distribution and
interannual variability of observed tropical cyclones
over the North Atlantic basin. Additional details con-
cerning the generation of these synthetic tracks will be
discussed further in section 2.

[5] Despite recent advances, GCMs have limitations
in assessing tropical cyclones in the context of climate
and climate change. This is particularly true for ques-
tions concerning intensity. For example, one potential
limitation of GCMs was highlighted in Elsner et al.
[2013], who applied extreme value theory to examine
the sensitivity of hurricane maximum wind speed to sea
surface temperature (SST) for observations and two
atmospheric GCMs. They demonstrated that while
observations exhibited sensitivity values of 7.9 6 1.19 m
s21 K21 (SE), values for the models were as low as
1.8 6 0.42 m s21 K21 (SE).

[6] Although this method has been applied to GCM-
generated track data, it has not yet been applied to
examine sensitivity values for synthetic track data gen-
erated through the downscaling methods outlined in
Emanuel [2006]. From the Elsner et al. [2013] results, we
know that the current suite of GCMs is unable to accu-
rately capture the sensitivity of the most intense hurri-
canes to SST. These results agree well with the known
limitations of GCMs to realistically simulate eyewall
structure and maximum wind speed. However, we do
not know how well the synthetic track data match
observations with respect to sensitivity of limiting inten-
sity to SST. As the downscaling approach continues to
be utilized for hurricane-climate research, it also may
be useful to examine sensitivity values for the synthetic
track data. Because the downscaling approach incorpo-
rates a high-resolution deterministic model capable of
resolving the eyewall region of the hurricane, we
hypothesize that the synthetic hurricanes will better
match the observed sensitivity of limiting intensity to
SST.

[7] This study provides a comparison of the observa-
tional and synthetic hurricane data sets using metrics of
frequency, intensity, and the sensitivity of intensity to
SST. We apply a statistical model similar to that intro-
duced in Elsner et al. [2012b] and later applied to
GCM-generated track data in Elsner et al. [2013]. To
avoid some of the assumptions that are necessary to
estimate the statistical model, we also calculate the sen-
sitivity values using a simplified method (discussed in
detail in section 4). The paper is organized as follows:
the data are discussed in section 2, the spatial methodol-
ogy is introduced in section 3, relationships between
SST and TC frequency and intensity are presented in
section 4, and the spatial variability of these relation-
ships are presented in section 5. Finally, section 6 sum-
marizes the results and provides some concluding
remarks.

2. Data

[8] This study compares simulated TC data with best-
track data over the entire North Atlantic basin for
the period 1980–2010. For observations we utilize the

hurricane data (HURDAT) best-track data set main-
tained by the U.S. National Oceanic and Atmospheric
Administration (NOAA) National Hurricane Center
(NHC). The best-track data set contains the 6 hourly
center locations and intensities of all known tropical
cyclones across the North Atlantic basin, including the
Gulf of Mexico and Caribbean Sea. Center locations
(center fixes) are given in geographic coordinates (in
tenths of degrees); intensities, representing the 1 min
near-surface 10 m wind speeds, are given in knots; and
minimum central pressures are given in millibars. The
version of HURDAT used here contains cyclones over
the period 1851–2010, inclusive http://www.nhc.noaa.-
gov/pastall.shtml. Information on the history and origin
of these data is available from Jarvinen et al. [1984].

[9] As in Elsner et al. [2012b] and Elsner et al. [2013],
we use a technique combining splines and spherical ge-
ometry to interpolate the raw 6 hourly best-track data
to hourly intervals. The resulting interpolated best-
track data set contains hourly estimates of TC posi-
tions, minimum central pressures, and maximum wind
speeds. Details of the procedure, including R code for
the interpolation, are given in Elsner and Jagger [2013].
When the synthetic data were generated, TCs with peak
lifetime wind speeds of less than 40 knots were not
included. Thus, we also remove any observed TCs with
lifetime maximum wind speeds of less than 40 knots (31
TCs out of a total of 364). Next, 60% of the forward
speed is subtracted from the best-track speed to obtain
an estimate of the cyclone’s maximum rotational veloc-
ity [Emanuel et al., 2006]. We remove all points over
land so that only TCs over water are included in the
analysis.

