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Michael P. Hickey1,2,*, Thomas Navarro3, Gerald Schubert3 and Richard L. Walterscheid2 

1Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA 

2Center for Space and Atmospheric Research, Embry-Riddle Aeronautical University, Daytona Beach, FL, 

USA 

3Department of Earth, Planetary and Space Sciences, UCLA, CA, USA 

Abstract 

A 2-D spectral full-wave model is described that simulates the generation and propagation of 

mountain waves over idealized topography in Venus’ atmosphere. Modeled temperature perturbations 

are compared with the Akatsuki observations. Lower atmosphere eddy diffusivity and stability play a 

major role in the upward propagation of gravity waves from their mountain sources. Two local times 

(LT) are considered. For LT = 11h the waves are blocked by a critical level near 100 km altitude, while for 

LT = 16 h the waves propagate into the thermosphere. As a result of the small scale height in the Venus 

thermosphere, for LT = 16 h wave amplitudes grow with increasing altitude up to ~ 200 km, despite the 

increasing kinematic viscosity. Although wave amplitudes can become very large in the thermosphere, 

the value of the total potential temperature gradient suggests that some of these fast waves having 

extremely large vertical wavelengths may remain convectively stable. Our simulations suggest that the 

momentum and thermal forcing of the mean state due to the dissipating waves may, at times, be 

extremely large in the thermosphere. At a given local time, the maximum forcing of the mean state 

always occurs at an altitude determined by the mean winds and the upper atmospheric viscosity. The 

surface conditions that determine the forcing (mountain parameters, surface mean wind, eddy 

diffusivity, and static stability) have little impact on this altitude, but they do significantly impact the 

magnitude of the forcing. 

1. Introduction

Observations 

Observations made from the Akatsuki satellite of large stationary features at the cloud tops in the 

upper atmosphere of Venus were first identified by Fukuhara et al. [2017]. These observations were 

made on the dayside of Venus using the Longwave Infrared Camera (which has a spectral band of 8 to 

12 m) and the Ultraviolet Imager. The former images UV radiation scatter by cloud particles at the 
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cloud tops (near 65 km altitude) while the latter detects thermal radiation from the same region. The 

features extended some 10,000 km of latitude, were stationary with respect to underlying surface 

topography, found above highlands, bow-shaped, and were thus tentatively identified as gravity waves. 

This discovery challenged the previously established view of a fast, superrotating cloud deck circulation 

minimally impacted by the slowly rotating surface circulation. The brightness-weighted temperature was 

determined to be up to about 2K and centered at ~ 65 km altitude with a full-width at half-maximum of 

~ 10 km. Kitahara et al. [2019] and Kouyama et al. [2017] found that bow-shaped stationary wave 

features occurred exclusively above highlands and tended to appear between noon and evening. 

Specifically, Kouyama et al. [2017] examined the local time dependence of stationary waves in four 

different highland regions, and found that stationary waves were in every region for local times of 15 – 

16 hr. They also noted that the waves were not completely stationary, but instead migrated slowly by as 

much as 20o eastward (the upstream direction) over a period of ~ 10.5 Earth days. Smaller scale 

stationary waves that are not bow-shaped have also been observed in the upper cloud regions of 

Venus’s night-side atmosphere that appear to be correlated with highland regions [Peralta et al., 2017]. 

The stationary wave features observed in the UV emissions at the cloud tops by Kitahara et al. [2019] 

had a horizontal wavelength of ~ 510 km and a radiance amplitude of ~ 1.2%. They hypothesized that 

“the waves should reach thermospheric heights and decay via molecular viscosity on the dusk side 

where the westward superrotation extends to the thermosphere, while the waves will decay via 

radiative damping or critical layer absorption on the dawn side where the superrotation vanishes at high 

altitudes.” They also stressed the need for further measurements of topographic gravity waves in order 

to infer properties of the surface boundary layer, because measured wave parameters at the cloud tops 

could provide constraints on static stability and wind speed near the surface where the waves are 

generated. 

Earlier Modeling 

Schubert and Walterscheid [1984] used a full-wave model to examine the propagation and 

dissipation of gravity waves in a zonal-mean flow that were forced at the surface in the Venus 

atmosphere. Both a very low static stability and a more stable static stability in the near-surface 

atmosphere were considered. They found that the vertical transmission of wave energy from the surface 

depends crucially on gravity wave intrinsic phase speed. Because slow waves propagating in a more 

stable atmosphere have smaller vertical wavelengths, they were strongly attenuated by eddy diffusion. 

Fast waves which were strongly evanescent in regions of low static stability were also strongly 
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attenuated. Slow in this context means slow enough in terms of intrinsic frequency (or phase speed) to 

produce waves that are rapidly dissipated by scale-dependent diffusion. 

Young et al. [1987] used the model of Schubert and Walterscheid [1984] to simulate the wave 

response near 54 km altitude due to waves generated near the surface. Their study was motivated by an 

apparent correlation of vertical wind amplitude with the mountainous region Aphrodite Terra, as 

observed by a VEGA balloon [Blamont et al., 1986]. These simulations were used to help explain the 

VEGA Venus Balloon Mission measurements, which revealed enhanced vertical wind amplitudes of 2-3 

m/s at ~ 55 km altitude over Aphrodite Terra, and apparent zonal wavelengths of ~ 500 km. In particular, 

the power spectra of topology, which determines the spectrum of the forced waves indicated that 

terrain-forced gravity waves could explain a significant portion of the VEGA balloon measurements 

above Aphrodite Terra. The study of Young et al. [1987] was extended by Young et al. [1994] using the 

numerical gravity wave model of Walterscheid and Schubert [1990]. It was demonstrated that although 

small scale waves cannot propagate to high altitudes (near the cloud level at ~ 55 km), nonlinear wave-

wave interactions would generate smaller scale waves at these altitudes, resulting in complex flow 

patterns. Additionally, it was shown that the vertical structure of the mean wind and temperature can 

lead to partial wave trapping and resonances of upward propagating stationary waves, with the result 

that wave amplitudes at cloud levels depended on the magnitude of the surface wind in a 

nonmonotonic way. 

Recent numerical simulations 

Navarro et al. [2018] used the Institut Pierre-Simon Laplace (IPSL) general circulation model to 

demonstrate that the observations of large stationary features at the cloud tops were consistent with 

mountain waves. They also showed that the diurnal cycle of near-surface atmospheric stability and near-

surface winds favored the afternoon generation and propagation of these waves. They furthermore 

demonstrated that the mountain waves would generate a substantial atmospheric torque that could 

impact the planetary rotation rate. 

Yamada et al. [2019] hypothesized that the prevalence of stationary waves just above the cloud top 

in the afternoon might be related to the afternoon thinning of the region of low static stability in the 50 

– 60 km altitude region. They reasoned that gravity waves should be strongly attenuated when

propagating through this region of evanescence at other times, when it is thicker. However, the results 

of their modeling demonstrated that stationary gravity waves with zonal wavelengths longer than 1000 

km can propagate to the cloud top, even for a deep (~ 15 km) region of low static stability. They 

concluded that the observed dependence of mountain wave amplitudes on local time must be due to a 
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corresponding time dependence of the excitation process of the waves and/or transmission process in 

the lower atmosphere. 

Lefèvre et al. [2020] used a mesoscale model to perform a detailed study of mountain wave 

propagation. They found that the two regions of low static stability (lying between altitudes of 18 and 35 

km, and 48 and 52 km, respectively) supported trapped lee waves that propagate horizontally. They also 

found that in spite of the existence of these low-stability barriers to wave propagation, the energy 

transmission via tunneling was sufficient to allow significant wave propagation to the Venus cloud tops. 

The bow-shape waves resolved by their IPSL Venus mesoscale model achieved maximum amplitudes of 

~ 2 K near the cloud tops in the late afternoon, but these had decreased to less than 0.5 K by midnight. 

They noted that the near surface winds responsible for orographic wave generation had not changed 

significantly during the day and concluded that the diurnal variability of atmospheric conditions 

(atmospheric stability) at higher altitudes (the first 4 or 5 km) were more likely to explain the diurnal 

variation of the bow-shaped waves. Lefèvre et al. [2020] also calculated the mean state acceleration due 

to the divergence of the wave momentum flux and found that the mean winds were decelerated by 

about 3 m/s over the course of a Venus day. It was noted that this value was smaller than that required 

to explain the longitudinal shift of zonal wind patterns previously inferred by Bertaux et al. [2016]. 

In this paper we examine the propagation of stationary gravity waves forced at the Venus surface 

using a time-independent linear spectral full-wave model. The primary objective is to determine how 

these waves force the mean state at high altitudes (upper troposphere and thermosphere). In order to 

do so we: a) determine the dependence of the wave generation on near surface winds, local time, lower 

atmosphere stability and eddy diffusivity, and b) determine the wave-driven transport (fluxes) of heat 

and momentum to the upper troposphere and thermosphere and their flux divergences to assess the 

wave forcing of the high-altitude mean state. Our study focusses on zonal mean-state effects on the 

propagation of waves excited by flow over idealized topography. We examine the basic effects of the 

diurnal variation of wind and thermal structure on the propagation and dissipation of waves in different 

parts of the wave spectrum. We do not address the effects of perturbed background states, including 

the effects of zonal variations in the background flow that may be significant episodically or regionally. 

Section 2 presents basic mountain wave theory, section 3 describes the numerical model, and 

section 4 describes the mean state specification. Results are presented in section 5, a discussion is 

provided in section 6 and conclusions are provided in section 7. 

2. Mountain Wave Theory
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Excellent introductory texts on mountain wave theory are provided by Smith [1980] and Durran 

[2003] and references therein. Based on Boussinesq flow, the so-called Scorer parameter, ls, is defined 

by
2 2

2

2 2

1
s

N d U
l

U U dz
  , where U  is the mean zonal wind, and N  is the Brunt-Väisälä (buoyancy) 

frequency. A simplified dispersion relation for atmospheric gravity waves is 
2 2 2

sm l k  , where k and m 

are the horizontal and vertical wavenumbers, respectively. The Scorer parameter therefore represents 

the maximum vertical wavenumber (minimum vertical wavelength) for propagating waves. For waves 

with 
2 2

sl k  the waves propagate vertically without loss of amplitude and the wave crests tilt upstream 

with increasing height, but the waves are evanescent for 
2 2

sl k  [Durran, 2003]. 

For mountains having a large characteristic width a, the generated waves will be approximately 

hydrostatic when 1Na U  and will be confined to a region directly above the mountain. Under such 

conditions the characteristic time for the wind to traverse the mountain will be considerably longer than 

the Brunt-Väisälä period. Non-hydrostatic gravity waves will be created for narrow mountains satisfying

1Na U , and downstream disturbances are then possible when U  and N vary appreciably with 

height. 

The parameter 0U Nh  , which is the Froude (Fr) number, and where h0 is the mountain height, is a 

measure of wave nonlinearity (e. g. Smith, 1980; Young et al., 1994). Typically, linear theory breaks 

down with the onset of blocking, which occurs when 0 1U Nh   (the critical Froude number) . When Fr 

> 1 the motion is linear and longer wavelength waves are produced. When Fr << 1, the motion is 

nonlinear, and some flow occurs over the mountain top. In this case lateral flow will occur around an 

isolated mountain at low altitudes, but blocking will occur if the mountain(s) are wide. When Fr = 1, a 

resonance may occur, leading to intense mountain waves. These situations have been well described by 

Durran (1990). For our simulations, the mountain height was set a value of 1.0 km, which is reasonable 

for most conditions considered. A more detailed appraisal of this assumption is provided in the 

discussion section. Under these circumstances hydrostatic gravity waves will occur for  0 max
a h (small

mountain slope) and non-hydrostatic gravity waves will occur for  0 max
a h (large mountain slope), 

where a is a mountain width parameter. Finally, we remark that as Young et al. [1994] stated, waves 

that are close to overturning in limited regions at low levels will not be close to overturning at higher 

altitudes away from the lower boundary because the mean wind increases with increasing height. 
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3. Mountain Wave Model

We use a high-resolution, compressible, spectral model to simulate mountain gravity waves in the 

Venus atmosphere. Spectral models have been previously employed to model mountain wave 

propagation in the terrestrial atmosphere (Eckermann et al., 2016, and references therein). The main 

difference between our model and previous spectral models is that ours is based on a full-wave model 

while the previous models were based on the WKB approximation. Our model accounts for wave 

reflection, while WKB models do not. The topic of wave reflection in the Venus atmosphere has been 

addressed by Young et al. (1994). 

