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Quantifying the sensitivity of maximum, limiting, and potential
tropical cyclone intensity to SST: Observations versus the FSU/
COAPS global climate model
S. E. Strazzo1, J. B. Elsner1, and T. E. LaRow2

1Department of Geography, Florida State University, Tallahassee, Florida, USA, 2Department of Earth, Ocean, and
Atmospheric Sciences, Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USA

Abstract Previous research quantified the sensitivity of limiting intensity to SST for observed tropical
cyclones (TCs) and for TCs generated by two global climate models (GCMs). On average, a 1� C increase in
sea surface temperature (SST) is associated with a 7.9 m s21 increase in the statistical upper limit of
observed intensity. Conversely, a 1�C increase in SST does not significantly affect the limiting intensity of
GCM-generated TCs. The study presented here builds on previous research in two ways: (1) A comparison is
made between the statistically defined limiting intensity and the physically defined potential intensity, and
(2) a test is performed on the ability of a �0.94� resolution GCM to reproduce the observed statistical rela-
tionship between potential intensity and SST. Data from NASA’s Modern Era Reanalysis are used to approxi-
mate the observed sensitivity of potential intensity to SST for the 1982–2008 time period. Results indicate
that the sensitivity of potential intensity to SST is not statistically different from the sensitivity of observed
maximum or limiting intensity to SST. This result links the statistically defined sensitivity to the physically
based theory of hurricanes. Potential intensity is also estimated from the FSU/COAPS GCM. Although the
FSU/COAPS model does not capture the observed sensitivity of TC maximum or limiting intensity to SST,
the model reproduces the observed sensitivity of potential intensity to SST. The model generates suitable
atmospheric conditions for the development of strong TCs, however strong TCs do not develop, possibly as
a result of insufficient resolution.

1. Introduction

Given the rise in ocean heat content and sea surface temperature (SST) observed during the second half of
the 20th century [Levitus et al., 2000, 2012], numerous studies seek to understand how increasing SSTs
might affect tropical cyclones (TCs), both in terms of frequency and intensity [e.g., Emanuel, 1987; DeMaria
and Kaplan, 1994; Emanuel, 2005; Elsner et al., 2008; Knutson et al., 2008; Bender et al., 2010; Kunkel et al.,
2013; LaRow et al., 2014]. The effects of climate change on TC frequency remain uncertain, with some
research suggesting decreases in overall North Atlantic TC numbers [e.g., Zhao et al., 2009; Held and Zhao,
2011] and others suggesting increases [e.g., Emanuel, 2013]. Despite this uncertainty about changes in TC
frequency, many observational and modeling studies support the notion that increasing SSTs should lead
to more intense TCs, although some studies suggest that this signal only exists in the set of the strongest
TCs [Elsner et al., 2008; Bender et al., 2010].

Although much of this research focuses on the relationship between increasing SSTs and various metrics of
TC activity, Kunkel et al. [2013] caution that SST is not an ideal proxy for the thermodynamic environment of
TCs. They note that TC potential intensity is a function of the degree of thermodynamic disequilibrium
between the atmosphere and upper ocean and that this disequilibrium does not depend on SST alone, but
rather on the difference between the temperature near the sea surface and the temperature throughout
the depth of the troposphere [Emanuel, 1995]. In fact, Emanuel et al. [2013] quantify the theoretical direct
effect of SST on potential intensity as a mere 0.4 m s21 increase in potential intensity for a 1.0�C increase in
SST. Furthermore, additional environmental variables (e.g., tropopause temperature, vertical shear of the
horizontal winds, and midlevel relative humidity) are thought to influence TC intensity [e.g., DeMaria, 1996;
Wong and Chan, 2004; Braun et al., 2012; Emanuel et al., 2013].
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Nevertheless, research shows that TC intensity is statistically related to SST. For example, Merrill [1987] dem-
onstrates that stronger TCs tend to occur over warmer ocean water, although they note that higher SSTs
alone could not be used to predict intensity or intensification. Similarly, DeMaria and Kaplan [1994] bin cli-
matological SSTs at 1�C intervals and find a generally positive but nonlinear empirical relationship between
these binned SSTs and maximum TC intensity. The strongest relationship exists for TCs occurring over water
with temperatures greater than 26�C. Elsner et al. [2008] employ quantile regression to highlight the strong
positive relationship between SST and TCs with intensities in the upper quantile of the climatological TC
intensity distribution. Additionally, Emanuel [2005] examines TC power dissipation—a measure of the
destructive potential of a TC expressed as a function of the cubed wind speed integrated over storm life-
time—and find a strong, statistically significant relationship between power dissipation and SST.