[10] The simulated (synthetic) data represent a large
number of cyclone tracks together with a deterministic
intensity model integrated along each track. The tracks
are based on a weighted average of the upper and lower
tropospheric flow plus ‘‘beta drift’’ [Emanuel, 2006,
2010]. The flow is simulated from wind time series
where the monthly mean, variance, and covariances
conform to the statistics derived from the NCEP/
NCAR reanalysis data. Wind shear derived from the
flows serves as input to the intensity model. Statistics of
the simulated hurricane motion match the statistics of
observed hurricane motion. Finally, the method ensures
that hurricane intensity conforms broadly to the under-
lying physics, including the natural limitations imposed
by potential intensity, ocean coupling, vertical wind
shear, and landfall.

[11] We reformat the data to match the best-track for-
mat and convert the wind speeds from units of knots to
meters per second. The synthetic data contain a total of
6200 tropical cyclones, which compares to 332 observed
tropical cyclones over the same 1980–2010 time period.
The synthetic data consist of 2 hourly simulated sam-
ples for each storm; therefore, we take only the even
hours of the previously described hourly interpolated
best-track data set to match the sampling frequency of
the synthetic samples. Figure 1 (top) shows the distribu-
tion of the rotational component of the wind speeds for
the best-track and simulated hurricane sets. With more
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TCs, the synthetic distribution is smoother than the
observed distribution. The cumulative distribution of
observed and simulated winds is given in Figure 1 (bot-
tom), where it can be seen that the distributions match
near the 55th percentile (25 m s21).

[12] In addition to the observed and simulated TC
track data, this study makes use of the NOAA
Extended Reconstructed Sea Surface Temperature
(ERSST) V3b data set to calculate sensitivity values
(available from www.esrl.noaa.gov/psd/data/gridded/
data.noaa.ersst.html). For each grid point, we take the
average August-September-October (ASO) value over
the 1980–2010 time period. The SST data are then
transformed from latitude-longitude grids to a Lambert
conformal conic (LCC) projection with secant latitudes
of 30� and 60� N and a projection center of 60� W longi-
tude (the same projection used by the NHC for seasonal
summary maps).

3. Spatial Framework for Comparing Hurricane
Climatology

[13] This study consists of a spatial comparison of
simulated and observed hurricanes in terms of fre-
quency, intensity, and sensitivity to SST. To accomplish
this, we first create separate spatial points data frames
for the observed and simulated hurricanes and trans-
form the center fix locations given in latitude and longi-
tude to the same LCC projection as is used to project
the SST data. We next create a hexagonal tessellation of
the basin from the set of best-track hurricanes. This is
done by gridding a rectangular domain encompassing
the set of observed hurricane locations into equal-area
hexagons [Elsner et al., 2012a, 2012b]. We opt to use a
spatial lattice because it provides a uniform framework
for comparing observed and synthetic tracks. This
approach allows us to easily calculate spatial statistics
while not compromising the physical interpretation.
For example, we may examine the spatial distribution
of TCs by summing the number of unique storms within
each hexagon, which results in integer TC counts for
each hexagon. Conversely, if we had instead used area-
corrected latitude-longitude grids, TC counts would no
longer be integer values, making their interpretation
less physically meaningful. Additional details and justi-
fication for the spatial framework may be found in Els-
ner et al. [2012a].

[14] The area of each hexagon is a compromise
between being large enough to have a sufficient number
of hurricanes passing through to reliably estimate
model parameters and being small enough that regional
variations are meaningful. Here we use an area of 8.33
3 105 km2 (or an edge length of 567 km), which results
in 31 hexagons over the basin that each covered at least
21 unique TCs over the 1980–2010 time period. Addi-
tional grids of varying sized hexagons are briefly exam-
ined in section 4. Once the hexagon tessellation is
created, it is overlaid onto the best-track and simulated
track points to obtain per grid hurricane counts and
maximum intensities for both observations and the
simulated data.