Our model is based on a single-gas full-wave model that solves the linearized Navier-Stokes 

equations subject to boundary conditions for a non-isothermal mean-state atmosphere including the 

effects of height-dependent mean winds, and the eddy and molecular diffusion of energy and 

momentum. It can model the transmission and reflection of gravity waves associated with regions of 

quasi-evanescence, which is important to consider for wave propagation in regions of low static stability 

in the Venus atmosphere [Schubert and Walterscheid, 1984]. A detailed description of the full-wave 

model and equations are provided in Appendix A. 

Spectral versions of this model have been used previously to study the effect of time-dependent 

gravity wave packets on atomic oxygen transport in Earth’s mesosphere (Hickey et al., 2000b) and the 

effect of tsunami-driven wave packets on the terrestrial ionosphere (Hickey et al., 2009). We use a 

similar approach based on discrete Fourier transforms of wave variables. We present the equations 

appropriate to a 1-D mountain shape in the x-z plane. If a mean wind  U z  blows across a mountain

with terrain h(x), the vertical velocity at the lower boundary will be 

 ( ,0)w x U h x x    (1)

With the terrain represented as 

 
1 ˆ( )

2

ikxh x h k e dk








 
(2) 

Eq. (1) gives the vertical velocity spectrum at the lower boundary: 

ˆˆ ( ,0) ( )w k ikU h k   (3)

The full-wave model provides solutions  ˆ ,j k z  where the subscript j corresponds to perturbations in

one of the dependent variables: the x-z velocity components u’, w’, respectively, temperature T’ and 

pressure p’. The total wave response to the forcing is written as 
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 
1 ˆ ˆ, ( ) ( , )

2

ikx

j jx z h k k z e dk 








     
(4) 

subject to specification of the vertical velocity at the lower boundary using Eq. (3). The implementation 

is by means of discrete Fourier transforms. We found by experimentation that for our 2-D simulations in 

one horizontal coordinate, 1000 individual waves with a horizontal grid spacing equivalent to 0.1a  (see 

Eq. (5)) provided convergent results. Increasing the number of waves in the spectrum to 2000 had 

virtually no impact on the results. 

For our 2-D simulations we assume a mountain shape based on that of Reinecke and Durran (2009) 

which in the x-z plane is defined by: 

4

0( ) 1 cos 4 1
16 4

0 otherwise

h x
h x if x a

a

  
    

  



(5) 

For an assumed 1-D mountain shape the discrete Fourier transform is used to derive the spectrum 

 ĥ k (not shown), and with the prescribed mean wind at the lower boundary we calculate  ˆ ,0w k . For

most of our simulations we use a value of a = 100 km and h0 = 1000 m in Eq. (5). The resulting mountain 

shape is shown in Figure 1. 

Figure 1. 1-D mountain shape for a = 100 km and h0 = 1000 m in Eq. (5). 

Observations and numerical studies indicate that linear theory reliably predicts the amplitude of trapped 

lee waves generated by finite-amplitude mountains, the main shortcomings of linear theory being that it 

does not represent the tendency of nonlinear dynamics to enhance the short-wavelength Fourier 

components in the low-level wave field over the lee slope (Durran, 2015). The nonlinear behavior 
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induced by blocking should not propagate to heights well above the terrain (Young et al., 1994). Thus, 

linear theory should give reasonably accurate descriptions of the gross behavior of bow waves. Further, 

the low static stability at terrain altitudes will mitigate the effects of nonlinearities induced by the 

terrain. Temperature data below ~ 30 km are sparse, but the available data and modeling indicate that 

lapse rates are indicative of near neutral stability indicating that blocking should not occur except for the 

highest terrain (Seiff et al., 1980; Lewis, 2004; Lebonnois and Schubert, 2017; Navarro et al., 2018). 

4. Mean State Definition

Our model is based on the propagation of linear waves in an otherwise undisturbed, steady 

background atmosphere. The assumption that the mean state does not vary in time is reasonable for 

the waves that we consider here. For the assumed background atmospheric parameters, and for a 

representative horizontal wavelength of 500 km, we estimate that an average vertical group speed is 

approximately 2.5 m/s between the surface and 100 km altitude. This means that the waves will 

traverse that region in a time of order 10 hours. This propagation time is exceedingly small compared to 

the slow rotation rate of Venus, supporting our assumption of a steady mean state. At altitudes higher 

than 100 km we expect the waves will either propagate at a speed much greater than 2.5 m/s in one 

case considered, or not propagate at all in the other case (see further discussion of this latter situation 

later in this section). 

The mean state used in the simulations is provided from the IPSL ground-to-thermosphere GCM 

simulations at an increased horizontal resolution of 96x96 (Navarro et al., 2021; Gilli et al., 2021). These 

profiles, averaged on low-latitude (10oS-10oN) conditions and over one solar day, are smoothed, and 

extended to higher altitudes using cubic splines and polynomials that ensure that gradients of key 

parameters (e.g., temperature, winds) smoothly approach zero near the upper boundary. The cubic 

spline fitting enables us to map the IPSL profiles to the high resolution full-wave model grid. Smoothing 

tends to minimize any artificial reflections that may occur in the full-wave model. Contrary to the GCM 

assumptions, we assume that the ideal gas equation of state applies throughout the atmosphere. 

Although this assumption will break down in the deep atmosphere of Venus, Lebonnois and Schubert 

[2017] have shown that the error associated with this assumption does not exceed ~0.8%. All species 

mixing ratios are specified by the IPSL model. The molecular viscosity is provided by the IPSL model, 

while the thermal conductivity for each species was calculated from Rees [1989] for O, O2 and N2, and 

from Huber and Harvey [2011] for the remaining species (CO, CO2, SO2 and H2O). 
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In this study we select atmospheric profiles for two local times, one set of profiles representing 

morning conditions and the other representing afternoon conditions. Because the propagation of 

mountain waves is primarily sensitive to the mean winds through which they propagate, the two local 

times we selected for our simulations were based solely on the mean zonal wind profiles. Daytime 

profiles of these hourly winds derived from the IPSL GCM model for local times of 09 LT to 18 LT (not 

shown) were examined. For every local time between 09 h and 14 h (inclusive) a critical level for 

mountain waves (where 0U  ) was seen to exist near 100 km altitude. Such critical levels severely 

impede the propagation of the waves into the thermosphere (the waves cannot propagate above about 

100 km altitude). Because the winds below about 100 km were similar for these local times, a local time 

of 11 h was selected as representative of morning conditions. For local times between 15 h and 18 h 

(inclusive) it was noted that no critical levels existed anywhere, while above about 100 km altitude the 

winds increased dramatically in the westward direction and achieved large values above about 120 km 

altitude. The largest westward wind at 150 km altitude was ~ 214 m/s and occurred for LT = 16 h. This 

profile was chosen to represent afternoon conditions. 

The mean zonal wind in the lowest region of the atmosphere (z < 7 km) is assumed to be 

approximately constant, but we also investigate the effects of a small non-zero vertical shear at the 

lower boundary. The value of the surface wind is adjustable, and values between 1 m/s and 5 m/s 

(westward) are considered in our simulations. Pioneer Venus Sounder (PVS) mean winds were used for 

altitudes between about 15 km and 59 km and IPSL GCM model winds were used from about 65 km to 

150 km altitude. For altitudes above 150 km the winds were extrapolated upward using a polynomial 

that provided a zero gradient at high altitudes. In the region between ~ 7 km and 15 km altitude the 

winds were defined by a 4th degree polynomial, while those between ~ 59 km and 65 km altitude were 

based on a fairing that smoothly joined the PVS winds to the IPSL GCM model winds. 

The wind profiles for LT = 11 h and LT = 16 h are shown in Figure 2. Below about 68 km altitude the 

winds for the two local times, although not identical, exhibit similar behavior in a region where the 

circulation is dominated by the westward superrotation, but they diverge significantly at higher altitudes 

where the subsolar-to-antisolar circulation prevails. For LT = 11 h the winds become increasingly 

westward with increasing altitude up to about 68 km altitude, and then remain approximately constant 

up to about 86 km altitude. Above that altitude the winds rapidly decrease in magnitude, becoming 

eastward above about 102 km altitude. The wind continues to increase in magnitude at greater heights, 

and eventually asymptotes to an eastward speed of about 67 m/s. For LT = 16 h the winds increase 

(westward) with increasing altitude up to about 73 km altitude and then decrease in magnitude to a 
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local minimum of about 72 m/s slightly above 100 km altitude. At greater heights, the wind increases in 

the westward direction, and eventually asymptotes to a value of about 215 m/s at high altitudes. We 

assume the dayside SS-AS flow speeds at high altitudes are constant, as modeled and explained with a 

GCM in Navarro et al. (2021). 

Figure 2. Mean zonal winds for LT = 11 h (red curve) and LT = 16 h (green curve). The nominal winds shown here 

have a lower boundary value of -2 ms
-1

. Positive corresponds to the eastward direction. 

The nominal temperature profile we used was constructed by smoothly joining several regions. For 

each local time, two different temperature profiles were considered. The first represents a nominal 

profile, in which the region between 5 km and 150 km altitude is defined by a nominal IPSL GCM 

temperature profile. This profile is smoothed, and then extended to higher altitudes using a polynomial 

that provides an isothermal atmosphere above ~ 200 km altitude. The temperature in the lowest 5 km 

of the atmosphere is based on a polynomial that smoothly joins to the IPSL LMD profile at 5 km altitude 

and that becomes isothermal as the lower boundary is approached. 

The second temperature profile is based on the low stability low-altitude profiles derived from the 

IPSL GCM and differs from the nominal profile only for altitudes below about 60 km. A cubic polynomial 
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is used to provide a fit to an N2 profile between the surface and 35 km altitude. This requires continuity 

of both 2N  and 2dN dz  with the existing 2N  profile at ~ 35 km altitude, while 2N  is set to the low-

stability value of N2 at the surface with 2dN d z  set equal to zero. From this new 2N  profile, the 

modified temperature profile is determined as follows. Starting with the definition of 2N  based on the 

potential temperature gradient ( 2 lnd
N g

dz


 ), a finite difference equation is derived for the 

temperature: 
2

1 1

2 2n
n n n n n n

n

hN h
T T T g M

g R
    , where the step size is h, pR c  and all other 

variables are as defined in Appendix A. Here, T refers to temperature and the subscript “n” refers to the 

position on the altitude grid. Starting from the upper height of the modified profile (~ 35 km) where all 

values on the right side of the equation are defined, we proceed downward to the surface. In general, 

this won’t provide the required surface temperature, 1T , but by adding a constant we can achieve the 

required surface temperature without affecting the 2N  profile. However, the added constant will affect 

the continuity of the temperature near 35 km altitude requiring a final adjustment. This is achieved 

using a 5th-degree polynomial to smoothly join the temperature between altitudes of 35 km (the new 

lower atmosphere temperature profile) and 60 km (the initial temperature profile). This polynomial was 

based on the continuity of the temperature and its first and second derivatives at the two endpoints. 

