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Venus mountain waves in the upper atmosphere simulated by a 
time-invariant linear full-wave spectral model 

Michael P. Hickey a,b,*, Thomas Navarro c, Gerald Schubert c, Richard L. Walterscheid b 
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A B S T R A C T   

A 2-D spectral full-wave model is described that simulates the generation and propagation of mountain waves 
over idealized topography in Venus' atmosphere. Modeled temperature perturbations are compared with the 
Akatsuki observations. Lower atmosphere eddy diffusivity and stability play a major role in the upward prop-
agation of gravity waves from their mountain sources. Two local times (LT) are considered. For LT = 11 h the 
waves are blocked by a critical level near 100 km altitude, while for LT = 16 h the waves propagate into the 
thermosphere. As a result of the small scale height in the Venus thermosphere, for LT = 16 h wave amplitudes 
grow with increasing altitude up to ~200 km, despite the increasing kinematic viscosity. Although wave am-
plitudes can become very large in the thermosphere, the value of the total potential temperature gradient sug-
gests that some of these fast waves having extremely large vertical wavelengths may remain convectively stable. 
Our simulations suggest that the momentum and thermal forcing of the mean state due to the dissipating waves 
may, at times, be extremely large in the thermosphere. At a given local time, the maximum forcing of the mean 
state always occurs at an altitude determined by the mean winds and the upper atmospheric viscosity. The 
surface conditions that determine the forcing (mountain parameters, surface mean wind, eddy diffusivity, and 
static stability) have little impact on this altitude, but they do significantly impact the magnitude of the forcing.   

1. Introduction 

1.1. Observations 

Observations made from the Akatsuki satellite of large stationary 
features at the cloud tops in the upper atmosphere of Venus were first 
identified by Fukuhara et al. (2017). These observations were made on 
the dayside of Venus using the Longwave Infrared Camera (which has a 
spectral band of 8 to 12 μm) and the Ultraviolet Imager. The former 
images UV radiation scatter by cloud particles at the cloud tops (near 65 
km altitude) while the latter detects thermal radiation from the same 
region. The features extended some 10,000 km of latitude, were sta-
tionary with respect to underlying surface topography, found above 
highlands, bow-shaped, and were thus tentatively identified as gravity 
waves. This discovery challenged the previously established view of a 
fast, superrotating cloud deck circulation minimally impacted by the 
slowly rotating surface circulation. The brightness-weighted 

temperature was determined to be up to about 2 K and centered at ~65 
km altitude with a full-width at half-maximum of ~10 km. Kitahara 
et al. (2019) and Kouyama et al. (2017) found that bow-shaped sta-
tionary wave features occurred exclusively above highlands and tended 
to appear between noon and evening. Specifically, Kouyama et al. 
(2017) examined the local time dependence of stationary waves in four 
different highland regions, and found that stationary waves were in 
every region for local times of 15–16 h. They also noted that the waves 
were not completely stationary, but instead migrated slowly by as much 
as 20o eastward (the upstream direction) over a period of ~10.5 Earth 
days. Smaller scale stationary waves that are not bow-shaped have also 
been observed in the upper cloud regions of Venus's night-side atmo-
sphere that appear to be correlated with highland regions (Peralta et al., 
2017). The stationary wave features observed in the UV emissions at the 
cloud tops by Kitahara et al. (2019) had a horizontal wavelength of 
~510 km and a radiance amplitude of ~1.2%. They hypothesized that 
“the waves should reach thermospheric heights and decay via molecular 
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viscosity on the dusk side where the westward superrotation extends to 
the thermosphere, while the waves will decay via radiative damping or 
critical layer absorption on the dawn side where the superrotation 
vanishes at high altitudes.” They also stressed the need for further 
measurements of topographic gravity waves in order to infer properties 
of the surface boundary layer, because measured wave parameters at the 
cloud tops could provide constraints on static stability and wind speed 
near the surface where the waves are generated. 

1.2. Earlier modeling 

Schubert and Walterscheid (1984) used a full-wave model to 
examine the propagation and dissipation of gravity waves in a zonal- 
mean flow that were forced at the surface in the Venus atmosphere. 
Both a very low static stability and a more stable static stability in the 
near-surface atmosphere were considered. They found that the vertical 
transmission of wave energy from the surface depends crucially on 
gravity wave intrinsic phase speed. Because slow waves propagating in a 
more stable atmosphere have smaller vertical wavelengths, they were 
strongly attenuated by eddy diffusion. Fast waves which were strongly 
evanescent in regions of low static stability were also strongly attenu-
ated. Slow in this context means slow enough in terms of intrinsic fre-
quency (or phase speed) to produce waves that are rapidly dissipated by 
scale-dependent diffusion. 

Young et al. (1987) used the model of Schubert and Walterscheid 
(1984) to simulate the wave response near 54 km altitude due to waves 
generated near the surface. Their study was motivated by an apparent 
correlation of vertical wind amplitude with the mountainous region 
Aphrodite Terra, as observed by a VEGA balloon (Blamont et al., 1986). 
These simulations were used to help explain the VEGA Venus Balloon 
Mission measurements, which revealed enhanced vertical wind ampli-
tudes of 2–3 m/s at ~55 km altitude over Aphrodite Terra, and apparent 
zonal wavelengths of ~500 km. In particular, the power spectra of to-
pology, which determines the spectrum of the forced waves indicated 
that terrain-forced gravity waves could explain a significant portion of 
the VEGA balloon measurements above Aphrodite Terra. The study of 
Young et al. (1987) was extended by Young et al. (1994) using the nu-
merical gravity wave model of Walterscheid and Schubert (1990). It was 
demonstrated that although small scale waves cannot propagate to high 
altitudes (near the cloud level at ~55 km), nonlinear wave-wave in-
teractions would generate smaller scale waves at these altitudes, 
resulting in complex flow patterns. Additionally, it was shown that the 
vertical structure of the mean wind and temperature can lead to partial 
wave trapping and resonances of upward propagating stationary waves, 
with the result that wave amplitudes at cloud levels depended on the 
magnitude of the surface wind in a nonmonotonic way. 

1.3. Recent numerical simulations 

Navarro et al. (2018) used the Institut Pierre-Simon Laplace (IPSL) 
general circulation model to demonstrate that the observations of large 
stationary features at the cloud tops were consistent with mountain 
waves. They also showed that the diurnal cycle of near-surface atmo-
spheric stability and near-surface winds favored the afternoon genera-
tion and propagation of these waves. They furthermore demonstrated 
that the mountain waves would generate a substantial atmospheric 
torque that could impact the planetary rotation rate. 

Yamada et al. (2019) hypothesized that the prevalence of stationary 
waves just above the cloud top in the afternoon might be related to the 
afternoon thinning of the region of low static stability in the 50–60 km 
altitude region. They reasoned that gravity waves should be strongly 
attenuated when propagating through this region of evanescence at 
other times, when it is thicker. However, the results of their modeling 
demonstrated that stationary gravity waves with zonal wavelengths 
longer than 1000 km can propagate to the cloud top, even for a deep (~ 
15 km) region of low static stability. They concluded that the observed 

dependence of mountain wave amplitudes on local time must be due to a 
corresponding time dependence of the excitation process of the waves 
and/or transmission process in the lower atmosphere. 

Lefèvre et al. (2020) used a mesoscale model to perform a detailed 
study of mountain wave propagation. They found that the two regions of 
low static stability (lying between altitudes of 18 and 35 km, and 48 and 
52 km, respectively) supported trapped lee waves that propagate hori-
zontally. They also found that in spite of the existence of these low- 
stability barriers to wave propagation, the energy transmission via 
tunneling was sufficient to allow significant wave propagation to the 
Venus cloud tops. The bow-shape waves resolved by their IPSL Venus 
mesoscale model achieved maximum amplitudes of ~2 K near the cloud 
tops in the late afternoon, but these had decreased to less than 0.5 K by 
midnight. They noted that the near surface winds responsible for 
orographic wave generation had not changed significantly during the 
day and concluded that the diurnal variability of atmospheric conditions 
(atmospheric stability) at higher altitudes (the first 4 or 5 km) were more 
likely to explain the diurnal variation of the bow-shaped waves. Lefèvre 
et al. (2020) also calculated the mean state acceleration due to the 
divergence of the wave momentum flux and found that the mean winds 
were decelerated by about 3 m/s over the course of a Venus day. It was 
noted that this value was smaller than that required to explain the 
longitudinal shift of zonal wind patterns previously inferred by Bertaux 
et al. (2016). 

In this paper we examine the propagation of stationary gravity waves 
forced at the Venus surface using a time-independent linear spectral full- 
wave model. The primary objective is to determine how these waves 
force the mean state at high altitudes (upper troposphere and thermo-
sphere). In order to do so we: a) determine the dependence of the wave 
generation on near surface winds, local time, lower atmosphere stability 
and eddy diffusivity, and b) determine the wave-driven transport 
(fluxes) of heat and momentum to the upper troposphere and thermo-
sphere and their flux divergences to assess the wave forcing of the high- 
altitude mean state. Our study focusses on zonal mean-state effects on 
the propagation of waves excited by flow over idealized topography. We 
examine the basic effects of the diurnal variation of wind and thermal 
structure on the propagation and dissipation of waves in different parts 
of the wave spectrum. We do not address the effects of perturbed 
background states, including the effects of zonal variations in the 
background flow that may be significant episodically or regionally. 

Section 2 presents basic mountain wave theory, section 3 describes 
the numerical model, and section 4 describes the mean state specifica-
tion. Results are presented in section 5, a discussion is provided in sec-
tion 6 and conclusions are provided in section 7. 

2. Mountain wave theory 

Excellent introductory texts on mountain wave theory are provided 
by Smith (1980) and Durran (2003) and references therein. Based on 
Boussinesq flow, the so-called Scorer parameter, ls, is defined byls2

=

N2

U
2 −

1
U

d2U
dz2 , where U is the mean zonal wind, and N is the Brunt-Väisälä 

(buoyancy) frequency. A simplified dispersion relation for atmospheric 
gravity waves is m2 = ls2

− k2, where k and m are the horizontal and 
vertical wavenumbers, respectively. The Scorer parameter therefore 
represents the maximum vertical wavenumber (minimum vertical 
wavelength) for propagating waves. For waves with ls2

> k2 the waves 
propagate vertically without loss of amplitude and the wave crests tilt 
upstream with increasing height, but the waves are evanescent for ls2

<

k2 (Durran, 2003). 
For mountains having a large characteristic width a, the generated 

waves will be approximately hydrostatic when Na/U≫1 and will be 
confined to a region directly above the mountain. Under such conditions 
the characteristic time for the wind to traverse the mountain will be 
considerably longer than the Brunt-Väisälä period. Non-hydrostatic 

M.P. Hickey et al.                                                                                                                                                                                                                               



Icarus 377 (2022) 114922

3

gravity waves will be created for narrow mountains satisfyingNa/U≪1, 
and downstream disturbances are then possible when U and N vary 
appreciably with height. 