Building on this earlier research, Elsner et al. [2012b] approach the problem using the spatial tessellation
framework first introduced in Elsner et al. [2012a]. They divide the North Atlantic basin into a tessellation of
equal-area hexagons onto which TC track point data and gridded SST data are both overlaid. For each hexa-
gon (i.e., region), Elsner et al. [2012b] use extreme value theory to statistically model the upper limit of TC
intensity from the set of per TC maximum intensities for that region. They then regress the per hexagon lim-
iting intensity values onto the set of per hexagon August–October average SSTs to obtain an estimate of
the sensitivity of limiting intensity to SST. They consider only those regions with SSTs exceeding 25�C and
find that a 1�C increase in SST is associated with a 7.9 6 1.19 m s21 increase in per hexagon limiting
intensity.

In addition to these observation-based studies, many global climate model (GCM) and downscaled simula-
tions of 21st century TC activity similarly predict increasing TC intensity under various climate change sce-
narios, particularly for the most intense TCs [e.g., Emanuel, 2013; Knutson et al., 2013; Villarini and Vecchi,
2013]. Although some of these studies circumvent insufficient resolution issues through statistical and/or
dynamical downscaling techniques, it should be noted that because GCM resolution is still too coarse to
resolve key TC features [e.g., Chen et al., 2007], these results must be considered with some caution. In fact,
Elsner et al. [2013] use the same spatial framework and limiting intensity model as Elsner et al. [2012b] to
show that two medium resolution GCMs—the FSU/COAPS model and the GFDL-HiRAM—do not reproduce
the observed sensitivity of TC limiting intensity to SST. The inability of these GCMs to simulate TCs with
intensities exceeding �50 m s21 likely limits the ability of such models to capture the sensitivity. Elsner et al.
[2012b] speculate that the inability of GCMs to resolve the TC inner core thermodynamics prevent simu-
lated TCs from operating as an idealized heat engine, although this hypothesis has yet to be tested.

The current study builds upon previous research by first examining the link between the sensitivity of the
statistical limiting intensity to SST and the sensitivity of the theoretical potential intensity to SST. Because
we focus on the most intense TCs (i.e., those TCs we expect to be closer to their potential intensity on aver-
age), we anticipate very little difference between sensitivity values for limiting intensity and sensitivity val-
ues for the theoretical potential intensity. Examining the sensitivity of potential intensity to SST also
provides another metric with which to assess GCM performance. It has already been established that GCMs
with horizontal resolution in the 50–100 km range are unable to capture the sensitivity of observed TC limit-
ing intensity to SST; however, whether this discrepancy can be largely explained by insufficient model reso-
lution remains to be explored. Although such GCMs neither capture the observed distribution of TC
intensity nor the sensitivity of TC maximum and limiting intensity to SST, we now ask whether they success-
fully reproduce the observed sensitivity of potential intensity to SST. For consistency with previous research,
this study applies the same spatial tessellation framework used in Elsner et al. [2012b] and Elsner et al.
[2013]. The remainder of the paper will proceed as follows: section 2 introduces the data sets used, section
3 describes the spatial framework and statistical methods applied, sections 4 and 5 present the results, and
section 6 provides a summary and discussion.

2. Data

This research relies on observed, modeled, and reanalyzed data for the period 1982–2008. We consider this
period because it matches the period covered by a historical simulation by the FSU/COAPS climate model.
Observed TC track data come from the National Hurricane Center’s best-track data set, which provides infor-
mation on TC center location, 1 min wind speed at 10 m above the surface, and minimum central pressure
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for all known North Atlantic TCs [Jarvinen et al., 1988]. Over the 1982–2008 period, best-track (observed)
data are recorded at 6 hourly intervals. Because this analysis requires a higher temporal resolution, we inter-
polate the 6 hourly observations to obtain hourly data. The interpolation method, described in detail by Els-
ner and Jagger [2013], uses a spline technique that preserves TC attribute values at the 6 hourly intervals
and applies a piecewise polynomial function to estimate the hourly wind speeds and pressures between
observations. The algorithm similarly preserves TC location at the 6 hourly intervals and uses spherical
geometry to obtain the interpolated hourly positions.