The temperature profiles for two local times (11 h and 16 h) are shown in the left panel of Figure 3 

for nominal conditions (solid curves) and low stability conditions (dashed curves). The dependence of 

the nominal temperature on local time is not large and becomes noticeable only above ~ 80 km altitude. 

At high altitudes, the temperature asymptotes to ~ 213 K and 205 K for LT = 11 h and 16 h, respectively. 

At the lower boundary, the temperature is 700 K. The low stability profiles below 60 km altitude are 

similar for the two local times and exhibit larger negative gradients than those of the nominal 

temperature profiles. 

The right panel of Figure 3 shows the square of the Brunt-Väisälä frequency ( 2N ) for the two local 

times and for nominal and low stability conditions. For the nominal-stability lower atmosphere, the 

lower boundary value of 2N  is ~ 1.25 x 10-4 s-2. For the low-stability lower atmosphere, 2N  is ~ 4.37 x 

10-7 s-2 and 3.42 x 10-6 s-2 for 11 LT and 16 LT, respectively. 
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Figure 3. Mean temperature (left panel) and the square of the Brunt-Vaisälä frequency (right panel) versus 
altitude for LT = 11 h (red curve) and LT = 16 h (green curve). Nominal (solid curves) and low-stability lower 
atmosphere (dashed curves) conditions are shown. 

The eddy diffusion is not well understood at low altitudes in the Venus atmosphere. Based on an 

analysis of Pioneer Venus radio occultation measurements, Woo and Ishimaru [1981] derived a value for 

the eddy diffusion of 4 m2 s-1 near 60 km altitude. Bougher et al. [1986] found that values of eddy 

diffusion required in their model were smaller than values used in previous one-dimensional models. 

Upper limits to the eddy diffusivity were 500 m2 s-1 for the dayside and about 1000 m2 s-1 for the night-

side. These values were applicable for altitudes above ~ 80 km. In their study of gravity wave 

propagation, Schubert and Walterscheid (1984) adopted a value of 4 m2 s-1 and Young et al. [1987] 

adopted a constant value of 0.7 m2 s-1 for the eddy diffusion. Based on a model relating breaking gravity 

waves to turbulent diffusion and using available measurements of turbulent diffusion coefficients at the 

planetary surface and at the homopause, Izakov (2001) derived a profile representing a lower bound to 

the eddy diffusivity. Values increased from 10-2 m2s-1 at the surface, to 104 m2s-1 at ~ 140 km altitude. 

Brecht et al. [2011] used values of eddy diffusivity that were a maximum of 1000 m2 s-1 on the night-side 

and a constant value of 100 m2 s-1 on the dayside. These profiles were applied above 80 km altitude, but 

no information was provided for lower altitudes (their model lower boundary was at 70 km altitude). 

Based on profiles of CO and CO2 based on SOIR/Venus Express measurements, Mahieux et al. (2021) 

have determined values of eddy diffusivity in the upper troposphere and lower thermosphere. They 

determined that most previous studies substantially underestimated the values of eddy diffusivity in the 

80 – 120 km height range. The value of eddy diffusivity at 140 km altitude was ~ 2 x104 m2s-1, in 

reasonable agreement with Izakov (2001). 
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Given the paucity of measurements in the middle and lower atmosphere, momentum eddy 

diffusivity ( ( )e z ) profiles were devised that smoothly increased from small values in the lower 

atmosphere to larger values in the upper atmosphere. The model profile used is 

max

( )
( ) 0.5 1 tanh ln3

2

mid
e LB

z z
z

H

  
   

     
    

 (6) 

where LB  is the value of   at the lower boundary, max  is the maximum (asymptotic) value of   at 

the upper boundary, midz  is the altitude of inflection (which was held constant for all simulations), and 

H  is a parameter that determines the gradient of e . We adopt four basic eddy diffusion profiles 

having the parameter values as shown in Table 1. The first profile (designated A ) represents a nominal 

profile, while the second ( B ) is representative of that presented by Izakov [2001], as described above. 

The third ( C ) and fourth ( D ) profiles are representative of small and large diffusivities, respectively, 

and they are considered here to be extreme limits of the eddy diffusivity. The total viscosity profiles 

(molecular plus eddy) are shown in Figure 4 along with values of the variable eddy diffusion profile taken 

from Table 1 of Mahieux et al. (2021). At 80 and 140 km altitude the values of eddy diffusivity based on 

profile D are factors of ~2.7 and ~3.8 smaller, respectively, than that of Mahieux et al. (2021). However, 

at intermediate altitudes the eddy diffusivity values associated with profile D are larger. 

Profile 
LB  (m2 s-1) 

max  (m2s-1) H  (km) midz  (km) 

A 1 103 15 140 

B 10
-2

10
4

9.56 140 

C 10
-3

500 10 140 

D 10 10
4

15 140 

Table 1. Eddy diffusion profiles and parameters used in Eq. (6) for this study. 

The eddy thermal conductivity was calculated from the eddy viscosity by assuming that the Prandtl 

number was equal to 0.1 [Schubert et al., 1971]. It has been suggested by Covey and Schubert [1981] 

that the eddy diffusion in the Venus atmosphere may not be isotropic. They proposed that the flatness 

of large-scale convection cells in the Venus clouds seen in UV images from Mariner 10 and Pioneer 

Venus spacecraft measurements can be explained by anisotropic eddy diffusion in which the horizontal 
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eddy diffusivities are at least 10-fold greater than vertical diffusivities. We explored this possibility in 

which, following Covey and Schubert [1981], we set horizontal eddy diffusivities to be a factor of 10 or 

100 larger than those given by Eq. (6). However, doing so had no significant impact on our results, and 

so our simulations performed here are based on isotropic eddy diffusivities as defined by Eq. (6). 

Figure 4. The sum of the eddy and molecular viscosities. The parameters used in Eq. (6) to describe the four eddy 
viscosity profiles are provided in Table 1. At high altitudes where the molecular viscosity dominates all values are 
the same. The asterisks denote values of variable eddy diffusion taken from Table 1 of Mahieux et al. (2021). 

At high altitudes (greater than ~ 80 – 90 km altitude) the wave amplitudes are apt to become quite 

large for certain combinations of mean state parameters, particularly those in the source region (lower 

atmospheric wind, eddy diffusivity and lower atmospheric stability). At these high altitudes, when the 

vertical gradients of the total (mean plus wave) potential temperature ( ) become negative, a wave will 

overturn, leading to mixing and enhanced diffusion (e.g., Lindzen, 1981; Walterscheid and Schubert, 

1990). The enhanced eddy diffusion so produced acts to limit the wave to its saturation amplitude. We 

include a simplified version of this process in our model by incorporating a wave-induced eddy diffusion 

profile that extends over the region where z   is negative. 

5. Results
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Results are provided for single monochromatic waves as well as a full spectrum of waves defining our 

mountain waves. Given the number of parameters and the large parameter space to cover, to give a 

general view of the simulations we provide in Appendix C a table summarizing all of the figures. 

5.1 Single Wave Model Results 

Before presenting the results of our simulations obtained with the spectral full-wave model, we use 

the single-wave version of this model in order to elucidate how the properties of the basic state impact 

the vertical propagation of discrete monochromatic gravity waves. The relevant atmospheric properties 

that impact the propagation of the waves are the eddy diffusivity, the vertical profile of the mean winds 

(through the local time), the low-altitude atmospheric stability and the lower boundary mean zonal 

wind. We primarily examine the vertical velocity amplitude, w , as a function of altitude for three 

individual gravity waves having horizontal wavelengths h of 100, 500 and 1000 km. The perturbations

of horizontal velocity, u   , and temperature, T   , exhibit similar behavior to w and because of this we 

do not present results for u   and we present only one set of results for T  . A local time of 11 h, a 

westward zonal wind of 1 m s-1 at the lower boundary, two different kinematic viscosity profiles (A and 

C), and the previously described two different temperature profiles (nominal and low-stability lower 

atmosphere) are considered. 

In all cases shown in this section w  is equal to 1 m s-1 at the lower boundary. Within a spectrum of 

waves, such as those considered in the section 5.2, the individual spectral amplitudes of w  are ~ 10-4 m 

s-1 at the lower boundary for the 500 km and 1000 km waves, and significantly smaller for the 100 km 

waves. Hence, the values obtained here for w  and T   are not meant to be realistic as they reach 

values exceeding 1 km/s and 1000 K, respectively. Instead, the results presented in this section merely 

serve the purpose of a first assessment of wave propagation in a qualitative rather than quantitative 

way. 

Figure 5 (left panel) is based on eddy viscosity profile A, which has a value of 1 m2 s-1 at the lower 

boundary. The two sets of profiles are for the nominal stability/temperature profile (solid curves) and 

the low stability/temperature profile (dashed curves). Near the lower boundary the mean wind is small 

and therefore the waves are slow and have small vertical wavelengths. Based on the Scorer parameter 

provided in section 2, the minimum vertical wavelength at the lower boundary is ~ 0.56 km for the 

nominal-stability lower atmosphere. Hence, the waves are significantly dissipated just above the surface 

for propagation in the atmosphere having the nominal temperature profile (solid curves). Their 

amplitudes decrease rapidly away from the surface until the wind speed (and intrinsic phase speed of 
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the waves) has increased sufficiently, which occurs just above 8 km altitude where U  ~ 2 m s-1. Above 

this height the wave amplitudes remain small, with some variations associated with strong partial 

reflections up to ~ 60 km altitude. Above this height the amplitudes increase with increasing height, 

reaching a maximum amplitude just below the critical level (at ~ 102.3 km altitude). The waves leak 

through the critical level and continue to propagate upward with significantly reduced amplitudes. This 

tunneling is facilitated by the presence of the viscosity, which removes the critical level singularity that 

would otherwise exist in its absence (Hazel, 1967). The approximate maintenance of wave amplitudes at 

altitudes above the critical level occurs due to the increasing mean wind speed (in the eastward 

direction). The waves attain a maximum amplitude at ~ 180 km altitude where the molecular kinematic 

viscosity has increased to ~ 106 m2 s-1, and amplitudes decrease at greater altitudes. The 100 km wave 

experiences less dissipation than the longer wavelength waves and experiences an amplitude growth 

between about 130 and 175 km altitude, with a decreasing amplitude at greater heights due to 

dissipation by molecular viscosity. The smaller dissipation rate for the wave of shorter horizontal 

wavelength can be understood following Young et al. (1994), but also applied here to the molecular 

viscosity. The ratio, r  of the eddy diffusion term 2 2

e w z    (where e e   is a coefficient of eddy 

viscosity) to the inertial term Dw Dt   in the linearized form of (1) for the vertical velocity component, 

can be shown to be approximately 2 3

er N kU (Young et al., 1994), where it has been assumed that 

the vertical variation of w  is purely sinusoidal. A larger value of r  implies a larger damping of the 

wave. For a given value of e  the damping will be larger for larger horizontal wavelength (smaller k ), 

larger stability ( N ) and smaller wind speed (U ). 

For propagation in the low-stability lower atmosphere (Figure 5, left panel, dashed curves) the 

waves experience an amplitude growth at low altitudes. Despite the large eddy diffusivity, the relatively 

large vertical wavelengths near the surface (~ 9.5 km, based on the Scorer parameter) mitigate the 

dissipation and the amplitudes grow with increasing height up to the critical level at ~ 103 km altitude. 

Partial reflections, as revealed by small undulations in wave amplitude over altitude, occur from the 

critical level. The resulting vertical structure between the surface and the critical level, exhibiting quasi 

nodes and antinodes, depends on the local intrinsic phase speed (i.e., U ), and hence exhibits shorter 

vertical wavelength variations at lower altitudes where U is smaller. The relative magnitude of these 

undulations is also smaller for wave propagation in the larger eddy diffusion environment (profile A), 

due to the weakening of the reflected downward propagating wave from the critical level. As previously 

noted, leakage through the critical level occurs. The overall wave structure is similar to that obtained for 
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the stable lower atmosphere (solid curves) except that all wave amplitudes are larger by about three 

orders of magnitude. 