[15] We remove hexagons containing fewer than 21
observed tropical cyclones. This is done so that each
hexagon has a sufficient number of wind speed values
to estimate the limiting-intensity model. Within a single
hexagon, the maximum number of observed TCs is 76,
which compares with a maximum of 2135 simulated
TCs.

[16] Figure 2 depicts the observed and simulated
number of hurricanes per hexagon grid as a choropleth
map. From Figure 2, it is clear that there are at least an
order of magnitude more simulated hurricanes than
observed hurricanes. Because of this, we instead focus
on spatial patterns of TC counts for the best-track and
synthetic data. Grids containing the most observed TCs
occur in the south central portion of the Atlantic and
east of the U.S. eastern seaboard. In contrast to obser-
vations, grids with the most simulated TCs tend to be
shifted farther west in the basin with relatively fewer
storms in the southeastern portion of the Atlantic.

Figure 1. Rotational winds speeds from observed and
synthetic tropical cyclones: (a) relative frequency and
(b) cumulative distributions.
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Nevertheless, the correlation between the observed and
simulated counts across the domain is a fairly high
10.69.

[17] Also interesting in Figure 2 is the pattern of per
grid maximum intensity (given in the red text). Grids
farthest east in the basin tend to have very low observed
maximum intensities but relatively higher simulated
maximum intensities, although it is generally the case
that the per hexagon simulated maximum wind speed is
slightly higher than the per hexagon observed maxi-
mum wind speed. For example, compare the two east-
ern most grids. For observed TCs, the maximum
intensities observed are 55 and 34 m s21. For the set of
simulated TCs, however, the maximum intensities in
these grids are 65 and 60 m s21. Because the simulated
storms represent a long-term climatology, there is more
opportunity to see a very high intensity TC.

[18] Figure 3 illustrates the relative risk of a simulated
TC relative to observations. The per hexagon relative

risk value is obtained by first calculating the ratio of the
per hexagon observed storm counts to the total
observed storm count, and similarly for the simulated
data. The values shown in Figure 3 are then found by
dividing the simulated ratio by the observed ratio for
each grid. Hexagons shaded in blue represent a higher
risk of a simulated TC relative to the best-track data.
This is a means of showing the factor by which simu-
lated TCs exceed observed TCs across the lattice.
Again, it is evident that the largest differences occur in
the far eastern portion of the basin, where observed
storms exceed simulated storms. On the other hand,
simulated TCs over the Caribbean tend to exceed
observed TCs by a factor of approximately 1.5. Besides
these two areas, relatively more synthetic storms appear
at higher latitudes. This may be a result of conventions
by which observed storms are usually declared extra-
tropical by the time they reach these high latitudes.
Consequently, observed storms falling into this cate-
gory are not included in our analysis, which might lead
to a low count relative to the synthetic data.

4. Relationship to SST

[19] One advantage of the spatial framework is that
we are able to locationally match the hurricane data
with covariate information. To demonstrate this, we
map the SST field using the same grids as before (Fig-
ure 4). Each grid contains the seasonal and grid area-
averaged SST value. As expected, maximum SST values
occur farther south in the basin and in the Caribbean
and Gulf of Mexico. Average ASO SST values generally
exceed 27�C in these areas.

[20] We next compute the correlation between per
grid average SST values and hurricane counts across
the domain for both best-track and simulated data. The
correlation between the observed hurricane frequency

Figure 2. Tropical cyclone counts (color scale) and
maximum intensities (red text): (a) observed data over
the period 1980–2010 and (b) synthetic data. The maxi-
mum intensities are the fastest rotational wind speeds
in m s21.