In addition to observed TC data, we examine model-generated TCs and atmospheric fields from the Florida
State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) global climate model [Cocke
and LaRow, 2000; LaRow et al., 2008]. Model data come from a historical simulation that was developed as
part of a series of experiments by the U.S. Climate Variability and Predictability Research Program (CLIVAR)
Hurricane Working Group [Walsh et al., 2015]. The version of the FSU/COAPS model used here is not
coupled to an ocean model but is instead forced with prescribed SSTs from the Hadley Center Sea Ice and
Sea Surface Temperature (HadISST) data set [Rayner et al., 2003]. The model was run with 27 vertical levels
and a horizontal resolution of T126 (�0.94� latitude). LaRow et al. [2008] describe the algorithm used to
detect and track TCs in the model fields. The algorithm searches for a spatially and temporally coinciding
vorticity maximum, sea level pressure minimum, and midlevel temperature maximum. It should be noted
that, unlike the observed data, model-generated TCs must persist for a minimum of 2 days to be included
in the model data record. Additionally, the model data set only includes TCs with lifetime maximum wind
speeds of at least 17 m s21. Therefore, we similarly consider only those observed TCs with maximum wind
speeds of at least 17 m s21. The distributions of hourly observed and modeled wind speeds have similar
shapes (Figure 1), although the observed wind speeds have a longer right tail. Modeled wind speeds do not
exceed 45 m s21. In fact the highest wind speed of any model-generated TC is 44.1 m s21 (Table 1). In con-
trast, the highest wind speed of any observed TC is 78.1 m s21.

To estimate the sensitivity of TC intensity to SST, we utilize version 3b of NOAA’s extended reconstructed
SST (ERSST) data set [Smith et al., 2008]. The ERSST data are provided on a 2� by 2� grid and do not include
any satellite-derived values. Additionally, we approximate observed potential intensity using gridded
reanalysis data from NASA’s Modern Era ReAnalysis [MERRA; Rienecker et al., 2011] maintained by the
Global Modeling and Assimilation Office. The MERRA product provides reanalyzed atmospheric data on a
1.25� by 1.25� grid for the period beginning in 1979. Using monthly means of MERRA sea level pressure,

Figure 1. Wind speed relative frequency distributions for best-track (observed) and FSU/COAPS model-generated TCs. Wind speed is shown in units of m s21.
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relative humidity (converted to mixing ratio), and
temperature fields, we compute mean potential
intensity values at grid points. To be consistent
with the model data, we calculate the monthly
means from daily 12 UTC data. Although we
acknowledge that reanalysis products do not rep-
resent real atmospheric observations, these data
nevertheless provide approximate historical
atmospheric conditions at the relatively high spa-
tial and temporal resolutions that this analysis
requires. Relative to the NCEP-NCAR reanalysis,
which Vecchi et al. [2013] and Kossin [2015] sug-
gest contains spurious negative trends in upper
troposphere and tropopause temperature, the

MERRA product features higher vertical and horizontal resolution, making it a more suitable option for
this analysis.

3. Methods

3.1. Spatial Tessellation
While many previous studies considered relationships between TC intensity and SST by examining paired
values of observed SST and TC wind speed [e.g., Evans, 1993], here we instead rely on the spatial tessellation
approach applied in Elsner et al. [2012b] and Elsner et al. [2013]. This choice is made primarily because the
method allows us to easily employ statistical techniques to examine and display relationships between TC
intensity and SST. Importantly, it facilitates the use of extreme value theory to estimate TC limiting intensity.
We begin by dividing the North Atlantic basin into equal area hexagon regions. The selection of hexagons
is made following results presented in Elsner et al. [2012a] that demonstrate that hexagons more efficiently
cover TC track data. Particularly for curved tracks, it takes fewer hexagons to cover a TC track compared to
rectangles of the same size. For consistency, we refer to these hexagons as ‘‘regions.’’ Each region has an
area of 731,935.3 km2, which is slightly larger than the U.S. state of Texas.

Next, we overlay TC track data onto the regions (Figure 2). Both observed and model-generated data are
overlaid onto the same set of regions to facilitate comparison. Per region observed and model-generated
TC counts are calculated as the total number of observed or simulated TCs to pass over a given region. For
the analysis of observed TC data, we only consider regions with at least 15 observed TCs. Similarly, we only
consider regions with at least 15 model-generated TCs for the analysis of model data. We set this threshold
of 15 TCs per region to ensure that there are sufficient data to generate a statistical model for limiting inten-
sity, as described in the following section. Note that because the spatial distribution of model-generated
TCs does not match that of observed TCs, the specific regions used for the analysis of observed TCs do not
necessarily match those used for the analysis of model-generated TCs. For example, several of the regions
covering the Gulf of Mexico are not included in the analysis of model-generated data as a result of the lack
of model-generated TC activity over this portion of the basin. The base tessellation of regions onto which
the data are overlaid is the same, but the specific regions used for the analysis varies for model-generated
versus observed data. Overall, the model does a reasonable job at generating and tracking TCs over regions
where observed TCs occur across the North Atlantic basin (Figure 2). However, the frequency of model-
generated TCs across the south-central portion of the basin exceeds that of the observations by a wide mar-
gin. Conversely, the model forms and tracks far fewer TCs than are observed over the Gulf of Mexico, as dis-
cussed previously in Strazzo et al. [2013a].