Figure 5. Magnitude of the vertical velocity perturbation as a function of altitude for waves with horizontal 
wavelengths of 100 km (red curves), 500 km (green curves) and 1000 km (blue curves) propagating in the LT = 
11 h mean state and for the nominal (A, left panel) and low (C, right panel) eddy diffusion profiles. Solid curves 
correspond to the nominal temperature profile while dashed curves correspond to the low-stability (smaller N) 
lower atmosphere temperature profile. The mean wind is – 1 m/s at the lower boundary. 

The right panel of Figure 5 shows the equivalent sets of results for eddy diffusivity profile C. 

Differences between the nominal and low-stability lower atmosphere cases are small. This is because 

the eddy diffusivity is small (~ 10-3 m2 s-1) near the lower boundary, and so the dissipation rate is small 

irrespective of differences in the vertical wavelengths associated with the different atmospheric 

stabilities. However, for the low-stability lower atmosphere (dashed curves) the wave amplitudes for 

eddy diffusivity profile C (right panel) are a factor of 3 to 4 times greater than those for eddy diffusivity 

profile A (left panel). Additionally, for the low-stability lower atmosphere, the reflections are more 

prominent for the case of diffusivity profile C than for profile A. This is because the smaller viscosity in 

the vicinity of the critical level associated with profile C causes the reflected waves to be stronger than 

they are for profile A. 

We repeat the analysis for a local time of 16 h (see Figure 6). As before, for the nominal-stability 

lower atmosphere the amplitudes at low altitudes are significantly more impacted by the larger values 

of eddy diffusivity associated with profile A (left panel) compared to those of profile C (right panel). For 

eddy diffusivity profile C (Figure 6, right panel), differences in the wave amplitudes between the 

nominal-stability lower atmosphere (solid curves) and low-stability lower atmosphere (dashed curves) 

are relatively small. One of the most significant differences between the results shown in Figure 6 and 

those shown in Figure 5 is the absence of a critical level for LT = 16 h. Because of this, the wave 
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amplitudes for altitudes greater than ~ 100 km are significantly greater than those for LT = 11 h. For LT = 

16 h wave amplitudes can grow to large amplitudes in the thermosphere. 

Figure 6. Magnitude of the vertical velocity perturbation as a function of altitude for waves with horizontal 
wavelengths of 100 km (red curves), 500 km (green curves) and 1000 km (blue curves) propagating in the mean 
state at LT = 16 h and for the nominal (A, left panel) and low (C, right panel) eddy diffusion profiles. Solid 
curves correspond to the nominal temperature profile while dashed curves correspond to the low-stability 
(smaller N) lower atmosphere temperature profile. The mean wind is – 1 m/s at the lower boundary. 

Other single-wave simulations (not shown) demonstrate that waves of short horizontal wavelength 

(~ 25 km or less) cannot propagate effectively to high altitudes under any conditions (local time, eddy 

diffusivity profile, wind at the lower boundary). For example, for extremely low eddy diffusivities (profile 

C) a wave of 25 km horizontal wavelength experiences a dramatic decrease in wave amplitude between

the surface and about 50 km altitude, reduced by a factor of ~ 102 and 105 for the nominal and low static 

stability near-surface conditions, respectively. Such waves cannot make a significant contribution to the 

wave spectrum at higher altitudes under any circumstances. 

In Figure 7 we demonstrate the effect of including radiative damping on the altitude variation of the 

temperature and vertical velocity perturbations for a 500 km wavelength wave. The temperature 

perturbations (left panel) are impacted by the inclusion of the radiative damping only above about 120 

km altitude, independent of the local time. In this case the amplitude decreases rapidly with increasing 

altitude when the CO2 mixing ratios less than unity are not accounted for, while the decrease is less 

pronounced when the CO2 mixing ratio is accounted for. In the latter case, most of the amplitude 

decrease due to the radiative damping occurs within about the first 30 km of its importance, that is, 

between ~ 120 km and 150 km altitude. At greater altitudes, the radiative damping becomes 

progressively smaller due to the reduced CO2 mixing ratios above 150 km altitude, and the amplitude 

decreases at the same rate as it does in the absence of the radiative damping. With the inclusion of the 
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radiative damping the temperature perturbation amplitude is reduced by a factor of ~ 2.5 by 160 km 

altitude. 

The right panel of Figure 7 shows the corresponding vertical velocity perturbation amplitudes. 

Because the radiative damping appears only in the energy equation, it directly impacts the temperature 

perturbations, whereas it indirectly impacts the vertical velocity perturbations. Thus, it has a greater 

impact on the magnitude of the temperature perturbations. As with the temperature perturbations, the 

effects of the radiative damping begin to become important by around 120 km altitude but diminish 

significantly by about 150 to 160 km altitude where the CO2 mixing ratios becomes small. Due to the 

critical level filtering of the waves at LT = 11 h, the wave amplitudes have diminished to small, 

insignificant values at the altitudes where the radiative damping is effective. Hence, the radiative 

damping has a significant impact only on the LT = 16 h results. 

Figure 7. Temperature perturbations (left panel) and vertical velocity perturbations (right panel) for a horizontal 
wavelength of 500 km for propagation in the low-stability lower atmosphere temperature profile and for the nominal 
eddy diffusion (profile A). Red and green curves correspond to LT = 11 h and 16 h, respectively. The mean surface wind is 
-1 m/s. Solid curves are for no radiative damping, dashed curves are for radiative damping assuming 100% CO2, and the 
dotted curves correspond to radiative damping accounting for the altitude-dependent CO2 mixing ratio. 

5.2 2-D Model Results 

In this section we describe the simulations performed using our 2-D spectral full-wave model, which 

assumes a 1-D mountain shape. The Fourier solutions are computed within an ( xn x  , zn z ) domain, 

with 0.1x a   and 1000xn  . For a = 100 km (see below) this equates to 10kmx  giving a Nyquist 

horizontal wavelength of 20 km. Experiments (not shown) have demonstrated that waves this short are 

strongly attenuated as they propagate vertically. In the vertical zn  was set to 15,000 for an upper 
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boundary altitude of 350 km. Experimentation showed that this choice of spatial resolution produced 

convergent results. 

In their discussion of VEGA balloon measurements, Young et al. (1987) noted that a feature of the 

vertical winds was an apparent zonal wavelength of ~ 500 km. Assuming a mountain width parameter a 

of 100 km in Eq. (5) leads to a vertical velocity spectrum  ˆ ,0w k  maximizing at a wavelength of ~540

km. Hence, 100kma   is a reasonable parameter choice for our mountain, and we adopt this as the 

nominal value in our model. The impact of changing this value is discussed later. 

We set the nominal mountain height h0 to 1 km but as noted earlier the maximum value for linear 

waves is given by  
maxoh U N . For the nominal-stability lower atmosphere, the resulting maximum 

height is ~ 0.32 km for U  = 1 m s-1, irrespective of local time. For the low-stability lower atmosphere the 

corresponding maximum heights are ~ 3.8 km and 2.7 km for LT = 11 h and 16 h, respectively. We 

discuss the implications of the mountain height later in the discussion section. Based on Eq. (5), the 

maximum mountain slope for a = 100 km and h0 = 1 km is ~0.007, which is one quarter of the slope of 

0.028 adopted by Young et al. [1994]. 

The model provides the wave perturbations u , w  T   and p  as a function of horizontal position 

and height. We also calculate the potential temperature fluctuation    using 

T p

T p
  

  
   

 
 (7) 

where pR c  . When gravity wave amplitudes become large, they can exceed the stability threshold 

which occurs when the vertical gradient of the total potential temperature just becomes negative (e.g., 

Fritts, 1985, and references therein). Hence the requirement that a wave just becomes unstable is 

  0d dz    . A useful alternative representation of this condition is that

    1S d dz d dz     and accordingly we use this ratio (S) to help interpret our results.

According to Lindzen (1981), a breaking wave generates just enough eddy diffusivity to offset the 

further growth of the wave. We add an additional eddy diffusivity in the vicinity of the large negative 

potential temperature gradients in order to mimic this process. We refer to this additional eddy 

diffusion profile as the wave-induced eddy diffusivity. This may be an underestimate of the eddy 

diffusivity required to limit wave growth, because unstable stratification is confined to a limited region 

of the wave, and the localization of turbulence requires either very large local eddy diffusivities or 

significant overturning [Walterscheid and Schubert, 1990]. We prescribe an amount of eddy diffusion 
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just large enough to maintain the wave at the limit of instability (i.e., min 1S   ). The parameters defining 

the wave-induced diffusivity profile are obtained by experimentation with the requirement that the 

additional wave-induced eddy diffusivity should have minimal impact on the wave at lower altitudes. 

This profile is modeled as a Gaussian function and the total eddy diffusion is then the sum of this profile 

and that of the eddy diffusivity profile prescribed by Eq. (6). 

One of the main objectives of this paper is to compare the propagation of the mountain waves 

though the two different wind profiles discussed earlier, as shown in Figure 2. The first, which is 

representative of the mean low latitude winds at LT = 11 h, displays a critical level near 100 km altitude 

which, as was discussed in the previous section, blocks the waves from entering the thermosphere. For 

the second wind profile, representative of the mean low latitude winds at LT = 16 h, there is no reversal 

of the mean zonal wind at any altitude and therefore the waves will not encounter a critical level during 

their upward propagation into the thermosphere. In the following two subsections we examine the 

characteristics of the wave propagation for these different wind profiles. We provide examples for 

which amplitudes grow to modest values in the upper atmosphere. A summary of these and other 

simulations is discussed further in the discussion section. 

5.2.1 Spatial Variation of the Mountain Waves 

Below we present the variation of the density-weighted vertical velocity perturbation 1 2w   with 

horizontal position and height. For the results shown, we have assumed a westward surface wind of 1 

m/s, eddy diffusion profile A, and the low stability lower atmosphere. Results are shown for LT = 11 h 

and 16 h. The mountain is centered at a horizontal coordinate (longitude) of zero and extends to 400 km 

either side of that. The mountain wave is horizontally collocated with the mountain. 

Figure 8. The density-weighted vertical velocity perturbation ( 1 2w  , in units of kg1/2m-1/2s-1) for LT = 11 h (left

panel) and LT = 16 h (right panel). In both cases the surface wind is 1 m/s, the eddy diffusivity is nominal (profile A), 
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and the lower atmosphere stability is low. Below about 30 km altitude the vertical wavelength is much greater at 
LT = 11 h than at LT = 16 h due to the smaller values of N. Wave propagation above ~ 100 km is inhibited at LT = 11 
h due to the critical level there. 

For LT = 11 h (left panel), the wave encounters a critical level near 100 km altitude, and so cannot 

propagate any higher. At altitudes between ~ 20 km and 90 km 1 2w  is approximately conserved 

because the viscosity is relatively small. For LT = 16 h, there is no critical level, and the wave propagates 

into the thermosphere. In this latter case, the wave propagates upward into regions of ever-increasing 

viscosity and 1 2w  begins to decrease with increasing height. In addition to amplitude information on 

Figure 8, the sloping curves indicate the phase variation from which vertical wavelengths can be 

inferred. At low altitudes the vertical wavelength is larger for LT = 11 h (left panel) than it is for LT = 16 h 

(right panel), which is due to the smaller values of N at these altitudes for LT = 11 h (see Figure 3b). At 

high altitudes, large mean winds and/or large viscosity leads to increased vertical wavelengths (e.g., 

right panel, altitudes greater than ~ 50 km). 