Figure 3. Factor by which synthetic tropical cyclone
relative frequency exceeds observed relative frequency.
Values greater than one (blues) indicate that simulated
storm frequency exceeds observed storm frequency,
while values less than one (reds) indicate that observed
storm frequency exceeds simulated storm frequency.
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and average ASO SST across the domain is 10.27
(20.10, 10.58) (95% confidence interval, CI). This
compares to a correlation of 10.20 (20.17, 10.52)
(95% CI) between the simulated hurricane frequency
and SST. If we compare only those values for hexagons
with average SST greater than or equal to 25�C, the cor-
relations remain near zero for both observational and
synthetic data. Thus, we do not find significant positive
correlation between SST and TC frequency. Although
warm SSTs are a known necessary condition for TC
formation, it is well understood that SST is a poor indi-
cator of genesis. For example, Goldenberg et al. [2001]
cite vertical shear of the horizontal wind to be the more
important local factor affecting TC frequency over the
North Atlantic basin. In this respect, the synthetic data
match observations quite well. As with the best-track
TCs, the frequency of synthetic TCs does not appear to
increase with increasing SST.

[21] Correlations are also computed between SST and
per grid maximum wind speed. Across all hexagons, the
correlation between per grid observed maximum wind
speed is 10.66 (10.39, 10.82) (95% CI). For the syn-
thetic data, this correlation is 10.59 (10.29, 10.78)
(95% CI). Unlike frequency, maximum wind speed is
significantly related to grid-averaged ASO SST. These
correlations remain approximately the same if we con-
sider only those grids with SST> 25�C to calculate the
correlations. Additionally, we calculate the correlation
between the best-track and simulated maximum TC
intensities. The best-track and simulated maximum hur-
ricane intensities match very well with a correlation of
10.84. This relationship between observed and syn-
thetic maximum wind speed is shown in Figure 5.

[22] High values of correlation suggest a tight rela-
tionship between SST and limiting intensity. Limiting
intensity (LI), as derived through the statistical model
presented in Elsner et al. [2012b], describes the theoreti-
cal maximum TC intensity based on historical track
data. If we regress LI onto SST for each grid, we obtain
an estimate of the sensitivity of hurricane limiting inten-

sity to SST. Although the correlations between SST and
per grid maximum wind speed hint at a high sensitivity,
correlation does not adequately answer the sensitivity
question.

[23] To determine the sensitivity values, we first deter-
mine the limiting intensities. In Elsner et al. [2012b,
2013], LI was estimated from per hurricane maximum
wind speeds using a statistical model combining the
Generalized Pareto distribution (GPD) for hurricane
intensities above a threshold and a Poisson distribution
for the frequency of hurricanes exceeding the threshold.
The model applied is characterized by scale (r) and
shape (n) parameters. The model also relies on the
threshold intensity parameter (u). The scale parameter,
r, describes how quickly probabilities decrease away
from the threshold value, and n describes the length of
the tail of the distribution. Only those wind speeds that
exceed the threshold value are considered in the model.
For n< 0, the probability decreases to zero beyond a
certain wind speed, providing us with a limiting inten-
sity. Additional theory and explanation for this method
can be found in Coles [2001] and Jagger and Elsner
[2006].

[24] For n< 0, we thus estimate the LI from our
model to be:

LI 5u2r=n ð1Þ

[25] The scale and shape parameters in equation (1)
are determined by the method of maximum likelihood.
Using a wind speed threshold of 30 m s21, we estimate

Figure 4. August to October sea surface temperature
(1980–2010). The raw values are averaged within each
hexagon.