Finally, we overlay gridded SST data onto the same regions and average the values from August through
October over the period 1982–2008 (Figure 3). The warmest August–October SSTs occur south and west in
the basin. A visual comparison of the spatial patterns of SST and maximum TC intensity suggests that the
highest intensity TCs occur over areas with highest SST. In contrast, regions with the most intense model-
generated TCs do not necessarily correspond to regions with the highest SST. We quantify this statistical rela-
tionship between per region maximum intensity and SST and compare it to potential intensity in section 5.

Table 1. Basic Descriptive Statistics for Observed and Model-
Generated (FSU/COAPS) TCsa

Observed FSU/COAPS

Total TCs 314 382
Min wind speed (m s21) 4.88 2.67 3 1023

Max wind speed (m s21) 78.1 44.1
Mean wind speed (m s21) 28.8 19.5

a‘‘Total TCs’’ represent the total number of observed or model-
generated TCs over the 1982–2008 time period. Maximum (Max),
minimum (Min), and mean TC wind speeds are presented with
units of m s21. Note that this table describes the entire sets of
observed and modeled raw TC data. The remaining analysis
focuses on only those observed and model-generated TCs with
maximum wind speeds that exceed 17 m s21.
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3.2. Limiting and Potential Intensity
We next calculate limiting and potential intensity. Limiting intensity is a statistical upper limit on per region
TC maximum intensity. We estimate limiting intensity for a given region using the climatology of per TC
maximum intensities over that region. For each region with a TC count of at least 15, a generalized Pareto

distribution is used to describe the set of all
TC maximum wind speeds that exceed
some threshold value. The generalized Par-
eto distribution is an extreme value distri-
bution used to model exceedances over a
threshold, u. For each region, we define the
threshold as the 52nd percentile from the
set of per TC maximum wind speeds over
that region. The selection of a threshold is
relatively subjective. We select our thresh-
old as a balance between (a) the need for
sufficient data from which to generate a
statistical model, and (b) the requirement
that the data be adequately described by
extreme value statistics (i.e., the data lie in
the tails of the distribution).

The generalized Pareto distribution is char-
acterized by two model parameters, the

(a)

Observed TCs, 1982−−2008

(b)

FSU/COAPS TCs, 1982−−2008

(c)

Observed TC count
15 25 35 45 55 65 >65

(d)

FSU/COAPS TC count
15 25 35 45 55 65 >65

Figure 2. All observed (a) and modeled (FSU/COAPS; b) TC tracks from the 1982–2008 period overlaid onto the same tessellation of equal-
area hexagons. Tracks are shaded in proportion to TC category on the Saffir-Simpson scale with blues representing tropical storms and
reds representing strong hurricanes. Figures 2c and 2d display per region TC counts for observed and modeled TCs, respectively. Only
regions with at least 15 observed TCs (Figures 2a and 2c) or 15 model-generated TCs (Figures 2b and 2d) are displayed.

August−October SST (Celsius)
< 25 25 26 27 28 29 30

Figure 3. Per region average August–October SST over the 1982–2008 time
period. Units are given in �C. Only regions with at least 15 observed TCs are
displayed. Gray shading indicates regions with average August–October
SST< 25�C.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000432

STRAZZO ET AL. SENSITIVITY OF TC INTENSITY TO SST 590



shape parameter (n) and the scale parameter (r), which we obtain using maximum likelihood estimation.
For n< 0, the probabilities decrease to zero above a certain wind speed. For these cases, we define the
upper limit of wind speed to be the limiting intensity, expressed as:

Limiting intensity 5u2r=n (1)

Because the regions are generally data sparse, the method sometimes underestimates the per region limit-
ing intensity, as described in Strazzo et al. [2013b]. As additional TCs are added to the database in time, this

(a)

Observed W_max (m/s)
17 27 37 47 57 67 77 87

(b)

FSU/COAPS W_max (m/s)
17 27 37 47 57 67 77 87

(c)

Observed LI (m/s)
17 27 37 47 57 67 77 87

(d)

FSU/COAPS LI (m/s)
17 27 37 47 57 67 77 87

(e)

Observed Scaled LI
0.4 0.6 0.8 1 1.2 1.4 1.6

(f)