In most of the remaining results we will present either the wave response as a function of height 

directly above the mountain center, or we will present the horizontally averaged response as a function 

of height. Doing so allows more information to be presented in a given figure. 

5.2.1 Vertical Wavelengths Near the Source 

In this section we describe the effects of the eddy diffusivity, the stability of the lower atmosphere, 

and the magnitude of the surface wind on the vertical wavelength of the mountain waves for LT = 11 h. 

We consider surface winds of 1 m/s and 3 m/s, eddy diffusion profiles A (large diffusion) and C (low 

diffusion), and the nominal and low stability lower atmospheres. Although this range of parameters is 

somewhat limited, it serves the purpose of identifying how these parameters affect mountain wave 

propagation in the lower atmosphere. In later sections we consider a more complete range of 

parameters. In this section we present the wave response centered over the mountain. 

Figure 9 shows the variation of the density-weight vertical velocity perturbations, 1 2w  over 

altitude from the surface to 30 km altitude. The vertical wavelength is smallest near the surface, and 

generally increases with increasing altitude as the wind speed increases. The smallest value of the near-

surface vertical wavelength is ~ 1.4 km, and occurs for eddy profile C, nominal low-level stability, and a 

surface wind of 1 m/s (solid red curve). The corresponding vertical wavelength inferred from the Scorer 

parameter is about 1.4 km at ~ 4 km altitude. Decreasing the lower atmosphere stability from nominal 

to low values leads to a considerable increase in the vertical wavelength (red dashed curve). For the 
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nominal stability lower atmosphere, increasing the surface wind from 1 m/s to 3 m/s leads to an 

approximate threefold increase in the vertical wavelength. 

The green curves in Figure 9 correspond to those cases based on eddy profile A, which has values at 

low altitudes that are ~ 100 times greater than those of eddy profile C. For the nominal low-level 

stability and a surface wind of 1 m/s (solid green curve) the vertical wavelength is ~ 4 km. This is larger 

than the corresponding case based on eddy profile C because dissipation has the effect of increasing the 

vertical wavelength of gravity waves (e.g, see Figure 10 of Heale et al., 2014; Walterscheid and Hickey, 

2011). Decreasing the lower atmosphere stability from nominal to low values leads to a considerable 

increase in the vertical wavelength (green dashed curve). For the nominal stability lower atmosphere, 

increasing the surface wind from 1 m/s to 3 m/s leads to a modest (~ 20%) increase in the vertical 

wavelength. The wave having the shortest vertical wavelength experiences the greatest dissipation, and 

consequently it has a considerably smaller amplitude than the other waves considered in Figure 9. This 

case was for the nominal stability lower atmosphere, a 1 m/s surface wind, and for eddy diffusivity 

profile A (solid green curve). The wave experiencing the least dissipation had the largest amplitude, 

which occurred for the low stability lower atmosphere, a 1 m/s surface wind, and for eddy diffusivity 

profile C. 

Figure 9. The altitude variation of the 
density-weighted vertical velocity 

perturbation 1 2w   at LT = 11 h 

calculated at the midpoint of the 
horizontal grid. The red and green 
curves are for low (C) and nominal 
(A), eddy diffusivity profiles, 
respectively. Solid curves are for 
nominal lower atmosphere stability 
and a surface wind of 1 m/s. The 
dashed curves correspond to the low 
stability lower atmosphere and a 1 
m/s surface wind. The dashed-dotted 
curves correspond to the nominal 
lower atmosphere stability and a 3 
m/s surface wind. For clarity, some of 
the results have been scaled by a 
factor of 10 (solid green curve) and 
one-tenth (dashed red curve). 

The results shown in Figure 9 demonstrate the sensitivity of the waves to the parameters of the 

lower atmosphere. Near the surface where wind speeds are typically small, the vertical wavelengths 

tend to be small in which case the waves may be significantly impacted by the near-surface eddy 
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diffusivity. The exception to this is when the near-surface atmospheric stability is low and the 

corresponding vertical wavelengths are large. At altitudes well above the surface the mean winds 

increase considerably, which leads to increased vertical wavelengths and a reduction in the viscous 

dissipation. Hence, the variability in the state of the lower atmosphere, particularly the near-surface 

conditions, can have a dramatic impact on mountain wave propagation to higher altitudes. 

5.2.2 Wave Momentum Fluxes 

The wave momentum flux at a given altitude is defined as u w   , where all symbols are as 

previously defined, and where the angled brackets denote a horizontal average. The averaging was 

performed over a horizontal distance equal to twice the entire mountain width. 

Figure 10. Wave momentum fluxes versus altitude for a westward surface wind of 1 m/s. Solid and dashed 
curves are for LT = 11 h and LT = 16 h, respectively. Red and blue curves are for nominal and low stability of the 
lower atmosphere, respectively. Labels C and D denote low and high eddy diffusivities, respectively. All 
momentum fluxes for LT = 11 h (solid curves) exhibit a rapid reduction at heights above ~100 km due to the 
critical level there. 

The wave momentum fluxes for LT = 11 h and LT = 16 h are shown in Figure 10. In most cases they 

initially decrease with increasing height away from the surface where the wind speeds (and intrinsic 

phase speeds) are small, and the dissipation rates are comparatively large. The exception to this is for 

the case of low eddy diffusivity ( C ) and low stability in the lower atmosphere (large z and low

dissipation), for which the momentum flux is approximately constant at the lowest altitudes. At altitudes 
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of 10 – 20 km above the surface where the wind speeds are larger and the viscous dissipation has 

decreased, the fluxes become approximately constant with increasing height. For a given combination of 

surface wind, eddy diffusivity and lower atmosphere stability, at low altitudes the fluxes are slightly 

larger for LT = 11 h than for LT = 16 h due to the larger low altitude mean winds in the former case (see 

Figure 2). For LT = 11 h the waves experience a rapid decrease in the momentum fluxes just below 100 

km altitude due to their critical level encounter. For LT = 16 h the waves do not encounter a critical level 

and propagate into the thermosphere, where viscous dissipation causes the momentum flux to decrease 

by several orders of magnitude between about 100 and 200 km altitude. The overall results clearly show 

that the fluxes can vary by many orders of magnitude based on the combination of surface wind, near-

surface eddy diffusion, and near-surface atmospheric stability. 

The results presented in Figure 10 are for a limited subset of possible combinations of the relevant 

parameters (local time, eddy diffusivity, surface wind, and lower atmosphere stability). They show that 

once the waves reach an altitude of ~ 30 km, the momentum fluxes have become approximately 

constant, and that they remain so until the waves reach the upper atmosphere. Accordingly, we 

summarize the results using the complete set of combinations of relevant parameters by presenting the 

momentum fluxes at z ~ 30 km. These are shown in Tables S1a and S1b for LT = 11 h and 16 h, 

respectively. 

5.2.3 Comparison with Observations 

In order to compare their simulation results with the observations of Fukuhara et al. (2017), Yamada 

et al. (2019) calculated a brightness-weighted temperature (for nadir viewing) defined as 

80

60

( ) ( )
km

W

km

T W z T z dz  
(8) 

In Eq. (8) W(z) represents the nominal weighting function of the Longwave Infrared Camera aboard the 

Akatsuki satellite, as described by Taguchi et al. (2007). It has a full-width at half-maximum value of ~10 

km, and a central altitude of 65 km. We employ a weighting function having the same characteristics as 

theirs, but we have used 55 km for the lower range of integration. Also, the temperature perturbation 

T   used by Yamada et al. (2019) was a function of horizontal position (latitude and longitude) as well as 

altitude. 

In order to compare our results with those of Fukuhara et al. (2017), we calculate WT   as a function 

of longitude and present only the maximum value. It should be noted that because we are employing a 
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2-D model we expect that derived wave amplitudes will be larger than those that would be obtained 

using a 3-D model. This is because our 2-D model does not account for any latitudinal spreading during 

the upward propagation of the wave packet, as simulations (Smith, 1980) and Venus observations 

(Fukuhara et al., 2017) show. Hence, our results should represent overestimates of the temperature 

fluctuation amplitudes. We do so for all combinations of relevant parameters (local time, eddy 

diffusivity, surface wind, and lower atmosphere stability). The results for local times of 11 h and 16 h are 

provided in Tables S2a and S2b, respectively. The modeled values of WT  shown in these tables are similar 

to the ~ 2 K observed by Fukuhara et al. (2017) only for a limited range of conditions. Similarity to the 

observations tends to be favored for the low stability lower atmosphere for both local times considered. 

For LT = 11 h and the low stability lower atmosphere, surface wind speeds of 2 – 3 m/s give values of WT 

ranging from ~1.8 – 2.7 K across the four eddy diffusion profiles considered. For LT = 11 h and the 

nominal lower atmosphere stability, eddy diffusion profiles A and D lead to values of WT   ranging from 

~1.2 – 4.1 K across the different surface wind speeds considered. For LT = 11 h, the nominal stability 

lower atmosphere and eddy diffusion profiles B and C the calculated WT   is not similar to the observed 

2K. For LT = 16 h the calculated values of WT   are close to a value of 2 K only in a few instances: eddy 

profile A, low stability, surface wind of 1 m/s; eddy profile A, nominal stability, surface wind of 5 m/s; 

eddy profile D, low stability, and a surface wind of 2 m/s & 3 m/s). 

Observations by Kitahara et al. (2019) of stationary wave features have revealed a dominant 

horizontal wavelength of ~ 510 km, which is comparable to the wavelength of 500 km inferred by Young 

et al. (1987) from VEGA balloon observations. Our results, based on the latter observations, provided a 

dominant horizontal wavelength of 500 km. However, the zonal wavelength of the waves reported by 

Fukuhara et al. (2017) was large (~ 1500 km) while the meridional extent of the disturbance was ~ 

10,000 km. Further discussion of this and its relation to mountain width is provided in the Discussion 

section. 

5.2.4 Mean State Accelerations 

The divergence of the wave momentum flux leads to a local acceleration of the mean state over the 

mountain. We denote this second-order acceleration 2U t  , with 

2 1U
u w

t z




 
  

 

(

9) 
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where u w   is a second-order horizontal average of u w   and where all other symbols are as previously 

defined. The right side of Eq. (9) was calculated as a function of altitude and horizontal position and then 

averaged over a horizontal distance equal to twice the full mountain width.  

Figure 11. Horizontally averaged mean state acceleration for LT = 11 h (solid red curve) and 16 h (dashed blue 
curve) and for a surface westward wind of 1 m/s, nominal eddy diffusivity (profile A), and for the nominal lower 
atmosphere stability. 

The resulting accelerations for LT = 11 h and LT = 16 h are shown in Figure 11. These results are 

based on a westward surface wind of 1 m/s, the nominal eddy diffusivity profile (A), and for the nominal 

lower atmosphere stability. There is no wave-induced diffusion included in these simulations because 

for this choice of mean state parameters the waves remain at small amplitudes throughout their upward 

propagation. This choice of lower atmosphere parameters also leads to the smallest mean state 

accelerations of all our simulations. For LT = 11, the forcing occurs over a fairly narrow region centered 

just below the critical level (near 102 km altitude). For LT = 16 h the wave propagates well into the 

thermosphere where they are dissipated by viscosity. In this case the forcing occurs over a broad region 

centered near 175 km altitude. 