Figure 5. Scatterplot of per hexagon maximum inten-
sities (m s21) with observed and synthetic wind speeds
given on the abscissa and ordinate axes, respectively.
The blue line depicts a linear least-squares fit with 95%
confidence interval (gray shading). The black line repre-
sents a line through the origin with a slope of one.
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the model from per TC maximum intensity for each
hexagon containing at least 21 TCs. Once we have a set
of limiting intensities, we then calculate the sensitivity
using a linear regression model. Because not all grids
have the same number of hurricanes, we use a weighted
regression so that those grids with more hurricanes con-
tribute more to the relationship than do those with
fewer hurricanes. For the regression, we only consider
grids with an average SST of at least 25�C since we are
primarily interested in TCs in a more favorable thermo-
dynamic environment and are not interested in higher
latitude systems that may be influenced by baroclinic
effects. Using this method, we obtain a basin wide sensi-
tivity of 6.3 6 2.42 m s21 K21 (SE) for observed TCs.
As expected, this value compares well with the value of
7.9 m s21 K21 obtained by Elsner et al. [2012b] who
used the period 1981–2010 and considered all TCs,
whereas we only consider those with a lifetime maxi-
mum wind speed of at least 40 knots.

[26] Although the statistical model allows us to obtain
the LI for a set of per hurricane maximum intensities, it
comes with the drawback of having to select a threshold
value. If the threshold value is set too low, bias
increases because the model includes wind speeds that
do not represent the strongest TCs. Conversely, if the
threshold is set too high, there are not enough wind
speeds to reliably estimate the other model parameters
[Coles, 2001]. There are several techniques that can be
used to determine the most appropriate threshold
[Coles, 2001], but these methods may be far from ideal
in many instances and often require some degree of sub-
jective monitoring.

[27] To avoid this complication, we simply choose the
per hexagon maximum wind speeds as the LI. In this
case, we examine only the maximum wind speed over the
area covered by a given hexagon during the 1980–2010

period. Because we are only interested in TCs in nearly
optimal thermodynamic conditions, we again only con-
sider hexagons with SST> 25�C. Using this technique,
we obtain a sensitivity estimate of 8.6 6 1.57 m/s/K (SE)
for observations and 5.5 6 1.31 m/s/K (SE) for the syn-
thetic data. If we take the error into consideration, this
compares reasonably well with the previous estimate. In
fact, for 15 of the 31 hexagons, the LI estimate from the
statistical model is the same as the per hexagon maxi-
mum wind speed, indicating that the model may be
slightly underestimating the limiting intensity. Keeping
this slight bias in mind, we use limiting intensity esti-
mates obtained from per hexagon maximum wind speed
rather than those from the GPD-Poisson model for the
remainder of the paper.

[28] The weighted linear regressions of LI (determined
from per hexagon maximum wind speed and weighted
by per hexagon cyclone counts) onto SST are plotted for
best-track and synthetic data in Figure 6. Although the
synthetic data sensitivity estimate is slightly lower than
that for observations, the value is still much higher than
most sensitivity values obtained from GCM-generated
track data [Elsner et al., 2013]. Intensity estimates for
the synthetic data are generated from a very high-
resolution deterministic coupled ocean-atmospheric
model. Although a simple model, it is better able to
resolve eyewall structure and maximum wind speed, as
evidenced by the high maximum wind speed values in
Figure 2. As hypothesized, sensitivity values for the syn-
thetic data better match observations. From Figure 6,
the largest residual for the best-track linear model has a
limiting intensity< 40 m s21. This residual occurs in
grid 22, which is in the southeast corner of the domain
(Figure 2) and will be discussed again in section 5.

[29] These results come from the specific spatial lat-
tice of hexagons introduced in section 3. The results

Figure 6. Linear regression of per hexagon limiting intensity onto SST for (left) observed and (right) synthetic
data. The points represent the data while the red line provides the model fit with 95% confidence intervals depicted
by the gray shading. The linear regression model is weighted by the number of tropical cyclones in each hexagon.
The slope is an estimate of basin wide sensitivity of limiting intensity to SST.
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should remain roughly the same for lattices of larger or
smaller hexagons. We test the sensitivity values for four
different spatial lattices with hexagons of varying areas
both larger and smaller than those used in the previous
analysis. The results are presented in Table 1. In gen-
eral, the basin wide sensitivity estimates from varying
grid sizes generally remain stationary with overlapping
standard errors for sensitivity among the various grids.