The parameter U/Nh0, which is the Froude (Fr) number, and where 
h0 is the mountain height, is a measure of wave nonlinearity (e. g. Smith, 
1980; Young et al., 1994). Typically, linear theory breaks down with the 
onset of blocking, which occurs when U/Nh0 ≈ 1 (the critical Froude 
number). When Fr > 1 the motion is linear and longer wavelength waves 
are produced. When Fr << 1, the motion is nonlinear, and some flow 
occurs over the mountain top. In this case lateral flow will occur around 
an isolated mountain at low altitudes, but blocking will occur if the 
mountain(s) are wide. When Fr = 1, a resonance may occur, leading to 
intense mountain waves. These situations have been well described by 
Durran (1990). For our simulations, the mountain height was set a value 
of 1.0 km, which is reasonable for most conditions considered. A more 
detailed appraisal of this assumption is provided in the discussion sec-
tion. Under these circumstances hydrostatic gravity waves will occur for 
a ≫ (h0)max(small mountain slope) and non-hydrostatic gravity waves 
will occur for a ≪ (h0)max(large mountain slope), where a is a mountain 
width parameter. Finally, we remark that as Young et al. (1994) stated, 
waves that are close to overturning in limited regions at low levels will 
not be close to overturning at higher altitudes away from the lower 
boundary because the mean wind increases with increasing height. 

3. Mountain wave model 

We use a high-resolution, compressible, spectral model to simulate 
mountain gravity waves in the Venus atmosphere. Spectral models have 
been previously employed to model mountain wave propagation in the 
terrestrial atmosphere (Eckermann et al., 2016, and references therein). 
The main difference between our model and previous spectral models is 
that ours is based on a full-wave model while the previous models were 
based on the WKB approximation. Our model accounts for wave 
reflection, while WKB models do not. The topic of wave reflection in the 
Venus atmosphere has been addressed by Young et al. (1994). 

Our model is based on a single-gas full-wave model that solves the 
linearized Navier-Stokes equations subject to boundary conditions for a 
non-isothermal mean-state atmosphere including the effects of height- 
dependent mean winds, and the eddy and molecular diffusion of en-
ergy and momentum. It can model the transmission and reflection of 
gravity waves associated with regions of quasi-evanescence, which is 
important to consider for wave propagation in regions of low static 
stability in the Venus atmosphere (Schubert and Walterscheid, 1984). A 
detailed description of the full-wave model and equations are provided 
in Appendix A. 

Spectral versions of this model have been used previously to study 
the effect of time-dependent gravity wave packets on atomic oxygen 
transport in Earth's mesosphere (Hickey et al., 2000b) and the effect of 
tsunami-driven wave packets on the terrestrial ionosphere (Hickey et al., 
2009). We use a similar approach based on discrete Fourier transforms 
of wave variables. We present the equations appropriate to a 1-D 
mountain shape in the x-z plane. If a mean wind U(z) blows across a 
mountain with terrain h(x), the vertical velocity at the lower boundary 
will be 

w(x, 0) = U ∂h(x)/∂x (1) 

With the terrain represented as 

h(x) =
1

2π

∫∞

− ∞

ĥ(k)e− ikx dk (2) 

Eq. (1) gives the vertical velocity spectrum at the lower boundary: 

ŵ (k, 0) = − ikU ĥ(k) (3) 

The full-wave model provides solutions ψ̂ j(k, z) where the subscript j 

corresponds to perturbations in one of the dependent variables: the x-z 
velocity components u’, w’, respectively, temperature T' and pressure p’. 
The total wave response to the forcing is written as 

ψ ′

j(x, z) =
1

2π

∫∞

− ∞

ĥ(k)ψ̂ j(k, z)e− ikx dk (4)  

subject to specification of the vertical velocity at the lower boundary 
using Eq. (3). The implementation is by means of discrete Fourier 
transforms. We found by experimentation that for our 2-D simulations in 
one horizontal coordinate, 1000 individual waves with a horizontal grid 
spacing equivalent to 0.1a (see Eq. (5)) provided convergent results. 
Increasing the number of waves in the spectrum to 2000 had virtually no 
impact on the results. 

For our 2-D simulations we assume a mountain shape based on that 
of Reinecke and Durran (2009) which in the x-z plane is defined by: 

h(x) =
h0

16

[
1 + cos

(πx
4a

) ]4
if |x/4a| ≤ 1

= 0 otherwise
(5) 

For an assumed 1-D mountain shape the discrete Fourier transform is 
used to derive the spectrum ĥ(k)(not shown), and with the prescribed 
mean wind at the lower boundary we calculate ŵ(k,0). For most of our 
simulations we use a value of a = 100 km and h0 = 1000 m in Eq. (5). 
The resulting mountain shape is shown in Fig. 1. 

Observations and numerical studies indicate that linear theory reli-
ably predicts the amplitude of trapped lee waves generated by finite- 
amplitude mountains, the main shortcomings of linear theory being 
that it does not represent the tendency of nonlinear dynamics to enhance 
the short-wavelength Fourier components in the low-level wave field 
over the lee slope (Durran, 2015). The nonlinear behavior induced by 
blocking should not propagate to heights well above the terrain (Young 
et al., 1994). Thus, linear theory should give reasonably accurate de-
scriptions of the gross behavior of bow waves. Further, the low static 
stability at terrain altitudes will mitigate the effects of nonlinearities 
induced by the terrain. Temperature data below ~30 km are sparse, but 
the available data and modeling indicate that lapse rates are indicative 
of near neutral stability indicating that blocking should not occur except 
for the highest terrain (Seiff et al., 1980; Lewis, 2004; Lebonnois and 
Schubert, 2017; Navarro et al., 2018). 

Fig. 1. 1-D mountain shape for a = 100 km and h0 = 1000 m in Eq. (5).  
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4. Mean state definition 

Our model is based on the propagation of linear waves in an other-
wise undisturbed, steady background atmosphere. The assumption that 
the mean state does not vary in time is reasonable for the waves that we 
consider here. For the assumed background atmospheric parameters, 
and for a representative horizontal wavelength of 500 km, we estimate 
that an average vertical group speed is approximately 2.5 m/s between 
the surface and 100 km altitude. This means that the waves will traverse 
that region in a time of order 10 h. This propagation time is exceedingly 
small compared to the slow rotation rate of Venus, supporting our 
assumption of a steady mean state. At altitudes higher than 100 km we 
expect the waves will either propagate at a speed much greater than 2.5 
m/s in one case considered, or not propagate at all in the other case (see 
further discussion of this latter situation later in this section). 

The mean state used in the simulations is provided from the IPSL 
ground-to-thermosphere GCM simulations at an increased horizontal 
resolution of 96 × 96 (Navarro et al., 2021; Gilli et al., 2021). These 
profiles, averaged on low-latitude (10oS-10oN) conditions and over one 
solar day, are smoothed, and extended to higher altitudes using cubic 
splines and polynomials that ensure that gradients of key parameters (e. 
g., temperature, winds) smoothly approach zero near the upper 
boundary. The cubic spline fitting enables us to map the IPSL profiles to 
the high resolution full-wave model grid. Smoothing tends to minimize 
any artificial reflections that may occur in the full-wave model. Contrary 
to the GCM assumptions, we assume that the ideal gas equation of state 
applies throughout the atmosphere. Although this assumption will break 
down in the deep atmosphere of Venus, Lebonnois and Schubert (2017) 
have shown that the error associated with this assumption does not 
exceed ~0.8%. All species mixing ratios are specified by the IPSL model. 
The molecular viscosity is provided by the IPSL model, while the ther-
mal conductivity for each species was calculated from Rees (1989) for O, 
O2 and N2, and from Huber and Harvey (2011) for the remaining species 
(CO, CO2, SO2 and H2O). 

In this study we select atmospheric profiles for two local times, one 
set of profiles representing morning conditions and the other repre-
senting afternoon conditions. Because the propagation of mountain 
waves is primarily sensitive to the mean winds through which they 
propagate, the two local times we selected for our simulations were 
based solely on the mean zonal wind profiles. Daytime profiles of these 
hourly winds derived from the IPSL GCM model for local times of 09 LT 
to 18 LT (not shown) were examined. For every local time between 09 h 
and 14 h (inclusive) a critical level for mountain waves (where U = 0) 
was seen to exist near 100 km altitude. Such critical levels severely 
impede the propagation of the waves into the thermosphere (the waves 
cannot propagate above about 100 km altitude). Because the winds 
below about 100 km were similar for these local times, a local time of 11 
h was selected as representative of morning conditions. For local times 
between 15 h and 18 h (inclusive) it was noted that no critical levels 
existed anywhere, while above about 100 km altitude the winds 
increased dramatically in the westward direction and achieved large 
values above about 120 km altitude. The largest westward wind at 150 
km altitude was ~214 m/s and occurred for LT = 16 h. This profile was 
chosen to represent afternoon conditions. 

The mean zonal wind in the lowest region of the atmosphere (z < 7 
km) is assumed to be approximately constant, but we also investigate the 
effects of a small non-zero vertical shear at the lower boundary. The 
value of the surface wind is adjustable, and values between 1 m/s and 5 
m/s (westward) are considered in our simulations. Pioneer Venus 
Sounder (PVS) mean winds were used for altitudes between about 15 km 
and 59 km and IPSL GCM model winds were used from about 65 km to 
150 km altitude. For altitudes above 150 km the winds were extrapo-
lated upward using a polynomial that provided a zero gradient at high 
altitudes. In the region between ~7 km and 15 km altitude the winds 
were defined by a 4th degree polynomial, while those between ~59 km 

and 65 km altitude were based on a fairing that smoothly joined the PVS 
winds to the IPSL GCM model winds. 

The wind profiles for LT = 11 h and LT = 16 h are shown in Fig. 2. 
Below about 68 km altitude the winds for the two local times, although 
not identical, exhibit similar behavior in a region where the circulation 
is dominated by the westward superrotation, but they diverge signifi-
cantly at higher altitudes where the subsolar-to-antisolar circulation 
prevails. For LT = 11 h the winds become increasingly westward with 
increasing altitude up to about 68 km altitude, and then remain 
approximately constant up to about 86 km altitude. Above that altitude 
the winds rapidly decrease in magnitude, becoming eastward above 
about 102 km altitude. The wind continues to increase in magnitude at 
greater heights, and eventually asymptotes to an eastward speed of 
about 67 m/s. For LT = 16 h the winds increase (westward) with 
increasing altitude up to about 73 km altitude and then decrease in 
magnitude to a local minimum of about 72 m/s slightly above 100 km 
altitude. At greater heights, the wind increases in the westward direc-
tion, and eventually asymptotes to a value of about 215 m/s at high 
altitudes. We assume the dayside SS-AS flow speeds at high altitudes are 
constant, as modeled and explained with a GCM in Navarro et al. (2021). 