We have calculated the mean state forcing for different combinations of mean surface wind, eddy 

diffusivity profile and lower atmosphere stability and found that for a given local time (11 h or 16 h), and 

in the absence of wave-induced diffusion, the profile shape of the forcing as well as the altitude of the 

maximum forcing depends primarily on the mean wind profile and is approximately independent of the 

lower atmosphere parameters. (For LT = 11 h and for values of lower atmosphere parameters for which 

amplitudes near the critical level do not remain small, the inclusion of wave-induced diffusion reduces 

the maximum forcing, and the profile is broadened over altitude.) However, for a given local time the 
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magnitude of the forcing is strongly dependent on the specific combination of lower atmosphere 

parameters, and so this forcing depends critically on local time. We have tabulated the maximum forcing 

for the different combinations of lower atmosphere parameters in Table S3a (for LT = 11 h) and Table 

S3b (for LT = 16 h). The wave forcing in the vicinity of the critical level at LT = 11 h can be extremely 

large, even for those waves that are stable to convection. Examples of large forcing due to waves that 

are stable to convection can be seen in Table S3a (LT = 11 h) for the cases of a low stability lower 

atmosphere and for large eddy diffusivities (profile D), where the forcing increases from about 7 m/s/h 

to 39 m/s/h as the surface westward wind increases from 1 m/s to 5 m/s. Larger mean state forcing is 

possible for other combinations of parameters, but these occur for larger (nonlinear) wave amplitudes. 

One effect of the wave forcing on the mean state will be to cause the critical level to descend with time. 

To assess effects on the circulation one would have to evaluate zonally averaged values of wave 

drag/acceleration in terms of the global distribution of mountain wave sources. At this point all we can 

say is that given the large local values of acceleration global effects on the circulation could be 

important. The accelerations at LT = 11 h are representative of strong zonal westwards accelerations for 

local times earlier than 14 h, i.e. when there is a critical level centered near an altitude of 100 km. This 

zone is dominated by a transition from the westwards superrotation circulation to a Subsolar to 

Antisolar (SS-AAS) one. Therefore, a possible impact of mountain waves is to add an eastward 

component to the SS-AS circulation, especially, near in the vicinity of the SS point. This hypothesis 

cannot be caught by our model, but a time-dependent model (such a s a GCM), will be more suited to 

address this point. 

For LT = 16 h the wave forcing is considerably greater than the LT = 11 h accelerations because of 

the considerably reduced atmospheric density at ~ 175 km altitude. We have not applied wave-induced 

diffusion for LT = 16 h because the wave amplitudes maximize at altitudes far above the turbopause 

(which is located at ~ 126 – 136 km, as discussed by Mahieux et al., 2021). More details of this are 

provided in the discussion section. Nevertheless, it is clear that the results for LT = 16 h suggest that the 

westwards component of the SS-AS is reduced, thus contributing to make the eastward (evening) SS-AS 

branch stronger than the westward (morning) branch at altitudes above 150 km. However, quantifying 

this effect remains an open question, as explained in the discussion section. 

5.2.5 Mean State Heating and Cooling 

Dissipating gravity waves drive a downward potential sensible heat flux (Walterscheid, 1981; 

Schubert et al., 2003), causing cooling at high altitudes and heating at lower altitudes. Typically, the 
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magnitude of the temperature decrease occurring at high altitudes is greater than the temperature 

increase occurring at lower altitudes because the former occurs in regions of lower atmospheric density 

(Walterscheid, 1981). The second order mean state heating (or cooling) rate, Q , is related to the 

divergence of the sensible heat flux (Walterscheid, 1981) and the viscous flux of kinetic energy (Hickey et 

al., 2011) by 

21

2
p p m

d d
c Q c w T u

dz dz
  

 
     

 
 (10) 

where all symbols are as previously defined. The first term in the parenthesis is the sensible heat flux, 

and the second term is the viscous flux of kinetic energy. Equation (10) is valid when vertical derivatives 

of wave variables far exceed their horizontal derivatives. When that is not the case, the following 

equation applies (Schubert et al., 2003): 

 :mp p

wd d p
c Q v c w T v p

dz d z


  



 
            (11)

Here, the arrows denote vectors and the “:” sign represents the doubly-contracted product. We 

discovered that the viscous heating rate increased to unrealistically large values at high altitudes, and so 

it is not considered in these results. The reasons for the large values at high altitudes, seen in both our 2-

D spectral results and also our single monochromatic wave results, are provided in the Discussion 

section. The right side of Eqs. (10) and (11) were calculated as a function of altitude and horizontal 

position and then averaged over a horizontal distance equal to twice the full mountain width. 

In the previous section we found that the forcing of the mean state depended sensitively on the 

specific combination of lower atmosphere parameters used, with the smallest forcing occurring for a 

surface westward wind of 1 m/s, the nominal eddy diffusivity profile (A), and the nominal lower 

atmosphere stability. We adopt this same set of parameters here, and by so doing the resulting heating 

and cooling rates presented here are the smallest of all our simulations. It is important to note that 

values of heating and cooling rates for other combinations of the lower atmosphere parameters can be 

easily inferred by applying scaling factors derived from Tables S3a (for LT = 11 h) and S3b (for LT = 16 h), 

as discussed below. 

The resulting heating and cooling rates associated with the sensible heat flux for LT = 11 h are shown 

in Figure 12. These results are based on Eq. (10) (excluding viscous heating) which is approximately valid 

because the vertical derivatives are large in the vicinity of the critical level. There is no wave-induced 

diffusion included in these simulations because the wave amplitudes remain small throughout their 
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upward propagation. The heating/cooling occurs over a fairly narrow region centered just below the 

critical level (near 102 km altitude). The profile shows cooling at the upper levels and heating below, as 

expected for the sensible heat flux (Walterscheid, 1981). The maximum heating rate is ~ 8 x 10-6 K/h and 

the maximum cooling rate is ~ -1.75 x 10-5 K/h. 

Figure 12. Horizontally averaged mean state heating and cooling rates due to the sensible heat flux for LT = 11 h 

(solid red curves) and for a surface westward wind of 1 m/s, the nominal eddy diffusivity profile (A), and for the 

nominal lower atmosphere stability. The heating/cooling rates at LT = 16 h (dashed blue curves) in the left and 

right panels are based on Eqs. (10) and (11), respectively, with the viscous heating omitted. 

For LT = 16 h the waves propagate well into the thermosphere where they are dissipated by 

viscosity. Because their vertical wavelengths become extremely large, Eq. (11) has been used to infer the 

heating/cooling rates, which are shown in the right panel of Figure 12. The maximum heating and 

cooling rates occur near 150 km and 175 km altitude, respectively. The maximum heating rate is ~ 2 x 

10-6 K/h and the maximum cooling rate is ~ -3 x 10-6 K/h. 

As previously noted, these heating and cooling rates are the smallest obtained for all our simulations. 

They can serve as a reference value to derive heating and cooling rates for other combinations of 

parameters based on applying approximate scaling factors derived from the values of the mean state 

accelerations shown in Tables S3a and S3b. For the same parameters used to calculate the 

heating/cooling rates shown above, the maximum mean state acceleration for LT = 11 h shown in Table 

S3a is 5 x10-5 m/s/h. The same table shows that the mean state acceleration for a 5 m/s westward 

surface wind, eddy diffusion profile D and a low stability lower atmosphere is 39 m/s/h, which is a factor 

of 7.8 x 105 larger. Hence, the maximum heating rate for this set of parameters will be a factor 7.8 x 105 

larger than the heating rate of 8 x 10-6 K/h, that is, 6 K/h. Examination of Table S3a shows that heating 
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and cooling rates much larger than this are possible for other combinations of lower atmosphere 

parameters (e.g., small values of eddy diffusivity in a nominal stability lower atmosphere). 

A similar analysis is applied for LT = 16 h (using Table S3b), wherein for eddy diffusivity profile A and 

for a nominal stability lower atmosphere, the values of acceleration are 2.2 x 10-5, 0.25, 169 and 

>105 m/s/h for surface winds of -1, -2, -3 and -5 m/s, respectively. Scaling the heating/cooling rates in 

the same way as before, we obtain maximum heating rates equal to 0.02, 15 and 9 x 103 K/h for surface 

winds of -2, -3 and -5 m/s, respectively. The atmospheric flow is strong and constant at these altitudes 

and will therefore transport momentum and heat efficiently away for the locations of wave forcing. 

However, the forcing will impact the zonal mean, in ways that we cannot model with our steady state 

model. These heating rates can be compared to contributions from the other main atmospheric 

processes. GCM simulations provide typical values of heating/cooling of order > 50 K/h for processes 

such as UV/IR heating, CO2 cooling, or conduction at altitudes above 100 km (Brecht & Bougher, 2012; 

Gilli et al., 2017). Therefore, in the most extreme surface conditions (e.g., extremely small eddy 

diffusivities or with surface winds ~5 m/s) the resulting heating rate from mountain waves may 

dominate the heating rates from other physical processes by at least one order of magnitude, and thus 

could substantially impact the upper atmospheric thermal structure and dynamics. 

6 Discussion. 

Large mean state accelerations occurring near critical levels are not unexpected and have been 

noted before for terrestrial mountain waves. For example, using a linear spectral model Eckermann et 

al. (2016) found a peak acceleration of ~ 103 m s-1 h-1 occurring about 3 km below the critical level, with 

a density-weighted value of 350 m s-1 h-1 occurring over a height range of 4 km directly below the critical 

level. Here, we find that the mean state accelerations occurring at 11 UT in the vicinity of the critical 

level have peak values of 5 to 45 m s-1 h-1 for a surface wind of 1 m s-1, for low stability in the lower 

atmosphere, and including wave-induced diffusion, with the larger values occurring for the smaller eddy 

diffusivities in the lower atmosphere. Wind speeds larger than 2 m s-1 produce waves having very large 

amplitudes below the critical level and consequently the forcing, which is proportional to the square of 

the amplitude, can become exceedingly large. As noted earlier, our 2-D model cannot account for any 

latitudinal spreading during upward propagation of the wave packet and hence our modeled 

amplitudes, fluxes and mean state forcing will be larger compared to those derived from a 3-D model. 
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We have compared our model results to observations in the region of the atmosphere just above 

the cloud tops. Our model provides temperature perturbation amplitudes similar to those observed for 

small surface winds of ~ 1 m s-1, with values ranging from 0.5 K to ~ 3 K for large and small lower 

atmosphere eddy diffusivities, respectively. These values are similar to those observed from the 

Akatsuki satellite (Fukuhara et al., 2017). Increasing the surface wind increases the perturbation 

amplitudes at all altitudes. The vertical winds at these altitudes (not shown) are smaller than 0.5 m s-1. 

Vertical winds measured over Aphrodite Terra from the VEGA balloon at altitudes near 55 km were 2 – 3 

m s-1 (Young et al., 1987). 

Based on UV imager observations obtained from Venus Express, Bertaux et al. (2016) found a 

correlation between the zonal winds at the cloud tops, and the elevation of the underlying topography. 

They inferred a deceleration of the zonal flow near the cloud tops of ~ 17 m/s per Venus day, which was 

assumed to be due to the breaking of small horizontal-wavelength gravity waves with a subsequent 

transfer of momentum to the mean state. The mesoscale modeling of Lefèvre et al. (2020), which 

included the effects of high-resolution topography, has inferred a deceleration of the zonal flow of ~ 3 

m/s per Venus day at the cloud tops due to the resulting bow-shaped (stationary) waves. At an altitude 

of 67 km, our calculated accelerations (not shown) cover a wide range of values based on the 

combination of lower atmosphere parameters chosen. For example, for LT = 11 h, eddy diffusivity profile 

A, a low stability lower atmosphere and a surface westward wind of 2 m/s, the eastward acceleration is 

~ 8.8 m/s per Venus day. For the same wave/conditions, the eastward acceleration in the vicinity of the 

critical level is considerably greater than this (23 m/s/h; see Table S3a). Hence, the impact of the waves 

on the mean state increases greatly with increasing altitude above the cloud tops. 

Our model does not account for nonlinear effects associated with mountain heights exceeding the 

value U N , as discussed in section 3. However, as noted by Young et al. (1994), nonlinear effects should 

not propagate to heights well above the terrain. Additionally, these effects will be less important except 

for the highest terrain whenever the lower atmosphere has large lapse rates and low stability 

conditions. We adopted a nominal mountain height of 1 km for our simulations, and while this exceeded 

the limit noted above for the nominal-stability lower atmosphere simulations, it was within the linear 

regime for the low-stability lower atmosphere simulations. 