5. Regional Patterns of Sensitivity

[30] The sensitivity estimate given above represents
an average value over the entire basin. We are also
interested in regional patterns of sensitivity. For this
section, we again focus on grids with SST> 25�C and
estimate sensitivity using LI values defined by per hexa-
gon maximum wind speed. To examine the spatial vari-
ability of sensitivity, we begin by calculating the spatial
autocorrelation of the linear model residuals using
Moran’s I [Moran, 1950]. The calculated values of Mor-
an’s I are 0.25 and 0.52 for best-track and synthetic
residuals, respectively. P-values of 0.0078 (observa-
tions) and< 0.001 (synthetic) indicate significant non-
zero spatial autocorrelation.

[31] Next, we perform a geographically weighted
regression (GWR) of LI onto SST for both the
observed and synthetic data sets. The GWR is per-
formed using the same spatial lattice and a bandwidth
that minimizes the root mean square prediction error.
As before, this regression is also weighted by the num-
ber of TCs in each hexagon. The regression coefficient
on the SST term indicating regional sensitivity is
mapped in Figure 7. The highest sensitivity values are
noted over the western part of the basin. We find the
lowest sensitivities for both observed and synthetic data
occur in the eastern most hexagons. This may be due to
edge effects, but also may be related to the very low LI
for this particular hexagon. For observations, this hexa-
gon is also the largest residual from Figure 6 and repre-
sents an area over which one or two storms may form
annually, but where few hurricanes reach their maxi-
mum intensity.

[32] Although the basin-averaged sensitivity values
for best-track and synthetic data match reasonably
well, the spatial variability of this sensitivity appears to
be somewhat different. With the exception of higher lat-
itudes, sensitivities for the synthetic storms are generally
higher than for observations. This makes sense given
the higher synthetic TC wind speeds over lower lati-

tudes compared to observations (see Figure 2). Con-
versely, synthetic TC sensitivities are lower over higher
latitudes compared to observations. For observed
storms (see Figure 8), sensitivity values generally
increase from east to west. However, for the simulated
cases the pattern is not as coherent, with high values
over the southern portion of the basin and the Gulf of

Table 1. Sensitivity of Limiting Hurricane Intensity to Sea

Surface Temperaturea

Hexagon Size
(Area) 105 km2

Sensitivity
(Observed Data)

m s21 K21

Sensitivity
(Synthetic Data)

m s21 K21

16.7 7.7 6 2.52 7.0 6 1.93
11.1 9.7 6 3.21 11 6 2.09
8.33 8.6 6 1.57 5.5 6 1.31
5.00 7.8 6 1.55 7.1 6 1.55
4.17 8.1 6 1.34 6.3 6 1.41

aUncertainties are given by standard errors.

Figure 7. Regional estimates of the sensitivity of limit-
ing intensity to SST. The estimates are from a geo-
graphically weighted regression of per hexagon limiting
intensity onto per hexagon average SST for (a)
observed and (b) synthetic data. Hexagons with nega-
tive sensitivity are shaded gray.

Figure 8. Same as Figure 7a except with a different
color scale to highlight intrabasin variability in sensitiv-
ity computed using the observed (best-track) data.
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Mexico and lower values along the U.S. eastern sea-
board. The higher synthetic sensitivities farther south
and east in the basin suggest that the simulated storms
may intensify more rapidly.

[33] We set all negative sensitivities to zero and com-
pare the differences in regional sensitivity for observed
and synthetic data in Figure 9f. Further, we generate
five additional tessellations each slightly offset in space
from the original. The offset lattices are displayed in
Figures 9a–9e. Blues indicate areas with higher simu-
lated sensitivities, while reds indicate areas with higher

observed sensitivities. Although there are some differen-
ces among the different grids, the overall pattern sug-
gests that simulated sensitivities are generally higher
than observations in the eastern portion of the basin,
while best-track sensitivities are higher in the western
and northern portions of the basin.