The nominal temperature profile we used was constructed by 
smoothly joining several regions. For each local time, two different 
temperature profiles were considered. The first represents a nominal 
profile, in which the region between 5 km and 150 km altitude is defined 
by a nominal IPSL GCM temperature profile. This profile is smoothed, 
and then extended to higher altitudes using a polynomial that provides 
an isothermal atmosphere above ~200 km altitude. The temperature in 
the lowest 5 km of the atmosphere is based on a polynomial that 
smoothly joins to the IPSL LMD profile at 5 km altitude and that becomes 
isothermal as the lower boundary is approached. 

The second temperature profile is based on the low stability low- 
altitude profiles derived from the IPSL GCM and differs from the nom-
inal profile only for altitudes below about 60 km. A cubic polynomial is 
used to provide a fit to an N2 profile between the surface and 35 km 
altitude. This requires continuity of both N2 and dN2/dz with the existing 
N2 profile at ~35 km altitude, while N2 is set to the low-stability value of 
N2 at the surface with dN2/dz set equal to zero. From this new N2 profile, 
the modified temperature profile is determined as follows. Starting with 
the definition of N2 based on the potential temperature gradient (N2 =

g dlnθ
dz ), a finite difference equation is derived for the temperature: Tn− 1 =

Fig. 2. Mean zonal winds for LT = 11 h (red curve) and LT = 16 h (green 
curve). The nominal winds shown here have a lower boundary value of − 2 
ms− 1. Positive corresponds to the eastward direction. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Tn+1 −
2hNn

2

gn
Tn +

2h
R gnMnκn, where the step size is h, κ = R/cpand all other 

variables are as defined in Appendix A. Here, T refers to temperature and 
the subscript “n” refers to the position on the altitude grid. Starting from 
the upper height of the modified profile (~ 35 km) where all values on 
the right side of the equation are defined, we proceed downward to the 
surface. In general, this won't provide the required surface temperature, 
T1, but by adding a constant we can achieve the required surface tem-
perature without affecting the N2 profile. However, the added constant 
will affect the continuity of the temperature near 35 km altitude 
requiring a final adjustment. This is achieved using a 5th-degree poly-
nomial to smoothly join the temperature between altitudes of 35 km (the 
new lower atmosphere temperature profile) and 60 km (the initial 
temperature profile). This polynomial was based on the continuity of the 
temperature and its first and second derivatives at the two endpoints. 

The temperature profiles for two local times (11 h and 16 h) are 
shown in the left panel of Fig. 3 for nominal conditions (solid curves) 
and low stability conditions (dashed curves). The dependence of the 
nominal temperature on local time is not large and becomes noticeable 
only above ~80 km altitude. At high altitudes, the temperature as-
ymptotes to ~213 K and 205 K for LT = 11 h and 16 h, respectively. At 
the lower boundary, the temperature is 700 K. The low stability profiles 
below 60 km altitude are similar for the two local times and exhibit 
larger negative gradients than those of the nominal temperature profiles. 

The right panel of Fig. 3 shows the square of the Brunt-Väisälä fre-
quency (N2) for the two local times and for nominal and low stability 
conditions. For the nominal-stability lower atmosphere, the lower 
boundary value of N2 is ~1.25 × 10− 4 s− 2. For the low-stability lower 
atmosphere, N2 is ~4.37 × 10− 7 s− 2 and 3.42 × 10− 6 s− 2 for 11 LT and 
16 LT, respectively. 

The eddy diffusion is not well understood at low altitudes in the 
Venus atmosphere. Based on an analysis of Pioneer Venus radio occul-
tation measurements, Woo and Ishimaru (1981) derived a value for the 
eddy diffusion of 4 m2 s− 1 near 60 km altitude. Bougher et al. (1986) 
found that values of eddy diffusion required in their model were smaller 
than values used in previous one-dimensional models. Upper limits to 
the eddy diffusivity were 500 m2 s− 1 for the dayside and about 1000 m2 

s− 1 for the night-side. These values were applicable for altitudes above 
~80 km. In their study of gravity wave propagation, Schubert and 
Walterscheid (1984) adopted a value of 4 m2 s− 1 and Young et al. (1987) 
adopted a constant value of 0.7 m2 s− 1 for the eddy diffusion. Based on a 
model relating breaking gravity waves to turbulent diffusion and using 
available measurements of turbulent diffusion coefficients at the plan-
etary surface and at the homopause, Izakov (2001) derived a profile 
representing a lower bound to the eddy diffusivity. Values increased 
from 10− 2 m2s− 1 at the surface, to 104 m2s− 1 at ~140 km altitude. 

Brecht et al. (2011) used values of eddy diffusivity that were a maximum 
of 1000 m2 s− 1 on the night-side and a constant value of 100 m2 s− 1 on 
the dayside. These profiles were applied above 80 km altitude, but no 
information was provided for lower altitudes (their model lower 
boundary was at 70 km altitude). Based on profiles of CO and CO2 based 
on SOIR/Venus Express measurements, Mahieux et al. (2021) have 
determined values of eddy diffusivity in the upper troposphere and 
lower thermosphere. They determined that most previous studies sub-
stantially underestimated the values of eddy diffusivity in the 80–120 
km height range. The value of eddy diffusivity at 140 km altitude was 
~2 × 104 m2s− 1, in reasonable agreement with Izakov (2001). 

Given the paucity of measurements in the middle and lower atmo-
sphere, momentum eddy diffusivity (ηe(z)) profiles were devised that 
smoothly increased from small values in the lower atmosphere to larger 
values in the upper atmosphere. The model profile used is 

ηe(z) = ηLB + 0.5ηmax

{

1+ tanh
[

ln3
(z − zmid)

2Hη

]}

(6)  

where ηLB is the value of η at the lower boundary, ηmax is the maximum 
(asymptotic) value of η at the upper boundary, zmid is the altitude of 
inflection (which was held constant for all simulations), and Hη is a 
parameter that determines the gradient of ηe. We adopt four basic eddy 
diffusion profiles having the parameter values as shown in Table 1. The 
first profile (designated ηA) represents a nominal profile, while the 
second (ηB) is representative of that presented by Izakov (2001), as 
described above. The third (ηC) and fourth (ηD) profiles are representa-
tive of small and large diffusivities, respectively, and they are considered 
here to be extreme limits of the eddy diffusivity. The total viscosity 
profiles (molecular plus eddy) are shown in Fig. 4 along with values of 
the variable eddy diffusion profile taken from Table 1 of Mahieux et al. 
(2021). At 80 and 140 km altitude the values of eddy diffusivity based on 
profile D are factors of ~2.7 and ~ 3.8 smaller, respectively, than that of 
Mahieux et al. (2021). However, at intermediate altitudes the eddy 
diffusivity values associated with profile D are larger. 

The eddy thermal conductivity was calculated from the eddy vis-
cosity by assuming that the Prandtl number was equal to 0.1 (Schubert 

Fig. 3. Mean temperature (left panel) and the square of the Brunt-Vaisälä frequency (right panel) versus altitude for LT = 11 h (red curve) and LT = 16 h (green 
curve). Nominal (solid curves) and low-stability lower atmosphere (dashed curves) conditions are shown. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Eddy diffusion profiles and parameters used in Eq. (6) for this study.  

Profile ηLB (m2 s− 1) ηmax (m2s− 1) Hη (km) zmid (km) 

ηA 1 103 15 140 
ηB 10− 2 104 9.56 140 
ηC 10− 3 500 10 140 
ηD 10 104 15 140  
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et al., 1971). It has been suggested by Covey and Schubert (1981) that 
the eddy diffusion in the Venus atmosphere may not be isotropic. They 
proposed that the flatness of large-scale convection cells in the Venus 
clouds seen in UV images from Mariner 10 and Pioneer Venus spacecraft 
measurements can be explained by anisotropic eddy diffusion in which 
the horizontal eddy diffusivities are at least 10-fold greater than vertical 
diffusivities. We explored this possibility in which, following Covey and 
Schubert (1981), we set horizontal eddy diffusivities to be a factor of 10 
or 100 larger than those given by Eq. (6). However, doing so had no 
significant impact on our results, and so our simulations performed here 
are based on isotropic eddy diffusivities as defined by Eq. (6). 

At high altitudes (greater than ~80–90 km altitude) the wave am-
plitudes are apt to become quite large for certain combinations of mean 
state parameters, particularly those in the source region (lower atmo-
spheric wind, eddy diffusivity and lower atmospheric stability). At these 
high altitudes, when the vertical gradients of the total (mean plus wave) 
potential temperature (θ) become negative, a wave will overturn, 
leading to mixing and enhanced diffusion (e.g., Lindzen, 1981; Wal-
terscheid and Schubert, 1990). The enhanced eddy diffusion so pro-
duced acts to limit the wave to its saturation amplitude. We include a 
simplified version of this process in our model by incorporating a wave- 
induced eddy diffusion profile that extends over the region where ∂θ/∂z 
is negative. 

5. Results 

Results are provided for single monochromatic waves as well as a full 
spectrum of waves defining our mountain waves. Given the number of 
parameters and the large parameter space to cover, to give a general 
view of the simulations we provide in Appendix C a table summarizing 
all of the figs. 

5.1. Single wave model results 

Before presenting the results of our simulations obtained with the 
spectral full-wave model, we use the single-wave version of this model in 
order to elucidate how the properties of the basic state impact the ver-
tical propagation of discrete monochromatic gravity waves. The rele-
vant atmospheric properties that impact the propagation of the waves 

are the eddy diffusivity, the vertical profile of the mean winds (through 
the local time), the low-altitude atmospheric stability and the lower 
boundary mean zonal wind. We primarily examine the vertical velocity 
amplitude, |w′|, as a function of altitude for three individual gravity 
waves having horizontal wavelengths λh of 100, 500 and 1000 km. The 
perturbations of horizontal velocity, u′, and temperature, T′, exhibit 
similar behavior to w′ and because of this we do not present results for u′

and we present only one set of results for T′. A local time of 11 h, a 
westward zonal wind of 1 m/s at the lower boundary, two different 
kinematic viscosity profiles (A and C), and the previously described two 
different temperature profiles (nominal and low-stability lower atmo-
sphere) are considered. 

In all cases shown in this section |w′| is equal to 1 m/s at the lower 
boundary. Within a spectrum of waves, such as those considered in the 
section 5.2, the individual spectral amplitudes of w′ are ~10− 4 m/s at 
the lower boundary for the 500 km and 1000 km waves, and signifi-
cantly smaller for the 100 km waves. Hence, the values obtained here for 
|w′| and |T′| are not meant to be realistic as they reach values exceeding 
1 km/s and 1000 K, respectively. Instead, the results presented in this 
section merely serve the purpose of a first assessment of wave propa-
gation in a qualitative rather than quantitative way. 