Nonlinear effects associated with wave breaking may occur in the upper atmosphere whenever the 

total potential temperature gradient (wave plus mean) becomes negative. In addition to the mean state 

lapse rate, this condition depends on both the local amplitude and the vertical wavelength. In the case 

of LT = 11 h, the vertical wavelengths of the waves decrease appreciably as the critical level is 
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approached. In those cases where the amplitude exceeded the nonlinear threshold (as inferred from the 

potential temperature gradient), we introduced a wave-induced eddy diffusivity to limit the wave 

amplitudes to their threshold value. This approach was based on Lindzen (1981), whereby breaking 

waves generate diffusion sufficient for them to saturate. For the case of LT = 16 h, where a critical level 

does not exist, the waves were able to propagate freely into the thermosphere where they attained 

large amplitudes. However, because their vertical wavelengths were also large, the gradients of 

potential temperature were typically small, and exceeded the nonlinear values only for the largest wave 

amplitudes. At these altitudes where the atmospheric density is extremely low it is unlikely that wave 

breaking of the form studied by Lindzen (1981) and others would occur. Accordingly, wave-induced 

diffusion was considered in only a few of the LT = 16 h cases, and it was never applied above ~ 145 km 

altitude (the approximate height of the turbopause). We found that when wave-induced diffusion was 

applied at lower thermospheric altitudes, the wave amplitudes would be reduced within the region of 

influence of the wave-induced diffusion, but they would quickly grow again above that region, with 

amplitudes increasing up to ~ 200 km altitude, and subsequently decreasing with a further increase of 

altitude. These large amplitude increases, which are due to the waves become quasi-evanescent at high 

altitudes and experiencing slow dissipation, occur despite the wave fluxes diminishing with increasing 

altitude (e.g., Figure 8). This increase of wave amplitude with increasing altitude in the thermosphere 

has implications for the viscous heating rate per unit mass associated with the wave dissipation. We 

found that for LT = 16 h, the viscous heating rate increased with increasing altitude to unrealistically 

large values. This occurred in our 1-D simulations (monochromatic waves) as well as in our spectral (2-D) 

simulations and is a result of a combination of small wave dissipation (due to the extremely large 

vertical wavelengths the waves become quasi-evanescent) and low thermospheric mean densities (due 

to the small scale heights of ~ 13 km at high altitudes associated with a relatively cool thermosphere). 

We intend to perform a detailed study of this interesting phenomenon at a later time. 

There is much uncertainty in the eddy diffusivity of the Venus atmosphere, both in its variation with 

position (for this study, altitude) and local time. The eddy diffusivities in the near-surface region, which 

are related to the lower atmosphere stability through vertical advection and mixing, are largely 

unknown. Our simulations demonstrate that the lower atmosphere eddy diffusivities and the lower 

atmosphere stability play a major role in the upward propagation of gravity waves from their mountain 

sources. Near the surface where the waves are slow the eddy diffusivity can significantly impact the 

wave amplitudes. For the largest eddy diffusivities considered wave amplitudes were small. The stability 

of the lower atmosphere impacts the ability of the waves to propagate away from the surface, with low 

Journal Pre-proof



34 

stability conditions inhibiting the propagation of the waves (as noted for example by Young et al., 1987). 

We found that in general, the momentum fluxes were less sensitive to the eddy diffusivity for the lower 

stability lower atmosphere, particularly for the larger surface wind speeds considered. This is because at 

low altitudes the vertical wavelengths are larger for the lower stability lower atmosphere and therefore 

the viscous dissipation (which is proportional to the vertical shear of the horizontal velocity 

perturbations) is smaller. For the smallest value of surface wind speed considered (1 m/s) the 

momentum flux reduced by a factor of ~ 10 as the eddy diffusivity increased from its minimum 

considered (profile C) to its maximum (profile D). For the nominal stability lower atmosphere, the 

corresponding decrease in the momentum flux was by a factor of ~ 106. This sensitivity of the 

momentum flux to the eddy diffusivity decreased as the surface wind speed increased. 

Based on a spectral analysis of the low-latitude Venus topography spanning the Aphrodite Terra 

region (not shown) we used a value of a = 100 km in Eq. (11) describing our mountain shape, which 

leads to a maximum forcing for a horizontal wavelength of ~ 500 km. By considering the time delays 

between updrafts and downdrafts associated with vertical wind measurements from the VEGA-2 

balloon, Young et al. (1987) deduced that wave disturbances had a zonal wavelength of ~ 500 km. A 

maximum forcing wavelength of 400 km was subsequently used in the study of Young et al. (1994). 

From observations of stationary waves Kitahara et al. (2019) deduced that the zonal wavelength was ~ 

510 km, which closely agrees with the 500 km of Young et al. (1987). However, the simulations of 

Yamada et al. (2019) were based on a gaussian forcing function at the lower boundary having a full-

width at half-maximum of approximately 880 km, which led to a wave disturbance at 65 km altitude 

having a zonal wavelength of ~ 1300 km and 1900 km on the eastern and western halves of their 

resultant wave packet, respectively. Their choice of characteristic spatial forcing led to good agreement 

with the bow wave observations of Fukuhara et al. (2017). We have experimented with other values of 

mountain width. Doubling the mountain width and also doubling the mountain height (to preserve the 

same mountain shape and slopes) gave the same vertical structure as the nominal mountain 

parameters, except that there was an overall slight reduction in wave amplitude. For a given mountain 

height, increasing the mountain width decreases the slopes and hence also decreases the vertical 

forcing. Our simulations presented here were based on a single value of the mountain width parameter 

a = 100 km in Eq. (11), which led to a maximum forcing at spectral wavelengths of ~ 540 km (as noted 

earlier in section 5.2). For a given mountain height, the slope (and therefore the spectral forcing 

amplitudes) would be reduced (increased) for wider (narrower) mountains. Based on Eq. (11), the 

maximum mountain slope for a = 100 km and h0 = 1 km is ~0.007. This is about one quarter of the slope 
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of 0.028 adopted by Young et al. [1994], which was based on a mountain height of 0.9 km and a 

horizontal wavelength of 200 km. 

The wave forcing, described by Eq. (3), depends on the product of the surface wind speed and the 

mountain height. We have experimented with different combinations of these and found that the wind 

speed is more effective in generating larger amplitude waves at high altitudes. This is because an 

increase in mountain height increases all spectral components equally, but an increasing wind speed 

impacts the initial speed of the waves and allows them to propagate more easily in the lower 

atmosphere in the presence of eddy diffusion. We found that doubling the wind speed led to amplitudes 

at higher altitudes that were typically 20% greater than those associated with doubling the mountain 

height. 

Sources of waves other than topographic forcing have not been considered here. Examples include 

convectively generated gravity waves (e.g., Baker et al., 2002), and waves generated through the 

obstacle effect mechanism (Lefèvre et al., 2018). Recent numerical simulations have shown that small 

scale (~ 250 km) gravity waves can be spontaneously generated at the cloud top level by thermal tides 

(Sugimoto et al., 2021). The simulations revealed that this was more significant at low latitudes, where 

gravity waves decelerated the zonal winds where they were generated and propagated upward (to ~ 76 

– 86 km altitude) where they accelerated the zonal flow. Hence, the gravity waves appeared to dissipate

the thermal tide. Unlike the topographic forcing, other sources (such as convection) can produce small 

scale gravity waves. The recent radio occultation observations of Mori et al. (2021) have revealed short 

(0.5 – 4.0 km) vertical wavelength waves displaying just a few oscillations over altitude. These wave 

packets appeared to obey an m-3 power law (here m is the vertical wavenumber) which is indicative of 

saturating gravity waves, but it was concluded that the individual waves in the packets were not 

saturating. The earlier observations of Ando et al. (2015) had also discussed a saturated spectrum of 

gravity waves having vertical wavelengths shorter than about 5 km. 

Conclusions 

In this paper we have described a 2-D spectral full-wave model and used it to simulate the 

generation of mountain waves in the Venus atmosphere using an idealized mountain shape. The main 

objectives were to examine how the waves forcing and subsequent upward propagation depended on 

key surface parameters including the surface wind speed, the eddy diffusivity and the lower atmosphere 

stability. We also examined how the different propagation environments at high altitudes varied 

between two local times and the impact on the upward wave propagation of the waves into the 
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thermosphere. The forcing of the mean state associated with wave dissipation was also presented for 

these high altitudes (~ 100 km and higher). 

We have found that the lower atmosphere eddy diffusivity reduces the upward propagation of the 

waves, particularly when the surface winds are small and the lower atmosphere stability is nominal. For 

surface winds of 3 m/s or greater, and a low stability lower atmosphere the upward momentum flux in 

the lower atmosphere has a relatively small sensitivity to the eddy diffusivity. In this latter case, the 

vertical wavelengths are large, which strongly mitigates any effects of the eddy diffusivity. When the 

eddy diffusivity near the surface is extremely small, for any value of surface wind speed the vertical 

momentum fluxes are larger for the nominal stability lower atmosphere. The strong sensitivity to these 

parameters occurs because the wind speed (which equates to the intrinsic phase speed of the waves) is 

typically quite small near the surface. Waves having small vertical wavelengths near the surface are 

more susceptible to dissipation by eddy diffusivity, and those wavelengths are larger for the low stability 

lower atmosphere and also for faster surface wind speeds. We note that simulations (not shown) that 

included a non-zero vertical gradient of the mean wind at the lower boundary allowed the waves to 

achieve larger intrinsic phase speeds sooner as they propagated away from the surface, mitigating the 

low-altitude dissipation, and thereby leading to increased upward momentum fluxes compared to the 

zero mean wind gradient cases. 

For a local time of 11 h (but more generally for local times of 09 LT to 14 LT) wave propagation into 

the thermosphere is inhibited by the presence of critical levels near 100 km altitude. As the waves 

approach the critical level their amplitudes grow and can become large enough for the waves to 

experience convective overturning, as suggested by the vertical gradient of the potential temperature. 

Strong forcing of the mean state also occurs, with the wave momentum deposition providing an 

acceleration opposing the mean wind in the vicinity of the critical level. The divergence of the sensible 

heat flux leads to strong cooling of the atmosphere at the critical level and heating several kilometers 

below that. 

As the mean wind evolves with time from LT = 11 h to LT = 16 h, the critical level near 100 km 

altitude disappears, providing easy access for the waves to the thermosphere. Propagating unimpeded, 

their amplitudes grow with increasing altitude up to 200-250 km. This growth occurs despite the 

increasing molecular kinematic viscosity because of the combination of large westward winds (equating 

to large intrinsic phase speeds) and small scale heights in the Venus thermosphere. Although wave 

amplitudes can become very large in the thermosphere, the total potential temperature gradient 

remains positive due to the extremely large vertical wavelengths of the waves, suggesting that the 
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waves remain stable with respect to convection. Once in the thermosphere, the deposition of 

momentum due to these dissipating mountain waves will attempt to bring the mean winds to zero. The 

sensible heat flux leads to large heating and cooling rates in the thermosphere. 

At a given local time, the maximum forcing of the mean state always occurs at an altitude 

determined primarily by the thermospheric mean winds and upper atmospheric viscosity. The surface 

conditions that determine the forcing (mountain parameters, surface mean wind, eddy diffusivity and 

static stability) play a minimal role in where these maxima occur, but they have a significant impact on 

their magnitudes. These results suggest that mountain waves may significantly impact the mean state at 

very high altitudes in the Venus atmosphere, both in terms of the momentum forcing and the thermal 

forcing. This forcing will depend sensitively on local time and also on near-surface conditions, but due to 

the slow rotation rate of Venus, conditions favoring strong forcing could extend for long periods of time. 