6. Summary and Conclusions

[34] A method for simulating hurricanes that makes
use of reanalysis data from NCEP and empirical models

Figure 9. Regional differences in the sensitivity of limiting intensity: (a–e) different grids shifted very slightly in
space and (f) the original grid from the previous analysis. Blues indicate regions of higher sensitivities for synthetic
tropical cyclones and reds indicate regions of higher sensitivities for observed tropical cyclones.
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has recently been developed. Here we analyze a set of
these synthetic hurricanes and compare them to the set
of observed hurricanes over the common period 1980–
2010. We specifically focus on spatial comparisons of
the frequency, intensity, and sensitivity to SST using a
hexagon grid covering the North Atlantic basin includ-
ing the Gulf of Mexico and parts of the Caribbean Sea.

[35] The main findings are:
[36] 1. With a pattern correlation of 0.715, the spatial

distribution of TC frequency in the synthetic TC data
matches the spatial distribution of the TC frequency in
the best-track data. Regions where TCs actually occur
generally correlate well with regions where the synthetic
TCs are found.

[37] 2. The spatial distribution of TC intensity in the
synthetic TC data also matches the spatial distribution
of TC intensity in the best-track data. Regions where
strong hurricanes occur in the best-track data compare
well with regions where strong hurricanes occur in the
simulated data.

[38] 3. On average, the sensitivity of limiting intensity
to SST is larger in actual hurricanes. The sensitivity is
estimated to be 8.6 m s21/K21 using the best-track data
and 5.5 m s21/K21 using the simulated TCs. This marks
an improvement over track data obtained from two cli-
mate models with grid spacing of 50 and 100 km [Elsner
et al., 2013].

[39] 4. The spatial distribution of the occurrence of
hurricanes in the simulated set does not match the spa-
tial distribution of the occurrence of hurricanes in the
best-track set. In general, sensitivities for simulated
storms tend to be higher farther east in the basin com-
pared to observations.

[40] We have shown that several TC statistics for data
obtained through the downscaling approach of Ema-
nuel [2006] generally agree with observations for the
North Atlantic basin. Specifically, the synthetic TCs ex-
hibit a basin wide sensitivity of limiting intensity to SST
that is much closer to the observed sensitivity compared
to estimates presented in Elsner et al. [2013] for two
GCMs. This seems reasonable, as intensities for the syn-
thetic tracks were generated using a very high-
resolution deterministic model that, unlike coarser reso-
lution climate models, is able to resolve the hurricane
eyewall. Despite the improvement, the spatial patterns
of sensitivity within the basin for synthetic and best-
track data do not agree as well, with higher observed
sensitivities farther west and north in the basin, and
higher simulated sensitivities farther south and east.

[41] We acknowledge that while SST is an important
variable for explaining hurricane LI, other factors influ-
ence the intensity TCs can reach. For example, poten-
tial intensity [Emanuel, 1986; Bister and Emanuel, 1998]
is greatly influenced by upper tropospheric tempera-
tures [Emanuel et al., 2013]. Additionally, environmen-
tal factors such as vertical shear of the horizontal wind
are known to affect intensity [e.g., DeMaria, 1996;
Wang and Chan, 2004]. Finally, numerous recent studies
have addressed the relationship between relative rather
than local SSTs and potential intensity [e.g., Vecchi and
Soden, 2007; Ramsay and Sobel, 2011]. Future work will

look toward introducing these and other variables into
our model. Although we agree that many of these
factors indeed may be important, it is nevertheless use-
ful to quantify differences in the sensitivity of LI to SST
between simulated and observed TCs. Such quantifica-
tion provides a metric for assessing model performance
in the future as resolution continues to improve.

[42] Acknowledgment. Support came from the Risk Prediction Ini-
tiative of the Bermuda Institute for Ocean Science (RPI2.0-2012-01).
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