Fig. 5 (left panel) is based on eddy viscosity profile A, which has a 
value of 1 m2 s− 1 at the lower boundary. The two sets of profiles are for 
the nominal stability/temperature profile (solid curves) and the low 
stability/temperature profile (dashed curves). Near the lower boundary 
the mean wind is small and therefore the waves are slow and have small 
vertical wavelengths. Based on the Scorer parameter provided in section 
2, the minimum vertical wavelength at the lower boundary is ~0.56 km 
for the nominal-stability lower atmosphere. Hence, the waves are 
significantly dissipated just above the surface for propagation in the 
atmosphere having the nominal temperature profile (solid curves). Their 
amplitudes decrease rapidly away from the surface until the wind speed 
(and intrinsic phase speed of the waves) has increased sufficiently, 
which occurs just above 8 km altitude where U ~ 2 m/s. Above this 
height the wave amplitudes remain small, with some variations associ-
ated with strong partial reflections up to ~60 km altitude. Above this 
height the amplitudes increase with increasing height, reaching a 
maximum amplitude just below the critical level (at ~102.3 km alti-
tude). The waves leak through the critical level and continue to propa-
gate upward with significantly reduced amplitudes. This tunneling is 
facilitated by the presence of the viscosity, which removes the critical 
level singularity that would otherwise exist in its absence (Hazel, 1967). 
The approximate maintenance of wave amplitudes at altitudes above the 
critical level occurs due to the increasing mean wind speed (in the 
eastward direction). The waves attain a maximum amplitude at ~180 
km altitude where the molecular kinematic viscosity has increased to 
~106 m2 s− 1, and amplitudes decrease at greater altitudes. The 100 km 
wave experiences less dissipation than the longer wavelength waves and 
experiences an amplitude growth between about 130 and 175 km alti-
tude, with a decreasing amplitude at greater heights due to dissipation 
by molecular viscosity. The smaller dissipation rate for the wave of 
shorter horizontal wavelength can be understood following Young et al. 
(1994), but also applied here to the molecular viscosity. The ratio, r of 
the eddy diffusion term μe∂2w′/∂z2 (where μe = ρηe is a coefficient of 
eddy viscosity) to the inertial term ρDw′

/Dt in the linearized form of (1) 
for the vertical velocity component, can be shown to be approximately 
r = ηeN2/kU3 (Young et al., 1994), where it has been assumed that the 
vertical variation of w′ is purely sinusoidal. A larger value of r implies a 
larger damping of the wave. For a given value of ηe the damping will be 
larger for larger horizontal wavelength (smaller k), larger stability (N) 
and smaller wind speed (U). 

For propagation in the low-stability lower atmosphere (Fig. 5, left 
panel, dashed curves) the waves experience an amplitude growth at low 
altitudes. Despite the large eddy diffusivity, the relatively large vertical 
wavelengths near the surface (~ 9.5 km, based on the Scorer parameter) 

Fig. 4. The sum of the eddy and molecular viscosities. The parameters used in 
Eq. (6) to describe the four eddy viscosity profiles are provided in Table 1. At 
high altitudes where the molecular viscosity dominates all values are the same. 
The asterisks denote values of variable eddy diffusion taken from Table 1 of 
Mahieux et al. (2021). 
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mitigate the dissipation and the amplitudes grow with increasing height 
up to the critical level at ~103 km altitude. Partial reflections, as 
revealed by small undulations in wave amplitude over altitude, occur 
from the critical level. The resulting vertical structure between the 
surface and the critical level, exhibiting quasi nodes and antinodes, 
depends on the local intrinsic phase speed (i.e., U), and hence exhibits 
shorter vertical wavelength variations at lower altitudes where U is 
smaller. The relative magnitude of these undulations is also smaller for 
wave propagation in the larger eddy diffusion environment (profile A), 
due to the weakening of the reflected downward propagating wave from 
the critical level. As previously noted, leakage through the critical level 
occurs. The overall wave structure is similar to that obtained for the 
stable lower atmosphere (solid curves) except that all wave amplitudes 
are larger by about three orders of magnitude. 

The right panel of Fig. 5 shows the equivalent sets of results for eddy 
diffusivity profile C. Differences between the nominal and low-stability 
lower atmosphere cases are small. This is because the eddy diffusivity is 
small (~ 10− 3 m2 s− 1) near the lower boundary, and so the dissipation 
rate is small irrespective of differences in the vertical wavelengths 
associated with the different atmospheric stabilities. However, for the 
low-stability lower atmosphere (dashed curves) the wave amplitudes for 
eddy diffusivity profile C (right panel) are a factor of 3 to 4 times greater 
than those for eddy diffusivity profile A (left panel). Additionally, for the 
low-stability lower atmosphere, the reflections are more prominent for 

the case of diffusivity profile C than for profile A. This is because the 
smaller viscosity in the vicinity of the critical level associated with 
profile C causes the reflected waves to be stronger than they are for 
profile A. 

We repeat the analysis for a local time of 16 h (see Fig. 6). As before, 
for the nominal-stability lower atmosphere the amplitudes at low alti-
tudes are significantly more impacted by the larger values of eddy 
diffusivity associated with profile A (left panel) compared to those of 
profile C (right panel). For eddy diffusivity profile C (Fig. 6, right panel), 
differences in the wave amplitudes between the nominal-stability lower 
atmosphere (solid curves) and low-stability lower atmosphere (dashed 
curves) are relatively small. One of the most significant differences be-
tween the results shown in Fig. 6 and those shown in Fig. 5 is the absence 
of a critical level for LT = 16 h. Because of this, the wave amplitudes for 
altitudes greater than ~100 km are significantly greater than those for 
LT = 11 h. For LT = 16 h wave amplitudes can grow to large amplitudes 
in the thermosphere. 

Other single-wave simulations (not shown) demonstrate that waves 
of short horizontal wavelength (~ 25 km or less) cannot propagate 
effectively to high altitudes under any conditions (local time, eddy 
diffusivity profile, wind at the lower boundary). For example, for 
extremely low eddy diffusivities (profile C) a wave of 25 km horizontal 
wavelength experiences a dramatic decrease in wave amplitude between 
the surface and about 50 km altitude, reduced by a factor of ~102 and 

Fig. 5. Magnitude of the vertical velocity perturbation as a function of altitude for waves with horizontal wavelengths of 100 km (red curves), 500 km (green curves) 
and 1000 km (blue curves) propagating in the LT = 11 h mean state and for the nominal (A, left panel) and low (C, right panel) eddy diffusion profiles. Solid curves 
correspond to the nominal temperature profile while dashed curves correspond to the low-stability (smaller N) lower atmosphere temperature profile. The mean wind 
is – 1 m/s at the lower boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Magnitude of the vertical velocity perturbation as a function of altitude for waves with horizontal wavelengths of 100 km (red curves), 500 km (green curves) 
and 1000 km (blue curves) propagating in the mean state at LT = 16 h and for the nominal (A, left panel) and low (C, right panel) eddy diffusion profiles. Solid curves 
correspond to the nominal temperature profile while dashed curves correspond to the low-stability (smaller N) lower atmosphere temperature profile. The mean wind 
is – 1 m/s at the lower boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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105 for the nominal and low static stability near-surface conditions, 
respectively. Such waves cannot make a significant contribution to the 
wave spectrum at higher altitudes under any circumstances. 

In Fig. 7 we demonstrate the effect of including radiative damping on 
the altitude variation of the temperature and vertical velocity pertur-
bations for a 500 km wavelength wave. The temperature perturbations 
(left panel) are impacted by the inclusion of the radiative damping only 
above about 120 km altitude, independent of the local time. In this case 
the amplitude decreases rapidly with increasing altitude when the CO2 
mixing ratios less than unity are not accounted for, while the decrease is 
less pronounced when the CO2 mixing ratio is accounted for. In the latter 
case, most of the amplitude decrease due to the radiative damping oc-
curs within about the first 30 km of its importance, that is, between 
~120 km and 150 km altitude. At greater altitudes, the radiative 
damping becomes progressively smaller due to the reduced CO2 mixing 
ratios above 150 km altitude, and the amplitude decreases at the same 
rate as it does in the absence of the radiative damping. With the inclu-
sion of the radiative damping the temperature perturbation amplitude is 
reduced by a factor of ~2.5 by 160 km altitude. 

The right panel of Fig. 7 shows the corresponding vertical velocity 
perturbation amplitudes. Because the radiative damping appears only in 
the energy equation, it directly impacts the temperature perturbations, 
whereas it indirectly impacts the vertical velocity perturbations. Thus, it 
has a greater impact on the magnitude of the temperature perturbations. 
As with the temperature perturbations, the effects of the radiative 
damping begin to become important by around 120 km altitude but 
diminish significantly by about 150 to 160 km altitude where the CO2 
mixing ratios becomes small. Due to the critical level filtering of the 
waves at LT = 11 h, the wave amplitudes have diminished to small, 
insignificant values at the altitudes where the radiative damping is 
effective. Hence, the radiative damping has a significant impact only on 
the LT = 16 h results. 

5.2. 2-D model results 

In this section we describe the simulations performed using our 2-D 
spectral full-wave model, which assumes a 1-D mountain shape. The 
Fourier solutions are computed within an (nxΔx, nzΔz) domain, with Δx 
= 0.1a and nx = 1000. For a = 100 km (see below) this equates to Δx =
10km giving a Nyquist horizontal wavelength of 20 km. Experiments 
(not shown) have demonstrated that waves this short are strongly 
attenuated as they propagate vertically. In the vertical nz was set to 
15,000 for an upper boundary altitude of 350 km. Experimentation 

showed that this choice of spatial resolution produced convergent 
results. 

In their discussion of VEGA balloon measurements, Young et al. 
(1987) noted that a feature of the vertical winds was an apparent zonal 
wavelength of ~500 km. Assuming a mountain width parameter a of 
100 km in Eq. (5) leads to a vertical velocity spectrum ŵ(k,0) maxi-
mizing at a wavelength of ~540 km. Hence, a = 100km is a reasonable 
parameter choice for our mountain, and we adopt this as the nominal 
value in our model. The impact of changing this value is discussed later. 

We set the nominal mountain height h0 to 1 km but as noted earlier 
the maximum value for linear waves is given by (ho)max = U/N. For the 
nominal-stability lower atmosphere, the resulting maximum height is 
~0.32 km for U = 1 m/s, irrespective of local time. For the low-stability 
lower atmosphere the corresponding maximum heights are ~3.8 km and 
2.7 km for LT = 11 h and 16 h, respectively. We discuss the implications 
of the mountain height later in the discussion section. Based on Eq. (5), 
the maximum mountain slope for a = 100 km and h0 = 1 km is ~0.007, 
which is one quarter of the slope of 0.028 adopted by Young et al. 
(1994). 