FSU/COAPS Scaled LI
0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 4. Per region maximum intensity (W_max) from observed (a) and model-generated (FSU/COAPS; b) TCs. Figures 4c and 4d display
the per region limiting intensities (LI) estimated from observed and modeled data, respectively. Figures 4e and 4f depict per region limit-
ing intensity scaled by the basin-wide mean per region limiting intensity using observed and model-generated data, respectively. Scaled
values less than 1 indicate limiting intensity below the basin wide average, while values greater than 1 indicate limiting intensity above
the basin wide average. Limiting and maximum intensities are expressed in units of m s21.
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problem should subside. Using this method, we compute per region limiting intensity for both observed
and model-generated TCs.

In addition to the statistical limiting intensity, we calculate the per region potential intensity, where poten-
tial intensity is defined as the maximum intensity a TC could theoretically attain in a specific thermodynamic
environment [Emanuel, 1995]. We use Kerry Emanuel’s algorithm (available from ftp://texmex.mit.edu/pub/
emanuel/TCMAX/), translated to the R language by Thomas Jagger. The algorithm estimates potential inten-
sity from the vertical profile of atmospheric temperature, mixing ratio, and pressure for a given location.
Because we do not have a set of observed atmospheric data for the time period and region of interest, we
estimate monthly potential intensity from the set of monthly gridded MERRA atmospheric data. We similarly
compute monthly potential intensity from FSU/COAPS monthly mean atmospheric data. The gridded
potential intensity data are subsequently overlaid onto the same set of regions, as was done for TC and SST
data. This allows us to compute per region potential intensity, which we define as the highest potential
intensity over a given region during the 1982–2008 time period. Section 4 compares regional values of max-
imum, limiting, and potential intensity for observed/reanalyzed and modeled data.

4. Spatial Patterns of Maximum, Limiting, and Potential Intensity

We next examine per region maximum and limiting intensities for observed and model-generated TCs (Fig-
ure 4). Per region maximum intensity represents the maximum TC intensity that occurred over that region
during the 1982–2008 time period. Per region limiting intensity is calculated as described in section 3.2. As
before, we use the same set of regions for our comparison but only consider regions that have at least 15
observed or model-generated TCs. Additionally, we remove regions for which the shape parameter (n) from
the limiting intensity model is greater than zero. For these regions, a limiting intensity does not exist, likely
because of too few data. In total, four regions were removed for this reason.

As expected, the maximum and limiting intensities of model-generated TCs are significantly less than those
of observed TCs (Figure 4). The strongest observed TCs, some of which reach intensities exceeding 70 m
s21, tend to occur over the Gulf of Mexico, while the strongest model-generated TCs occur over the central
Atlantic and do not intensify beyond �45 m s21. This pattern also exists for limiting intensity. Because per
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Figure 5. Mean August–October sea level pressure (SLP) data from MERRA (left) and the FSU/COAPS model (right) over the 1982–2008. Contouring is shown at 2 hPa intervals.
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region limiting intensity of model-generated TCs is estimated from the climatology of modeled TC maxi-
mum wind speeds, it is reasonable that the FSU/COAPS limiting intensities are not as high as those esti-
mated from the observed TC climatology. To better visualize the difference in the spatial distribution of
observed and modeled limiting intensity, we scale each per region limiting intensity by the average per
region limiting intensity (Figure 4). Regions with the highest observed and simulated limiting intensities do
not match. Overall, weaker observed TCs occur over the eastern and northern portions of the basin, as we
would expect. However, regions with the most intense model-generated TCs occur farther east in the basin
relative to observations.

As noted in LaRow et al. [2008] and Strazzo et al. [2013a], relatively few model-generated TCs occur over the
Gulf of Mexico compared to what we observed over the same time period. This may be partially explained
by a lack of modeled TC genesis over this region [Strazzo et al., 2013a]. Additionally, LaRow et al. [2008]
remark that, compared to observations, a higher percentage of FSU/COAPS TCs recurve prior to reaching
the Caribbean and Gulf of Mexico. This results from differences in typical observed and modeled August–
October sea level pressure patterns over the North Atlantic. The FSU/COAPS model places a weaker Ber-
muda High farther east in the basin relative to the pattern present in the MERRA reanalysis (Figure 5). A
weakness in the ridge over the North Atlantic helps steer model-generated TCs that form over the central
Atlantic northward before reaching the Gulf of Mexico. This pattern may partially explain the eastward dis-
placement of the highest model-generated TC intensities relative to observations. Model-generated TCs
form in the main development region and initially track northwestward and intensify before reaching the
midlatitude westerlies and cooler SSTs. While model resolution likely limits the ability of the FSU/COAPS