Forcing of this magnitude is not known to occur in the terrestrial atmosphere. 
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Appendix A: Full-Wave Model Equations 

The linearized Navier-Stokes equations we use in Cartesian coordinates are (e.g., Hickey et al., 

2000a) 
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These are the linearized equations of mass continuity, momentum conservation, energy 

conservation, the ideal gas equation of state, and the viscous stress tensor, respectively. An overbar 

denotes the basic undisturbed mean state, which is assumed to vary only in the vertical direction, z, 

while tildes and double lines appearing below symbols indicate vectors and tensors, respectively. Primes 

denote linear perturbations about the mean. Also, g  is the gravitational acceleration, p  is pressure, 

  is mass density, T  is temperature, and u  is the velocity with components u  and w  in the x 

(eastward) and z directions, respectively. The variable   appearing in (A3) is the potential temperature, 

defined as  00

pR c
T p p  , where 00p  is a reference pressure, R  is the gas constant, and where 

pc

and vc  are the specific heats at constant pressure and volume, respectively. The molecular dynamic 

viscosity is m , the coefficient of thermal conductivity is m , and the eddy momentum and thermal 

diffusivities are e  and e , respectively. The Rayleigh friction coefficient is RK . The effects of radiative 

damping are included  with a coefficient NK multiplied by the CO2 mixing ratio (
2COr ), as described later

in this section. Also, h  is the horizontal component of the gradient vector. The steady mean wind, 

denoted by upper case letters, is assumed to be in the horizontal, zonal direction only ( ˆU Ui ). 

The vertically propagating plane monochromatic waves in t, and x are of the form 

   expjA z i t kx   where  is the wave frequency, and k is the horizontal components of the 

wavenumber vector in the x direction. The complex wave amplitude is jA , where the subscript refers to 

each of the perturbation velocity components, pressure and temperature. The lower boundary is at the 

ground (z = 0) and the upper boundary is nominally at a height z = 350 km. At the lower boundary waves 

are forced in the vertical velocity. At the upper boundary, a radiation condition is applied, but instead of 

defining the vertical wavenumber using the dispersion relation of Hickey and Cole (1987), as has usually 

been the case with this model, we instead define it using a viscosity wave solution as described in more 

detail in the Appendix B. This solution is more appropriate when the upper boundary is at very high 

altitudes where the kinematic viscosity is extremely large. 
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Radiative damping, arising from the emission of 15 m radiation from CO2, is employed based on 

the findings of Crisp (1989). The radiative damping of Crisp (1989) has been previously used for tidal 

simulations by Takagi and Matsuda (2005), for planetary wave simulations by Kashimura et al. (2019), 

and for gravity wave simulations by Hinson and Jenkins (1995) and Yamada et al. (2019). As in these 

prior studies we assume that the relaxation time decreases exponentially from 104 Earth days at the 

surface to 0.1 Earth days at 120 km altitude. We extend this to higher altitudes than the previous studies 

by assuming that it decreases exponentially above 120 km altitude with a constant scale height of ~ 10.5 

km (equal to that at 120 km altitude). The inverse of the radiative relaxation time is defined as NK  (see 

Eq. (A3)). Up to ~ 120 km altitude CO2 is the major constituent, but its mixing ratio decreases above that 

height. To account for the effect of this decrease on the radiative damping, for altitudes greater than 

120 km we multiply NK  by the CO2 mixing ratio (
2COr ), as indicated in Eq. (A3).

Crisp (1989) also accounted for the scale-dependence of the radiative damping and concluded that 

the radiative damping rates for vertical scale sizes of ~ 7 km and 30 km would be a factor of 

approximately 5.0 and 1.4 times greater, respectively, than the nominal (infinite vertical wavelength) 

radiative damping rate. Accordingly, we include this scale dependence in our computations, with the 

appropriate factor being determined by the approximate vertical wavelength provided by the Scorer 

parameter. We use the damping rate appropriate for the ~ 7 km vertical scale for LT = 11 h simulations 

because the vertical wavelengths assume small values in the vicinity of the critical level. Based on the 

results of single-wave simulations for a horizontal wavelength of 500 km, for LT = 16 h we use the 

damping rate appropriate for an ~ 30 km vertical scale. 

Appendix B: Full-Wave Model Upper Boundary Conditions 

In the thermosphere the molecular kinematic viscosity increases exponentially with increasing 

altitude. At high thermospheric altitudes the molecular kinematic viscosity attains values large enough 

to significantly dissipate the wave causing a reduction in the wave vertical energy flux with increasing 

altitude. At even greater altitudes the rapid diffusion tends to eliminate vertical phase gradients so that 

the vertical wavelength becomes exceedingly large (e.g., Hickey and Cole, 1987 and references therein) 

and the waves become quasi-evanescent. At these altitudes the vertical transport of wave energy is 

dominated by the effects of viscosity while the contribution due to the work done by the pressure forces 

becomes insignificant (Walterscheid and Hickey, 2011). At these heights the wave heating is due almost 
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entirely to the divergence of the viscous flux of kinetic energy (Hickey et al., 2011). Because of the 

exceedingly large vertical wavelengths, the viscous wave dissipation (which acts on the velocity 

gradients) approaches zero. This leads to the imaginary part of the vertical wavenumber also 

approaching small values and the wave amplitudes do not in general decrease with increasing altitude. 

Under these conditions just described, with extreme values of kinematic viscosity in the upper 

region of our model, the waves behave more as viscosity waves than as internal gravity waves. Hence, 

when we apply the radiation condition at the upper boundary of our model, rather than solving our 

dispersion equation for the vertical wavenumber GWm that includes viscosity and thermal conductivity 

(Hickey and Cole, 1987), we instead assume a viscous wave solution. It is important to note that we do 

this only when the upper boundary is placed at an extremely high altitude, which in this case is 350 km. 

If the upper boundary were placed at a lower altitude, such as 250 km, we would not assume a viscosity 

wave solution for the radiation condition but would instead apply the usual gravity wave radiation 

condition. We also note that choosing the appropriate root of the cubic gravity wave dispersion 

equation (in 
2

GWm ) becomes more difficult at high altitudes where the kinematic viscosity is extremely 

high. A detailed discussion of the issues associated with identifying the appropriate gravity wave root of 

the dispersion equation is provided by Knight et al. (2019). 

The equation describing a viscosity wave is (e.g., Hickey and Cole, 1987, and references therein) 

ˆˆ3 R   (B1)

where 
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All other terms are as previously defined in Appendix A. For 2 2m k  and setting kU  for 

mountain waves, (B1) and (B2) lead to the vertical wavenumber at the upper boundary, UBm , defined as 
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(B3) 

Equation (B3) shows that the vertical wavelength,  2 Re UBm , is proportional to the product of

the kinematic viscosity and the horizontal wavelength. For waves with large horizontal wavelengths h

such that the second term in the parentheses dominates (that is, 4h H  ), then  Im 1 2UBm H  . 

This term exactly offsets the usual 2z He growth that gravity waves experience in the absence of 
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dissipation, and therefore the wave amplitudes remain approximately constant with increasing altitude 

at great heights. More typical gravity waves, for which h does not satisfy this condition, will

experience a decreasing amplitude with increasing height. Using (B3) at the upper boundary instead of 

the more usual GWm  based on the gravity wave dispersion equation provides a more robust solution for 

the upper radiation condition at very high altitudes. This is because, as previously stated, when the 

gradients become exceedingly small the viscous damping and resulting imaginary part of the vertical 

wavenumber approach zero and wave amplitudes will not decrease with increasing altitude. Knight et 

al. (2019) have also noted that the imaginary part of the vertical wavenumbers of the dissipative modes 

(comprising the viscosity and thermal conduction waves) are larger than those of the gravity waves, 

meaning that the former experience a more rapid amplitude decrease with increasing altitude than do 

gravity waves. 

Figure B1. Vertical velocity amplitude versus altitude for the low stability lower atmosphere, LT = 11 h and 16 h, 

and for h = 100, 500 and 1000 km. The upper boundary condition is based on either the gravity wave dispersion 
equation (solid curves) or the viscosity wave solution (dashed curves). The curves are colored red, green and 
violet for horizontal wavelengths of 100 km, 500 km and 1000 km, respectively. 

Figure B1 shows altitude profiles of the vertical velocity amplitudes obtained for three different 

values of horizontal wavelength (h = 100, 500 and 1000 km) and for two local times (LT = 11 h and 16 h) 

based on using either the dispersion relation of Hickey and Cole (1987) or Equation (B3) to evaluate the 

radiation condition at the upper boundary. At high altitudes the use of the two different upper 

boundary conditions usually led to similar results except for the case when the longest wavelength (h = 
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1000 km). In this case the dispersion equation of Hickey and Cole (1987) led to an unrealistic increase of 

w  with increasing altitude above about 220 km, whereas the use of Eq.(B3) led to w  approaching a 

constant value at high altitudes. 

Appendix C 

In order to present a general view of the simulations, below we provide an additional table 

summarizing all the figures based on the following nomenclature: 

u1_LT11_eA_w500_ls means lower boundary wind of -1 m/s, LT= 11H, eddy diffusion profile A; 

wavelength 500 km; low stability, etc … 

Figure Case 

5a u1_LT11_eA_ns_w100; u1_LT11_eA_ns_w500; 

u1_LT11_eA_ns_w1000; 

u1_LT11_eA_ls_w100; u1_LT11_eA_ls_w500; u1_LT11_eA_ls_w1000; 

5b u1_LT11_eC_ns_w100; u1_LT11_eC_ns_w500; u1_LT11_eC_ns_w1000; 
u1_LT11_eC_ls_w100; u1_LT11_eC_ls_w500; u1_LT11_eC_ls_w1000; 

6a u1_LT16_eA_ns_w100; u1_LT16_eA_ns_w500; u1_LT16_eA_ns_w1000; 
u1_LT16_eA_ls_w100; u1_LT16_eA_ls_w500; u1_LT16_eA_ls_w1000; 

6b u1_LT16_eC_ns_w100; u1_LT16_eC_ns_w500; u1_LT16_eC_ns_w1000; 
u1_LT16_eC_ls_w100; u1_LT16_eC_ls_w500; u1_LT16_eC_ls_w1000; 

7a; 7b u1_LT11_eA_ls_w500_nodamp; 

u1_LT11_eA_ls_w500_100CO2; 

u1_LT11_eA_ls_w500_varCO2; u1_LT16_eA_ls_w500_nodamp; 

u1_LT16_eA_ls_w500_100CO2; 

u1_LT16_eA_ls_w500_varCO2; 

8a u1_LT11_eA_ls 

8b u1_LT16_eA_ls 

9 u1_LT11_eA_ls; u1_LT11_eA_ns u3_LT11_eA_ns; 

u1_LT11_eC_ls; u1_LT11_eC_ns u3_LT11_eC_ns; 

10 u1_LT11_eC_ls; u1_LT11_eC_ns; 

u1_LT11_eD_ls; u1_LT11_eD_ns; 

u1_LT16_eC_ls; u1_LT16_eC_ns; 

u1_LT16_eD_ls; u1_LT16_eD_ns; 

11; 12; 
13 

u1_LT11_eA_ns; u1_LT16_eA_ns 
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Highlights: Venus mountain waves in the upper atmosphere simulated by a time-invariant 
linear full-wave spectral model 

 A 2-D full-wave spectral wave model simulates Venus mountain waves

 Wave fluxes are sensitive to surface winds, eddy diffusivity and atmospheric stability

 Late morning simulations reveal critical level blocking near 100 km altitude

 In late afternoon waves propagate into the thermosphere & dissipate via viscosity

 Mean state forcing (momentum and heating/cooling) can be extremely large
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