Implications Between UAV and ATM Systems In Commercial Airspace Incorporation: Dissertation Defense

Linda Vee Weiland

Embry-Riddle Aeronautical University, weila8f3@erau.edu

Follow this and additional works at: https://commons.erau.edu/publication

Part of the Aviation Commons

Scholarly Commons Citation

This Presentation without Video is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
TITLE
IMPLICATIONS BETWEEN UAV AND ATM SYSTEMS IN COMMERCIAL AIRSPACE INCORPORATION

Capitol Technology University
Dissertation Defense
by
Linda vee Weiland
Dissertation Chair: Dr. Ian McAndrew, Ph.D.
Dissertation Committee: Dr. Allen Exner, Ph.D., and Dr. Richard Baker, Ph.D.
Date: July 2021
Statement of the Problem

• Human Factors associated with sUAS operations come in an assortment of characteristics, and they are inadequately represented in literature that focuses on the perspective of the air traffic controller as the center of the HITL environment.

• This may impact the safe integration of civilian sUAS as they continue to integrate in the NAS.

• Leads to concern for safety, efficiency, and workload optimization for controllers.

• Shows gaps in related knowledge
The research problem is of important social, scientific or theoretical interest because ATC and air traffic management (ATM) are a part of a complex socio-technical system, and better awareness of HF is critical for risk assessment and mitigation protocols that could identify easy-to-use HF tools for ATC and ATM sUAV incorporation. (Teperi, Leppanen, & Norros, 2014).
Literature Overview

• Seminal references that are the foundation of the research
 • Federal Aviation Administration. (2021b). Remote identification of unmanned aircraft.
• References that addressed methodological issues (ways to combine methods)
Research Methodology/Design

- Methodology/design-conceptual framework. Quantitative phenomenological research design with statistical analysis of reports involving UAS sightings and incidents. This method was used due to
 - Reliability and validity - it combined models – brings in programs in place
 - HF, safety, and security risks that need to be mitigated for safe and secure incorporation of sUAS in the NAS
 - The HITL between Air Controller and Drone study is new and SHELL and Swiss cheese are proven models in aviation and HF areas
 - Four step model
- Other methodology/design options were not used
 - they lacked the ability to cover complex social-technical systems
Research Methodology/Design
Data Analysis - ASRS

Figure 17. Most often reported HF involved ASRS

Figure 18. All the HF cited in ASRS
Data Analysis – FAA Sighting

Most sighting reports go through ATC to FSDO –
- Cognitive workload change
- Situational Awareness diverted
- Communication is increased and mistakes or misunderstandings can increase
- 95% did not require evasive action

Figure 20 FAA UAS sighting FY 2021 Q1
Findings/Outcome

• The significant outcome/finding of the research is that NAS continues to be safe with few accident reports that resulted in a large loss due to the proactive collaboration of all stakeholders in the integration of sUAS in the NAS. This built the foundation for Remote ID adaptation that is imperative to safe integration and continued safe and secure operations. Additional findings include
 • Analysis of the reports indicate that through training in HITL, and HF, that ATC and sUAS human errors are mitigated
 • There is a gap in the literature and understanding in HITL, HF ATC and drone relationship
 • Most reports show that there is a possibility of HITL HF incident that involves ATC and the drone
 • Through education and training human error can be mitigated (SHELL, SCM, SMS, and PDCA)
 • Strong foundation for solution has been laid through ASRS and FAA sighting reports-data analysis can continue to prevent HITL errors
Implications of Findings

- Implications of findings:
 - Research needs to continue – cusp of major changes
 - Currently it is difficult to validate sighting as most drones do not have a ‘digital license plate’ – regulation changed in 2021 Remote ID use will need time to implement – (positive implication)
 - Most current available data is voluntary – Remote ID will change that scenario and will provide data that is more reliable and valid
Recommendations/Solutions/Next Steps

• Collaboration of all stakeholders
• Development of risk management with SMS
• Enhancement of education and public perception
• Exploration of new technology (Remote ID and others) and development of Concept of Operations
• Maintain sustainable research and recurring assessment analysis of available data
• Ensure recurrent training for controllers and pilots
Recommendations for Research

• Continued research in this complex system of systems that places the primary focus on the air traffic controller as the controller is the primary HITL. This will ensure there are multi faceted solutions that enable the NAS to reach its full potential.

• Continued research has many opportunities for all stakeholders that will ensure a continued safe and orderly NAS and for additional contribution of knowledge in the area of this dissertation (SMS, PDCA)
Contribution to Knowledge

• The investigation of human error possibilities in sUAS integration in the NAS from the Air traffic controller perspective has not been done. By investigating through qualitative research of a social technical complex systems of systems, this study attempted to rectify the scarcity of research from the ATC perspective as the center component in the HITL to ensure safe incorporation of sUAS in the NAS. This was done by combing HF analysis models that had not been combined before in its conceptual framework.
• Thank you.
• Questions?