(a)

MERRA PI (m/s)
17 27 37 47 57 67 77 87

(b)

FSU/COAPS PI (m/s)
17 27 37 47 57 67 77 87

(c)

MERRA Scaled PI
0.4 0.6 0.8 1 1.2 1.4 1.6

(d)

FSU/COAPS Scaled PI
0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 6. Observed (MERRA; a) and modeled (FSU/COAPS; b) per region potential intensity. Figures 6c and 6d depict potential intensity scaled by the mean per region potential intensity
for observed (MERRA; c) and modeled (FSU/COAPS; d) data. Scaled values less than 1 indicate per region potential intensity below the basin wide average, while values greater than 1
indicate per region potential intensity above the basin wide average. Potential intensity is expressed in units of m s21.
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model to simulate TC maximum wind speeds greater than 45 m s21, recent research suggests that model
errors in larger-scale features that affect the spatial distribution of TCs (e.g., the subtropical high) are likely
not related to resolution [Manganello et al., 2012]. Additionally, we note that these errors do not necessarily
explain the lack of modeled TC genesis over the Gulf of Mexico, which occurs for other climate models and
may result from strong simulated wind shear and/or an insufficient model response to the Madden-Julian
Oscillation.

Although it is clear that the FSU/COAPS model fails to reproduce the observed spatial distribution of per
region maximum or limiting TC intensity, the ability of the model to capture the observed spatial distribu-
tion of per region potential intensity has not yet been examined. Here we compare per region potential
intensity calculated from MERRA and FSU/COAPS atmospheric fields (Figure 6). Potential intensity calcu-
lated from MERRA data is referred to as observed potential intensity, although we acknowledge that the
values were not truly ‘‘observed.’’ Interestingly, while the model severely underestimates maximum and
limiting intensity, it overestimates potential intensity. Despite this, the spatial distribution of modeled
potential intensity compares much better with what we observe. When we examine scaled per region
potential intensity, we find that regions with the highest observed potential intensity correspond to
regions with the highest modeled potential intensity (Figure 6). Thus we conclude that although the
model does not generate strong TCs, it does correctly simulate the environment necessary to support
strong TCs.

When we compare per region maximum, potential, and limiting intensity for observed and model-
generated TCs, we find that the FSU/COAPS model overestimates potential intensity by 2–10 m s21 and
underestimates maximum and limiting intensity by as much as 30 m s21 (Figure 7). As expected, regions
with the highest observed potential intensity correspond to regions with the highest observed maximum
and limiting intensities. Additionally, regions with the highest potential intensity have a higher ratio of per
region maximum intensity to potential intensity. In general, these regions occur over the Gulf of Mexico,
which agrees with previous work by DeMaria and Kaplan [1994].

One explanation for the overestimation of potential intensity by the FSU/COAPS model is that the model
yields cooler upper tropospheric temperatures relative to the MERRA reanalysis. Emanuel et al. [2013] explore
the relationship between potential intensity and the tropical tropopause layer and suggest that cooling in this

Figure 7. A comparison of per region maximum, potential, and limiting intensity for observed (top) and model-generated (bottom) TCs. Each set of three bars represents the maximum
(black), limiting (blue), and potential (red) intensity for a specific region. Regions are presented in descending order from those of highest to lowest potential intensity. Maximum, limit-
ing, and potential intensities are expressed in units of m s21.
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layer is associated with increases in potential
intensity. Indeed, modeled 100 hPa tempera-
tures are consistently cooler than reanalyzed
temperatures (Figure 8b). Interestingly, regions
with the largest difference in observed versus
modeled potential intensity (Figure 8a) corre-
spond to regions with the smallest difference in
100 hPa temperature (Figure 8b). This suggests
that tropopause temperature alone does not
explain the overestimation of potential intensity
by the FSU/COAPS model. The FSU/COAPS
model tends to overestimate CAPE over the
North Atlantic, which also results in higher simu-
lated potential intensity.