The model provides the wave perturbations u′, w′ T′ and p′ as a 
function of horizontal position and height. We also calculate the po-
tential temperature fluctuation θ′ using 

θ
′

= θ
(

T ′

T
− κ

p′

p

)

(7)  

where κ = R/cp. When gravity wave amplitudes become large, they can 
exceed the stability threshold which occurs when the vertical gradient of 
the total potential temperature just becomes negative (e.g., Fritts, 1985, 
and references therein). Hence the requirement that a wave just be-
comes unstable is d/dz(θ + θ

′

) = 0. A useful alternative representation 
of this condition is that S = (dθ

′

/dz)/(dθ/dz) = − 1 and accordingly we 
use this ratio (S) to help interpret our results. 

According to Lindzen (1981), a breaking wave generates just enough 
eddy diffusivity to offset the further growth of the wave. We add an 
additional eddy diffusivity in the vicinity of the large negative potential 
temperature gradients in order to mimic this process. We refer to this 
additional eddy diffusion profile as the wave-induced eddy diffusivity. 
This may be an underestimate of the eddy diffusivity required to limit 
wave growth, because unstable stratification is confined to a limited 
region of the wave, and the localization of turbulence requires either 
very large local eddy diffusivities or significant overturning (Waltersc-
heid and Schubert, 1990). We prescribe an amount of eddy diffusion just 

Fig. 7. Temperature perturbations (left panel) and vertical velocity perturbations (right panel) for a horizontal wavelength of 500 km for propagation in the low- 
stability lower atmosphere temperature profile and for the nominal eddy diffusion (profile A). Red and green curves correspond to LT = 11 h and 16 h, respectively. 
The mean surface wind is − 1 m/s. Solid curves are for no radiative damping, dashed curves are for radiative damping assuming 100% CO2, and the dotted curves 
correspond to radiative damping accounting for the altitude-dependent CO2 mixing ratio. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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large enough to maintain the wave at the limit of instability (i.e., Smin =

− 1). The parameters defining the wave-induced diffusivity profile are 
obtained by experimentation with the requirement that the additional 
wave-induced eddy diffusivity should have minimal impact on the wave 
at lower altitudes. This profile is modeled as a Gaussian function and the 
total eddy diffusion is then the sum of this profile and that of the eddy 
diffusivity profile prescribed by Eq. (6). 

One of the main objectives of this paper is to compare the propa-
gation of the mountain waves though the two different wind profiles 
discussed earlier, as shown in Fig. 2. The first, which is representative of 
the mean low latitude winds at LT = 11 h, displays a critical level near 
100 km altitude which, as was discussed in the previous section, blocks 
the waves from entering the thermosphere. For the second wind profile, 
representative of the mean low latitude winds at LT = 16 h, there is no 
reversal of the mean zonal wind at any altitude and therefore the waves 
will not encounter a critical level during their upward propagation into 
the thermosphere. In the following two subsections we examine the 
characteristics of the wave propagation for these different wind profiles. 
We provide examples for which amplitudes grow to modest values in the 
upper atmosphere. A summary of these and other simulations is dis-
cussed further in the discussion section. 

5.2.1. Spatial variation of the mountain waves 
Below we present the variation of the density-weighted vertical ve-

locity perturbation ρ1/2w′ with horizontal position and height. For the 
results shown, we have assumed a westward surface wind of 1 m/s, eddy 
diffusion profile A, and the low stability lower atmosphere. Results are 
shown for LT = 11 h and 16 h. The mountain is centered at a horizontal 
coordinate (longitude) of zero and extends to 400 km either side of that. 
The mountain wave is horizontally collocated with the mountain. 

For LT = 11 h (left panel), the wave encounters a critical level near 
100 km altitude, and so cannot propagate any higher. At altitudes be-
tween ~20 km and 90 kmρ1/2w′ is approximately conserved because the 
viscosity is relatively small. For LT = 16 h, there is no critical level, and 
the wave propagates into the thermosphere. In this latter case, the wave 
propagates upward into regions of ever-increasing viscosity and ρ1/2w′

begins to decrease with increasing height. In addition to amplitude in-
formation on Fig. 8, the sloping curves indicate the phase variation from 
which vertical wavelengths can be inferred. At low altitudes the vertical 
wavelength is larger for LT = 11 h (left panel) than it is for LT = 16 h 
(right panel), which is due to the smaller values of N at these altitudes 
for LT = 11 h (see Fig. 3b). At high altitudes, large mean winds and/or 
large viscosity leads to increased vertical wavelengths (e.g., right panel, 
altitudes greater than ~50 km). 

In most of the remaining results we will present either the wave 

response as a function of height directly above the mountain center, or 
we will present the horizontally averaged response as a function of 
height. Doing so allows more information to be presented in a given 
figure. 

5.2.2. Vertical wavelengths near the source 
In this section we describe the effects of the eddy diffusivity, the 

stability of the lower atmosphere, and the magnitude of the surface wind 
on the vertical wavelength of the mountain waves for LT = 11 h. We 
consider surface winds of 1 m/s and 3 m/s, eddy diffusion profiles A 
(large diffusion) and C (low diffusion), and the nominal and low stability 
lower atmospheres. Although this range of parameters is somewhat 
limited, it serves the purpose of identifying how these parameters affect 
mountain wave propagation in the lower atmosphere. In later sections 
we consider a more complete range of parameters. In this section we 
present the wave response centered over the mountain. 

Fig. 9 shows the variation of the density-weight vertical velocity 
perturbations, ρ1/2w′ over altitude from the surface to 30 km altitude. 
The vertical wavelength is smallest near the surface, and generally in-
creases with increasing altitude as the wind speed increases. The 
smallest value of the near-surface vertical wavelength is ~1.4 km, and 
occurs for eddy profile C, nominal low-level stability, and a surface wind 
of 1 m/s (solid red curve). The corresponding vertical wavelength 
inferred from the Scorer parameter is about 1.4 km at ~4 km altitude. 
Decreasing the lower atmosphere stability from nominal to low values 
leads to a considerable increase in the vertical wavelength (red dashed 
curve). For the nominal stability lower atmosphere, increasing the sur-
face wind from 1 m/s to 3 m/s leads to an approximate threefold in-
crease in the vertical wavelength. 

The green curves in Fig. 9 correspond to those cases based on eddy 
profile A, which has values at low altitudes that are ~100 times greater 
than those of eddy profile C. For the nominal low-level stability and a 
surface wind of 1 m/s (solid green curve) the vertical wavelength is ~4 
km. This is larger than the corresponding case based on eddy profile C 
because dissipation has the effect of increasing the vertical wavelength 
of gravity waves (e.g, see Fig. 10 of Heale et al., 2014; Walterscheid and 
Hickey, 2011). Decreasing the lower atmosphere stability from nominal 
to low values leads to a considerable increase in the vertical wavelength 
(green dashed curve). For the nominal stability lower atmosphere, 
increasing the surface wind from 1 m/s to 3 m/s leads to a modest (~ 
20%) increase in the vertical wavelength. The wave having the shortest 
vertical wavelength experiences the greatest dissipation, and conse-
quently it has a considerably smaller amplitude than the other waves 
considered in Fig. 9. This case was for the nominal stability lower at-
mosphere, a 1 m/s surface wind, and for eddy diffusivity profile A (solid 
green curve). The wave experiencing the least dissipation had the largest 

Fig. 8. The density-weighted vertical velocity perturbation (ρ1/2w′ , in units of kg1/2 m-1/2 s− 1) for LT = 11 h (left panel) and LT = 16 h (right panel). In both cases the 
surface wind is 1 m/s, the eddy diffusivity is nominal (profile A), and the lower atmosphere stability is low. Below about 30 km altitude the vertical wavelength is 
much greater at LT = 11 h than at LT = 16 h due to the smaller values of N. Wave propagation above ~100 km is inhibited at LT = 11 h due to the critical level there. 
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amplitude, which occurred for the low stability lower atmosphere, a 1 
m/s surface wind, and for eddy diffusivity profile C. 

The results shown in Fig. 9 demonstrate the sensitivity of the waves 
to the parameters of the lower atmosphere. Near the surface where wind 
speeds are typically small, the vertical wavelengths tend to be small in 

which case the waves may be significantly impacted by the near-surface 
eddy diffusivity. The exception to this is when the near-surface atmo-
spheric stability is low and the corresponding vertical wavelengths are 
large. At altitudes well above the surface the mean winds increase 
considerably, which leads to increased vertical wavelengths and a 
reduction in the viscous dissipation. Hence, the variability in the state of 
the lower atmosphere, particularly the near-surface conditions, can have 
a dramatic impact on mountain wave propagation to higher altitudes. 

5.2.3. Wave momentum fluxes 
The wave momentum flux at a given altitude is defined as ρ〈u′w′

〉, 
where all symbols are as previously defined, and where the angled 
brackets denote a horizontal average. The averaging was performed 
over a horizontal distance equal to twice the entire mountain width. 

The wave momentum fluxes for LT = 11 h and LT = 16 h are shown 
in Fig. 10. In most cases they initially decrease with increasing height 
away from the surface where the wind speeds (and intrinsic phase 
speeds) are small, and the dissipation rates are comparatively large. The 
exception to this is for the case of low eddy diffusivity (ηC) and low 
stability in the lower atmosphere (large λz and low dissipation), for 
which the momentum flux is approximately constant at the lowest al-
titudes. At altitudes of 10–20 km above the surface where the wind 
speeds are larger and the viscous dissipation has decreased, the fluxes 
become approximately constant with increasing height. For a given 
combination of surface wind, eddy diffusivity and lower atmosphere 
stability, at low altitudes the fluxes are slightly larger for LT = 11 h than 
for LT = 16 h due to the larger low altitude mean winds in the former 
case (see Fig. 2). For LT = 11 h the waves experience a rapid decrease in 
the momentum fluxes just below 100 km altitude due to their critical 
level encounter. For LT = 16 h the waves do not encounter a critical level 
and propagate into the thermosphere, where viscous dissipation causes 
the momentum flux to decrease by several orders of magnitude between 
about 100 and 200 km altitude. The overall results clearly show that the 
fluxes can vary by many orders of magnitude based on the combination 
of surface wind, near-surface eddy diffusion, and near-surface atmo-
spheric stability. 

The results presented in Fig. 10 are for a limited subset of possible 
combinations of the relevant parameters (local time, eddy diffusivity, 
surface wind, and lower atmosphere stability). They show that once the 
waves reach an altitude of ~30 km, the momentum fluxes have become 
approximately constant, and that they remain so until the waves reach 
the upper atmosphere. Accordingly, we summarize the results using the 
complete set of combinations of relevant parameters by presenting the 
momentum fluxes at z ~ 30 km. These are shown in Tables S1a and S1b 
for LT = 11 h and 16 h, respectively. 