5. The Sensitivity of Potential
Intensity to SST

While previous research quantified the sensitivity
of TC limiting intensity to SST for observed and
GCM-generated TCs, the statistical relationship
between potential intensity and SST has not
been explored using the spatial tessellation
approach. Here we use atmospheric fields from
MERRA and the FSU/COAPS model to estimate
potential intensity and then quantify the sensitiv-
ity of per region potential intensity to SST. Sensi-
tivity is defined as the slope coefficient from the
regression of maximum, limiting, or potential
intensity onto August–October SST. To be con-
sistent with previous research, we only consider
regions with SST> 25�C. Over the 1982–2008
time period and using this specific set of regions,
we find that the sensitivity of limiting intensity to
SST is 7.1 m s21 �C21 for observed TCs (Table 2),
which compares well with previous estimates in

Elsner et al. [2012b] who used slightly smaller regions. Similarly, the sensitivity of per region observed TC maxi-
mum intensity to SST is 7.2 m s21 �C21. As with previous research, we find a statistically significant difference
between the sensitivities of observed versus FSU/COAPS limiting intensity to SST (Figure 9). The sensitivities of
FSU/COAPS limiting and maximum intensity to SST are not statistically different from zero (Table 2).

One possible explanation for this discrepancy is that the FSU/COAPS model resolution is too low to resolve
the maximum wind speeds of TCs. Because of this, model-generated TCs are much weaker on average com-
pared to observed TCs. Additionally, the sensitivity of model-generated TCs to SST may be affected by the
lack of modeled TC activity over the Gulf of Mexico. The strongest observed TCs over this region occur over
some of the warmest SSTs in the basin, leading to a high sensitivity. For a high sensitivity to exist, model-
generated TCs must occur over a broad range of SSTs, with stronger TCs occurring over the warmest SSTs
and weaker TCs occurring over the coolest SSTs. This does not occur for the FSU/COAPS model.

When we compare the sensitivity of observed TC maximum and limiting intensity to SST with the sensitivity
of potential intensity to SST, the slopes of the three lines are statistically indistinguishable at the 95% confi-
dence level (Figure 9). We estimate the sensitivity of potential intensity to SST to be 3.7 m s21 �C21 when
potential intensity is calculated from MERRA data (Table 2). Although this point estimate is slightly lower
than our estimate for the sensitivity of limiting intensity to SST, the uncertainty bounds overlap at the 95%
confidence level (Figure 9). This demonstrates that the observed statistical sensitivity of maximum/limiting

(a)

(MERRA) − (FSU/COAPS) Mean PI (m/s)
−10 −8 −6 −4 −2 0 2 4 6 8 10

(b)

(MERRA) − (FSU/COAPS) Mean 100 hPa T (K)
−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 8. Difference maps displaying per region observed-modeled
(MERRA—FSU/COAPS) mean August–October potential intensity (PI) in
units of m s21 (a), and per region observed-modeled mean August–
October 100 hPa temperature in units of �C (b). Both temperature and
potential intensity means are taken over the entire 1982–2008 time
period. We include all regions that have either 15 observed TCs or 15
model-generated TCs.
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intensity to SST is approximately the same as the observed sensitivity of potential intensity to SST. Given
this, if a model with a horizontal resolution of �0.94� can capture the relationship between potential inten-
sity and SST, then model simulations may still provide useful information about the upper limit of TC inten-
sity even if they do not generate realistically intense TCs.

We find that while the FSU/COAPS model fails to capture the sensitivity of limiting or maximum intensity to
SST, it successfully reproduces the sensitivity of observed potential intensity to SST (Figure 9). The model
generates an environment conducive to the formation of strong TCs over the same regions that we observe
strong TCs. This supports the notion that resolution inhibits the FSU/COAPS model from capturing the
observed sensitivity of TC maximum and limiting intensity to SST. Other factors that are likely not related to
model resolution, such as a lack of modeled TC activity over the Gulf of Mexico, may also affect the
sensitivity.

Finally, we examine the spatial patterns of residuals from the regression of limiting intensity onto SST and
the regression of potential intensity onto SST. Positive residuals indicate regions for which the regression
underpredicts limiting intensity from SST, whereas negative residuals indicate regions of overprediction.
Overall, residual patterns from the regressions of observed and modeled limiting intensity onto SST do not
match (Figures 10a and 10b). For observed data, the regression tends to underpredict for regions in the
western portion of basin. This area of underprediction is shifted into the central portion of the basin for
modeled data. Although these residual patterns do not match, residuals from the regressions of modeled
and observed potential intensity onto SST match relatively well (Figures 10c and 10d). Regions for which the

Table 2. Regressions of Three Measures of the Upper Limit of TC Intensity Onto SSTa

Regression Slope coefficient (m s21�C21) s.e. t-Value R2

W_max � SST 7.2 0.998 7.24 0.686
W_max � SST (FSU/COAPS) 20.15 0.954 20.160 <0.001
PI � SST 3.8 0.334 11.4 0.845
PI � SST (FSU/COAPS) 3.6 0.439 8.28 0.733
LI � SST 7.1 0.967 7.32 0.691
LI � SST (FSU/COAPS) 3.5 3 1023 1.19 3.00 3 1023 <0.001

aWe consider the per region maximum intensity (W_max), the per region maximum potential intensity (PI), and the per region limit-
ing intensity (LI). The results displayed here regress the per region intensity measures onto the set of per region average August–Octo-
ber SST. We only consider those regions with August–October SST> 25�C. The first column lists the regression. The slope coefficient
represents the sensitivity of TC maximum, limiting, or potential intensity to SST. The third column provides the standard error (s.e.) on
the regression.