5.2.4. Comparison with observations 
In order to compare their simulation results with the observations of 

Fukuhara et al. (2017), Yamada et al. (2019) calculated a brightness- 
weighted temperature (for nadir viewing) defined as 

T ′

W =

∫80km

60km

W(z)T ′

(z)dz (8) 

In Eq. (8) W(z) represents the nominal weighting function of the 
Longwave Infrared Camera aboard the Akatsuki satellite, as described 
by Taguchi et al. (2007). It has a full-width at half-maximum value of 
~10 km, and a central altitude of 65 km. We employ a weighting 
function having the same characteristics as theirs, but we have used 55 
km for the lower range of integration. Also, the temperature perturba-
tion T′ used by Yamada et al. (2019) was a function of horizontal posi-
tion (latitude and longitude) as well as altitude. 

In order to compare our results with those of Fukuhara et al. (2017), 
we calculate TW

′ as a function of longitude and present only the 
maximum value. It should be noted that because we are employing a 2-D 

Fig. 9. The altitude variation of the density-weighted vertical velocity pertur-
bation ρ1/2w′ at LT = 11 h calculated at the midpoint of the horizontal grid. The 
red and green curves are for low (C) and nominal (A), eddy diffusivity profiles, 
respectively. Solid curves are for nominal lower atmosphere stability and a 
surface wind of 1 m/s. The dashed curves correspond to the low stability lower 
atmosphere and a 1 m/s surface wind. The dashed-dotted curves correspond to 
the nominal lower atmosphere stability and a 3 m/s surface wind. For clarity, 
some of the results have been scaled by a factor of 10 (solid green curve) and 
one-tenth (dashed red curve). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Wave momentum fluxes versus altitude for a westward surface wind of 
1 m/s. Solid and dashed curves are for LT = 11 h and LT = 16 h, respectively. 
Red and blue curves are for nominal and low stability of the lower atmosphere, 
respectively. Labels C and D denote low and high eddy diffusivities, respec-
tively. All momentum fluxes for LT = 11 h (solid curves) exhibit a rapid 
reduction at heights above ~100 km due to the critical level there. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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model we expect that derived wave amplitudes will be larger than those 
that would be obtained using a 3-D model. This is because our 2-D model 
does not account for any latitudinal spreading during the upward 
propagation of the wave packet, as simulations (Smith, 1980) and Venus 
observations (Fukuhara et al., 2017) show. Hence, our results should 
represent overestimates of the temperature fluctuation amplitudes. We 
do so for all combinations of relevant parameters (local time, eddy 
diffusivity, surface wind, and lower atmosphere stability). The results 
for local times of 11 h and 16 h are provided in Tables S2a and S2b, 
respectively. The modeled values of TW

′shown in these tables are similar 
to the ~2 K observed by Fukuhara et al. (2017) only for a limited range 
of conditions. Similarity to the observations tends to be favored for the 
low stability lower atmosphere for both local times considered. For LT =
11 h and the low stability lower atmosphere, surface wind speeds of 2–3 
m/s give values of TW

′ ranging from ~1.8–2.7 K across the four eddy 
diffusion profiles considered. For LT = 11 h and the nominal lower at-
mosphere stability, eddy diffusion profiles A and D lead to values of TW

′

ranging from ~1.2–4.1 K across the different surface wind speeds 
considered. For LT = 11 h, the nominal stability lower atmosphere and 
eddy diffusion profiles B and C the calculated TW

′ is not similar to the 
observed 2 K. For LT = 16 h the calculated values of TW

′ are close to a 
value of 2 K only in a few instances: eddy profile A, low stability, surface 
wind of 1 m/s; eddy profile A, nominal stability, surface wind of 5 m/s; 
eddy profile D, low stability, and a surface wind of 2 m/s & 3 m/s). 

Observations by Kitahara et al. (2019) of stationary wave features 
have revealed a dominant horizontal wavelength of ~510 km, which is 
comparable to the wavelength of 500 km inferred by Young et al. (1987) 
from VEGA balloon observations. Our results, based on the latter ob-
servations, provided a dominant horizontal wavelength of 500 km. 
However, the zonal wavelength of the waves reported by Fukuhara et al. 
(2017) was large (~ 1500 km) while the meridional extent of the 
disturbance was ~10,000 km. Further discussion of this and its relation 
to mountain width is provided in the Discussion section. 

5.2.5. Mean state accelerations 
The divergence of the wave momentum flux leads to a local accel-

eration of the mean state over the mountain. We denote this second- 
order acceleration ∂U2/∂t, with 

∂U2

∂t
= −

1
ρ

∂
∂z

ρ〈u′ w′

〉 (9)  

where 〈u′w′〉 is a second-order horizontal average of u′w′ and where all 
other symbols are as previously defined. The right side of Eq. (9) was 
calculated as a function of altitude and horizontal position and then 
averaged over a horizontal distance equal to twice the full mountain 
width. 

The resulting accelerations for LT = 11 h and LT = 16 h are shown in 
Fig. 11. These results are based on a westward surface wind of 1 m/s, the 
nominal eddy diffusivity profile (A), and for the nominal lower atmo-
sphere stability. There is no wave-induced diffusion included in these 
simulations because for this choice of mean state parameters the waves 
remain at small amplitudes throughout their upward propagation. This 
choice of lower atmosphere parameters also leads to the smallest mean 
state accelerations of all our simulations. For LT = 11, the forcing occurs 
over a fairly narrow region centered just below the critical level (near 
102 km altitude). For LT = 16 h the wave propagates well into the 
thermosphere where they are dissipated by viscosity. In this case the 
forcing occurs over a broad region centered near 175 km altitude. 

We have calculated the mean state forcing for different combinations 
of mean surface wind, eddy diffusivity profile and lower atmosphere 
stability and found that for a given local time (11 h or 16 h), and in the 
absence of wave-induced diffusion, the profile shape of the forcing as 
well as the altitude of the maximum forcing depends primarily on the 
mean wind profile and is approximately independent of the lower at-
mosphere parameters. (For LT = 11 h and for values of lower 

atmosphere parameters for which amplitudes near the critical level do 
not remain small, the inclusion of wave-induced diffusion reduces the 
maximum forcing, and the profile is broadened over altitude.) However, 
for a given local time the magnitude of the forcing is strongly dependent 
on the specific combination of lower atmosphere parameters, and so this 
forcing depends critically on local time. We have tabulated the 
maximum forcing for the different combinations of lower atmosphere 
parameters in Table S3a (for LT = 11 h) and Table S3b (for LT = 16 h). 
The wave forcing in the vicinity of the critical level at LT = 11 h can be 
extremely large, even for those waves that are stable to convection. 
Examples of large forcing due to waves that are stable to convection can 
be seen in Table S3a (LT = 11 h) for the cases of a low stability lower 
atmosphere and for large eddy diffusivities (profile D), where the forcing 
increases from about 7 m/s/h to 39 m/s/h as the surface westward wind 
increases from 1 m/s to 5 m/s. Larger mean state forcing is possible for 
other combinations of parameters, but these occur for larger (nonlinear) 
wave amplitudes. One effect of the wave forcing on the mean state will 
be to cause the critical level to descend with time. To assess effects on 
the circulation one would have to evaluate zonally averaged values of 
wave drag/acceleration in terms of the global distribution of mountain 
wave sources. At this point all we can say is that given the large local 
values of acceleration global effects on the circulation could be impor-
tant. The accelerations at LT = 11 h are representative of strong zonal 
westwards accelerations for local times earlier than 14 h, i.e. when there 
is a critical level centered near an altitude of 100 km. This zone is 
dominated by a transition from the westwards superrotation circulation 
to a Subsolar to Antisolar (SS-AAS) one. Therefore, a possible impact of 
mountain waves is to add an eastward component to the SS-AS circu-
lation, especially, near in the vicinity of the SS point. This hypothesis 
cannot be caught by our model, but a time-dependent model (such a s a 
GCM), will be more suited to address this point. 

For LT = 16 h the wave forcing is considerably greater than the LT =
11 h accelerations because of the considerably reduced atmospheric 
density at ~175 km altitude. We have not applied wave-induced diffu-
sion for LT = 16 h because the wave amplitudes maximize at altitudes 
far above the turbopause (which is located at ~126–136 km, as dis-
cussed by Mahieux et al., 2021). More details of this are provided in the 
discussion section. Nevertheless, it is clear that the results for LT = 16 h 
suggest that the westwards component of the SS-AS is reduced, thus 

Fig. 11. Horizontally averaged mean state acceleration for LT = 11 h (solid red 
curve) and 16 h (dashed blue curve) and for a surface westward wind of 1 m/s, 
nominal eddy diffusivity (profile A), and for the nominal lower atmosphere 
stability. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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contributing to make the eastward (evening) SS-AS branch stronger than 
the westward (morning) branch at altitudes above 150 km. However, 
quantifying this effect remains an open question, as explained in the 
discussion section. 

5.2.6. Mean state heating and cooling 
Dissipating gravity waves drive a downward potential sensible heat 

flux (Walterscheid, 1981; Schubert et al., 2003), causing cooling at high 
altitudes and heating at lower altitudes. Typically, the magnitude of the 
temperature decrease occurring at high altitudes is greater than the 
temperature increase occurring at lower altitudes because the former 
occurs in regions of lower atmospheric density (Walterscheid, 1981). 
The second order mean state heating (or cooling) rate, Q, is related to the 
divergence of the sensible heat flux (Walterscheid, 1981) and the viscous 
flux of kinetic energy (Hickey et al., 2011) by 

ρcpQ = −
d
dz

{

ρcp〈w
′T ′

〉 − μm
d
dz

〈
1
2
u′ 2

〉}

(10)  

where all symbols are as previously defined. The first term in the 
parenthesis is the sensible heat flux, and the second term is the viscous 
flux of kinetic energy. Eq. (10) is valid when vertical derivatives of wave 
variables far exceed their horizontal derivatives. When that is not the 
case, the following equation applies (Schubert et al., 2003): 

ρcpQ =
〈

σ⇀
′

m : ∇
⇀

v⇀
′〉

−
d
dz

{
ρcp〈w

′T ′

〉
}
+〈v′

⇀
⋅∇

⇀
p′

〉 −
d p
d z

〈w′ ρ′

〉

ρ (11) 

Here, the arrows denote vectors and the “:” sign represents the 
doubly-contracted product. We discovered that the viscous heating rate 
increased to unrealistically large values at high altitudes, and so it is not 
considered in these results. The reasons for the large values at high al-
titudes, seen in both our 2-D spectral results and also our single mono-
chromatic wave results, are provided in the Discussion section. The right 
side of Eqs. (10) and (11) were calculated as a function of altitude and 
horizontal position and then averaged over a horizontal distance equal 
to twice the full mountain width. 

In the previous section we found that the forcing of the mean state 
depended sensitively on the specific combination of lower atmosphere 
parameters used, with the smallest forcing occurring for a surface 
westward wind of 1 m/s, the nominal eddy diffusivity profile (A), and 
the nominal lower atmosphere stability. We adopt this same set of pa-
rameters here, and by so doing the resulting heating and cooling rates 
presented here are the smallest of all our simulations. It is important to 
note that values of heating and cooling rates for other combinations of 

the lower atmosphere parameters can be easily inferred by applying 
scaling factors derived from Tables S3a (for LT = 11 h) and S3b (for LT 
= 16 h), as discussed below. 

The resulting heating and cooling rates associated with the sensible 
heat flux for LT = 11 h are shown in Fig. 12. These results are based on 
Eq. (10) (excluding viscous heating) which is approximately valid 
because the vertical derivatives are large in the vicinity of the critical 
level. There is no wave-induced diffusion included in these simulations 
because the wave amplitudes remain small throughout their upward 
propagation. The heating/cooling occurs over a fairly narrow region 
centered just below the critical level (near 102 km altitude). The profile 
shows cooling at the upper levels and heating below, as expected for the 
sensible heat flux (Walterscheid, 1981). The maximum heating rate is 
~8 × 10− 6 K/h and the maximum cooling rate is ~ − 1.75 × 10− 5 K/h. 

For LT = 16 h the waves propagate well into the thermosphere where 
they are dissipated by viscosity. Because their vertical wavelengths 
become extremely large, Eq. (11) has been used to infer the heating/ 
cooling rates, which are shown in the right panel of Fig. 12. The 
maximum heating and cooling rates occur near 150 km and 175 km 
altitude, respectively. The maximum heating rate is ~2 × 10− 6 K/h and 
the maximum cooling rate is ~ − 3 × 10− 6 K/h. 

As previously noted, these heating and cooling rates are the smallest 
obtained for all our simulations. They can serve as a reference value to 
derive heating and cooling rates for other combinations of parameters 
based on applying approximate scaling factors derived from the values 
of the mean state accelerations shown in Tables S3a and S3b. For the 
same parameters used to calculate the heating/cooling rates shown 
above, the maximum mean state acceleration for LT = 11 h shown in 
Table S3a is 5 × 10− 5 m/s/h. The same table shows that the mean state 
acceleration for a 5 m/s westward surface wind, eddy diffusion profile D 
and a low stability lower atmosphere is 39 m/s/h, which is a factor of 
7.8 × 105 larger. Hence, the maximum heating rate for this set of pa-
rameters will be a factor 7.8 × 105 larger than the heating rate of 8 ×
10− 6 K/h, that is, 6 K/h. Examination of Table S3a shows that heating 
and cooling rates much larger than this are possible for other combi-
nations of lower atmosphere parameters (e.g., small values of eddy 
diffusivity in a nominal stability lower atmosphere). 

A similar analysis is applied for LT = 16 h (using Table S3b), wherein 
for eddy diffusivity profile A and for a nominal stability lower atmo-
sphere, the values of acceleration are 2.2 × 10− 5, 0.25, 169 and > 105 

m/s/h for surface winds of − 1, − 2, − 3 and − 5 m/s, respectively. 
Scaling the heating/cooling rates in the same way as before, we obtain 
maximum heating rates equal to 0.02, 15 and 9 × 103 K/h for surface 
winds of − 2, − 3 and − 5 m/s, respectively. The atmospheric flow is 

Fig. 12. Horizontally averaged mean state heating and cooling rates due to the sensible heat flux for LT = 11 h (solid red curves) and for a surface westward wind of 
1 m/s, the nominal eddy diffusivity profile (A), and for the nominal lower atmosphere stability. The heating/cooling rates at LT = 16 h (dashed blue curves) in the left 
and right panels are based on Eqs. (10) and (11), respectively, with the viscous heating omitted. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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strong and constant at these altitudes and will therefore transport mo-
mentum and heat efficiently away for the locations of wave forcing. 
However, the forcing will impact the zonal mean, in ways that we cannot 
model with our steady state model. These heating rates can be compared 
to contributions from the other main atmospheric processes. GCM sim-
ulations provide typical values of heating/cooling of order >50 K/h for 
processes such as UV/IR heating, CO2 cooling, or conduction at altitudes 
above 100 km (Brecht and Bougher, 2012; Gilli et al., 2017). Therefore, 
in the most extreme surface conditions (e.g., extremely small eddy dif-
fusivities or with surface winds ~5 m/s) the resulting heating rate from 
mountain waves may dominate the heating rates from other physical 
processes by at least one order of magnitude, and thus could substan-
tially impact the upper atmospheric thermal structure and dynamics. 

6. Discussion 

Large mean state accelerations occurring near critical levels are not 
unexpected and have been noted before for terrestrial mountain waves. 
For example, using a linear spectral model Eckermann et al. (2016) 
found a peak acceleration of ~103 m/s h− 1 occurring about 3 km below 
the critical level, with a density-weighted value of 350 m/s h− 1 occur-
ring over a height range of 4 km directly below the critical level. Here, 
we find that the mean state accelerations occurring at 11 UT in the vi-
cinity of the critical level have peak values of 5 to 45 m/s h− 1 for a 
surface wind of 1 m/s, for low stability in the lower atmosphere, and 
including wave-induced diffusion, with the larger values occurring for 
the smaller eddy diffusivities in the lower atmosphere. Wind speeds 
larger than 2 m/s produce waves having very large amplitudes below the 
critical level and consequently the forcing, which is proportional to the 
square of the amplitude, can become exceedingly large. As noted earlier, 
our 2-D model cannot account for any latitudinal spreading during up-
ward propagation of the wave packet and hence our modeled ampli-
tudes, fluxes and mean state forcing will be larger compared to those 
derived from a 3-D model. 

We have compared our model results to observations in the region of 
the atmosphere just above the cloud tops. Our model provides temper-
ature perturbation amplitudes similar to those observed for small sur-
face winds of ~1 m/s, with values ranging from 0.5 K to ~3 K for large 
and small lower atmosphere eddy diffusivities, respectively. These 
values are similar to those observed from the Akatsuki satellite (Fuku-
hara et al., 2017). Increasing the surface wind increases the perturbation 
amplitudes at all altitudes. The vertical winds at these altitudes (not 
shown) are smaller than 0.5 m/s. Vertical winds measured over 
Aphrodite Terra from the VEGA balloon at altitudes near 55 km were 
2–3 m/s (Young et al., 1987). 

Based on UV imager observations obtained from Venus Express, 
Bertaux et al. (2016) found a correlation between the zonal winds at the 
cloud tops, and the elevation of the underlying topography. They 
inferred a deceleration of the zonal flow near the cloud tops of ~17 m/s 
per Venus day, which was assumed to be due to the breaking of small 
horizontal-wavelength gravity waves with a subsequent transfer of 
momentum to the mean state. The mesoscale modeling of Lefèvre et al. 
(2020), which included the effects of high-resolution topography, has 
inferred a deceleration of the zonal flow of ~3 m/s per Venus day at the 
cloud tops due to the resulting bow-shaped (stationary) waves. At an 
altitude of 67 km, our calculated accelerations (not shown) cover a wide 
range of values based on the combination of lower atmosphere param-
eters chosen. For example, for LT = 11 h, eddy diffusivity profile A, a low 
stability lower atmosphere and a surface westward wind of 2 m/s, the 
eastward acceleration is ~8.8 m/s per Venus day. For the same wave/ 
conditions, the eastward acceleration in the vicinity of the critical level 
is considerably greater than this (23 m/s/h; see Table S3a). Hence, the 
impact of the waves on the mean state increases greatly with increasing 
altitude above the cloud tops. 

Our model does not account for nonlinear effects associated with 

mountain heights exceeding the value U/N, as discussed in section 3. 
However, as noted by Young et al. (1994), nonlinear effects should not 
propagate to heights well above the terrain. Additionally, these effects 
will be less important except for the highest terrain whenever the lower 
atmosphere has large lapse rates and low stability conditions. We 
adopted a nominal mountain height of 1 km for our simulations, and 
while this exceeded the limit noted above for the nominal-stability lower 
atmosphere simulations, it was within the linear regime for the low- 
stability lower atmosphere simulations. 

Nonlinear effects associated with wave breaking may occur in the 
upper atmosphere whenever the total potential temperature gradient 
(wave plus mean) becomes negative. In addition to the mean state lapse 
rate, this condition depends on both the local amplitude and the vertical 
wavelength. In the case of LT = 11 h, the vertical wavelengths of the 
waves decrease appreciably as the critical level is approached. In those 
cases where the amplitude exceeded the nonlinear threshold (as inferred 
from the potential temperature gradient), we introduced a wave- 
induced eddy diffusivity to limit the wave amplitudes to their 
threshold value. This approach was based on Lindzen (1981), whereby 
breaking waves generate diffusion sufficient for them to saturate. For the 
case of LT = 16 h, where a critical level does not exist, the waves were 
able to propagate freely into the thermosphere where they attained large 
amplitudes. However, because their vertical wavelengths were also 
large, the gradients of potential temperature were typically small, and 
exceeded the nonlinear values only for the largest wave amplitudes. At 
these altitudes where the atmospheric density is extremely low it is 
unlikely that wave breaking of the form studied by Lindzen (1981) and 
others would occur. Accordingly, wave-induced diffusion was consid-
ered in only a few of the LT = 16 h cases, and it was never applied above 
~145 km altitude (the approximate height of the turbopause). We found 
that when wave-induced diffusion was applied at lower thermospheric 
altitudes, the wave amplitudes would be reduced within the region of 
influence of the wave-induced diffusion, but they would quickly grow 
again above that region, with amplitudes increasing up to ~200 km 
altitude, and subsequently decreasing with a further increase of altitude. 
These large amplitude increases, which are due to the waves become 
quasi-evanescent at high altitudes and experiencing slow dissipation, 
occur despite the wave fluxes diminishing with increasing altitude (e.g., 
Fig. 8). This increase of wave amplitude with increasing altitude in the 
thermosphere has implications for the viscous heating rate per unit mass 
associated with the wave dissipation. We found that for LT = 16 h, the 
viscous heating rate increased with increasing altitude to unrealistically 
large values. This occurred in our 1-D simulations (monochromatic 
waves) as well as in our spectral (2-D) simulations and is a result of a 
combination of small wave dissipation (due to the extremely large ver-
tical wavelengths the waves become quasi-evanescent) and low ther-
mospheric mean densities (due to the small scale heights of ~13 km at 
high altitudes associated with a relatively cool thermosphere). We 
intend to perform a detailed study of this interesting phenomenon at a 
later time. 