Figure 9. The sensitivity of per region maximum intensity (W_max; black), potential intensity (PI; red), and limiting intensity (LI; blue) to SST for observed (left) and model-generated
(right) TCs. Each point represents the average August–October SST and the maximum, limiting, or potential intensity for a specific region. Shading indicates the 95% confidence interval
about the regressions. Intensity metrics are expressed in units of m s21 and SST is expressed in �C.
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regression underpredicts observed potential intensity (e.g., Gulf of Mexico) correspond well with regions of
underprediction of FSU/COAPS potential intensity.

6. Summary and Discussion

While previous research estimated the sensitivity of TC limiting intensity to SST for observations and two
GCMs, no comparison had been made between the statistical limiting intensity and the physically derived
potential intensity. Additionally, possible explanations for the much lower sensitivity of model-generated
TCs relative to observed TCs had not been explored. The research presented here addresses both of these
topics. We find that while the model fails to capture the spatial distribution of observed maximum or limit-
ing intensity, it reproduces the observed spatial pattern of potential intensity reasonably well. However, the
model does slightly overestimate per region potential intensity. This overestimation of potential intensity
may be partially explained by cooler upper tropospheric temperatures in the model.

We also show that the sensitivity of observed limiting intensity to SST compares well with the sensitivity of
potential intensity to SST. This result links the statistically defined limiting intensity to the physically defined
potential intensity and supports the idea that the upper limit of TC intensity increases in concert with SST.
This also suggests that if a GCM is able to reproduce the sensitivity of potential intensity to SST, model

(a)

Residuals, Observed LI ~ SST
−20 −15 −10 −5 0 5 10 15 20

(b)

Residuals, FSU/COAPS LI ~ SST
−20 −15 −10 −5 0 5 10 15 20

(c)

Residuals, MERRA PI ~ SST
−20 −15 −10 −5 0 5 10 15 20

(d)

Residuals, FSU/COAPS PI ~ SST
−20 −15 −10 −5 0 5 10 15 20

Figure 10. The spatial pattern of residuals from the regression of limiting intensity onto SST (LI � SST) for observed (a) and modeled (FSU/
COAPS; b) data. Bottom plots display residuals from the regression of potential intensity onto SST (PI � SST) for observed (MERRA; c) and
modeled (FSU/COAPS; d) data. Blue shading indicates regions of overprediction by the regression while red shading indicates regions of
underprediction.
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simulations may still yield useful information about the upper limit of TC intensity even if they are unable to
reproduce the distribution of observed TC intensity. Finally, results indicate that while the FSU/COAPS
model is unable to reproduce the sensitivity of limiting intensity to SST, it captures the sensitivity of poten-
tial intensity to SST very well. The sensitivity of observed potential intensity to SST is 3.8 6 0.334 m s21 �C21

and the sensitivity of modeled potential intensity to SST is 3.6 6 0.439 m s21 �C21.

These results support the notion that low resolution inhibits the ability of climate models to generate realis-
tic TCs. The suitable environment for strong TC development may exist, but strong simulated TCs do not
form. Additionally, we show that the FSU/COAPS model does not generate or track as many TCs over the
Gulf of Mexico as are observed. This may also affect the sensitivity of model-generated TC limiting intensity
to SST because some of the warmest North Atlantic SSTs occur in this portion of the basin. To achieve a
high sensitivity, model-generated TCs must occur over a broad range of SSTs, with stronger TCs occurring
over the warmest SSTs and weaker TCs occurring over the coolest SSTs. If very few (and very weak) model-
generated TCs occur over the warmest water, then the sensitivity of modeled limiting intensity to SST will
not be high. Previous research suggests that improved resolution will not necessarily rectify model errors
associated with the spatial distribution of TCs. It is possible that different convective parameterization
schemes may yield different results for TCs over the Gulf of Mexico. More research is necessary to address
these issues. Additionally, future research will explore the sensitivity of TC intensity metrics to SST for a
broader suite of GCMs, including those with significantly higher spatial resolution.
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