There is much uncertainty in the eddy diffusivity of the Venus at-
mosphere, both in its variation with position (for this study, altitude) 
and local time. The eddy diffusivities in the near-surface region, which 
are related to the lower atmosphere stability through vertical advection 
and mixing, are largely unknown. Our simulations demonstrate that the 
lower atmosphere eddy diffusivities and the lower atmosphere stability 
play a major role in the upward propagation of gravity waves from their 
mountain sources. Near the surface where the waves are slow the eddy 
diffusivity can significantly impact the wave amplitudes. For the largest 
eddy diffusivities considered wave amplitudes were small. The stability 
of the lower atmosphere impacts the ability of the waves to propagate 
away from the surface, with low stability conditions inhibiting the 
propagation of the waves (as noted for example by Young et al., 1987). 
We found that in general, the momentum fluxes were less sensitive to the 
eddy diffusivity for the lower stability lower atmosphere, particularly 

M.P. Hickey et al.                                                                                                                                                                                                                               



Icarus 377 (2022) 114922

14

for the larger surface wind speeds considered. This is because at low 
altitudes the vertical wavelengths are larger for the lower stability lower 
atmosphere and therefore the viscous dissipation (which is proportional 
to the vertical shear of the horizontal velocity perturbations) is smaller. 
For the smallest value of surface wind speed considered (1 m/s) the 
momentum flux reduced by a factor of ~10 as the eddy diffusivity 
increased from its minimum considered (profile C) to its maximum 
(profile D). For the nominal stability lower atmosphere, the corre-
sponding decrease in the momentum flux was by a factor of ~106. This 
sensitivity of the momentum flux to the eddy diffusivity decreased as the 
surface wind speed increased. 

Based on a spectral analysis of the low-latitude Venus topography 
spanning the Aphrodite Terra region (not shown) we used a value of a =
100 km in Eq. (11) describing our mountain shape, which leads to a 
maximum forcing for a horizontal wavelength of ~500 km. By consid-
ering the time delays between updrafts and downdrafts associated with 
vertical wind measurements from the VEGA-2 balloon, Young et al. 
(1987) deduced that wave disturbances had a zonal wavelength of 
~500 km. A maximum forcing wavelength of 400 km was subsequently 
used in the study of Young et al. (1994). From observations of stationary 
waves Kitahara et al. (2019) deduced that the zonal wavelength was 
~510 km, which closely agrees with the 500 km of Young et al. (1987). 
However, the simulations of Yamada et al. (2019) were based on a 
gaussian forcing function at the lower boundary having a full-width at 
half-maximum of approximately 880 km, which led to a wave distur-
bance at 65 km altitude having a zonal wavelength of ~1300 km and 
1900 km on the eastern and western halves of their resultant wave 
packet, respectively. Their choice of characteristic spatial forcing led to 
good agreement with the bow wave observations of Fukuhara et al. 
(2017). We have experimented with other values of mountain width. 
Doubling the mountain width and also doubling the mountain height (to 
preserve the same mountain shape and slopes) gave the same vertical 
structure as the nominal mountain parameters, except that there was an 
overall slight reduction in wave amplitude. For a given mountain height, 
increasing the mountain width decreases the slopes and hence also de-
creases the vertical forcing. Our simulations presented here were based 
on a single value of the mountain width parameter a = 100 km in Eq. 
(11), which led to a maximum forcing at spectral wavelengths of ~540 
km (as noted earlier in section 5.2). For a given mountain height, the 
slope (and therefore the spectral forcing amplitudes) would be reduced 
(increased) for wider (narrower) mountains. Based on Eq. (11), the 
maximum mountain slope for a = 100 km and h0 = 1 km is ~0.007. This 
is about one quarter of the slope of 0.028 adopted by Young et al. 
(1994), which was based on a mountain height of 0.9 km and a hori-
zontal wavelength of 200 km. 

The wave forcing, described by Eq. (3), depends on the product of the 
surface wind speed and the mountain height. We have experimented 
with different combinations of these and found that the wind speed is 
more effective in generating larger amplitude waves at high altitudes. 
This is because an increase in mountain height increases all spectral 
components equally, but an increasing wind speed impacts the initial 
speed of the waves and allows them to propagate more easily in the 
lower atmosphere in the presence of eddy diffusion. We found that 
doubling the wind speed led to amplitudes at higher altitudes that were 
typically 20% greater than those associated with doubling the mountain 
height. 

Sources of waves other than topographic forcing have not been 
considered here. Examples include convectively generated gravity 
waves (e.g., Baker et al., 2000), and waves generated through the 
obstacle effect mechanism (Lefèvre et al., 2018). Recent numerical 

simulations have shown that small scale (λ  ~ 250 km) gravity waves can 
be spontaneously generated at the cloud top level by thermal tides 
(Sugimoto et al., 2021). The simulations revealed that this was more 
significant at low latitudes, where gravity waves decelerated the zonal 
winds where they were generated and propagated upward (to ~76–86 
km altitude) where they accelerated the zonal flow. Hence, the gravity 
waves appeared to dissipate the thermal tide. Unlike the topographic 
forcing, other sources (such as convection) can produce small scale 
gravity waves. The recent radio occultation observations of Mori et al. 
(2021) have revealed short (0.5–4.0 km) vertical wavelength waves 
displaying just a few oscillations over altitude. These wave packets 
appeared to obey an m− 3 power law (here m is the vertical wavenumber) 
which is indicative of saturating gravity waves, but it was concluded that 
the individual waves in the packets were not saturating. The earlier 
observations of Ando et al. (2015) had also discussed a saturated spec-
trum of gravity waves having vertical wavelengths shorter than about 5 
km. 

7. Conclusions 

In this paper we have described a 2-D spectral full-wave model and 
used it to simulate the generation of mountain waves in the Venus at-
mosphere using an idealized mountain shape. The main objectives were 
to examine how the waves forcing and subsequent upward propagation 
depended on key surface parameters including the surface wind speed, 
the eddy diffusivity and the lower atmosphere stability. We also exam-
ined how the different propagation environments at high altitudes var-
ied between two local times and the impact on the upward wave 
propagation of the waves into the thermosphere. The forcing of the 
mean state associated with wave dissipation was also presented for these 
high altitudes (~ 100 km and higher). 

We have found that the lower atmosphere eddy diffusivity reduces 
the upward propagation of the waves, particularly when the surface 
winds are small and the lower atmosphere stability is nominal. For 
surface winds of 3 m/s or greater, and a low stability lower atmosphere 
the upward momentum flux in the lower atmosphere has a relatively 
small sensitivity to the eddy diffusivity. In this latter case, the vertical 
wavelengths are large, which strongly mitigates any effects of the eddy 
diffusivity. When the eddy diffusivity near the surface is extremely 
small, for any value of surface wind speed the vertical momentum fluxes 
are larger for the nominal stability lower atmosphere. The strong 
sensitivity to these parameters occurs because the wind speed (which 
equates to the intrinsic phase speed of the waves) is typically quite small 
near the surface. Waves having small vertical wavelengths near the 
surface are more susceptible to dissipation by eddy diffusivity, and those 
wavelengths are larger for the low stability lower atmosphere and also 
for faster surface wind speeds. We note that simulations (not shown) that 
included a non-zero vertical gradient of the mean wind at the lower 
boundary allowed the waves to achieve larger intrinsic phase speeds 
sooner as they propagated away from the surface, mitigating the low- 
altitude dissipation, and thereby leading to increased upward mo-
mentum fluxes compared to the zero mean wind gradient cases. 

For a local time of 11 h (but more generally for local times of 09 LT to 
14 LT) wave propagation into the thermosphere is inhibited by the 
presence of critical levels near 100 km altitude. As the waves approach 
the critical level their amplitudes grow and can become large enough for 
the waves to experience convective overturning, as suggested by the 
vertical gradient of the potential temperature. Strong forcing of the 
mean state also occurs, with the wave momentum deposition providing 
an acceleration opposing the mean wind in the vicinity of the critical 
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level. The divergence of the sensible heat flux leads to strong cooling of 
the atmosphere at the critical level and heating several kilometers below 
that. 

As the mean wind evolves with time from LT = 11 h to LT = 16 h, the 
critical level near 100 km altitude disappears, providing easy access for 
the waves to the thermosphere. Propagating unimpeded, their ampli-
tudes grow with increasing altitude up to 200–250 km. This growth 
occurs despite the increasing molecular kinematic viscosity because of 
the combination of large westward winds (equating to large intrinsic 
phase speeds) and small scale heights in the Venus thermosphere. 
Although wave amplitudes can become very large in the thermosphere, 
the total potential temperature gradient remains positive due to the 
extremely large vertical wavelengths of the waves, suggesting that the 
waves remain stable with respect to convection. Once in the thermo-
sphere, the deposition of momentum due to these dissipating mountain 
waves will attempt to bring the mean winds to zero. The sensible heat 
flux leads to large heating and cooling rates in the thermosphere. 

At a given local time, the maximum forcing of the mean state always 
occurs at an altitude determined primarily by the thermospheric mean 
winds and upper atmospheric viscosity. The surface conditions that 
determine the forcing (mountain parameters, surface mean wind, eddy 

diffusivity and static stability) play a minimal role in where these 
maxima occur, but they have a significant impact on their magnitudes. 
These results suggest that mountain waves may significantly impact the 
mean state at very high altitudes in the Venus atmosphere, both in terms 
of the momentum forcing and the thermal forcing. This forcing will 
depend sensitively on local time and also on near-surface conditions, but 
due to the slow rotation rate of Venus, conditions favoring strong forcing 
could extend for long periods of time. Forcing of this magnitude is not 
known to occur in the terrestrial atmosphere. 
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Appendix A. Full-wave model equations 

The linearized Navier-Stokes equations we use in Cartesian coordinates are (e.g., Hickey et al., 2000a) 
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These are the linearized equations of mass continuity, momentum conservation, energy conservation, the ideal gas equation of state, and the 
viscous stress tensor, respectively. An overbar denotes the basic undisturbed mean state, which is assumed to vary only in the vertical direction, z, 
while tildes and double lines appearing below symbols indicate vectors and tensors, respectively. Primes denote linear perturbations about the mean. 
Also, g⇀ is the gravitational acceleration, p is pressure, ρ is mass density, T is temperature, and u⇀ is the velocity with components u and w in the x 
(eastward) and z directions, respectively. The variable θ appearing in (A3) is the potential temperature, defined as θ = T(p00/p)R/cp, where p00 is a 
reference pressure, R is the gas constant, and where cp and cv are the specific heats at constant pressure and volume, respectively. The molecular 
dynamic viscosity is μm, the coefficient of thermal conductivity is κm, and the eddy momentum and thermal diffusivities are ηe and κe, respectively. The 
Rayleigh friction coefficient is KR. The effects of radiative damping are included with a coefficientKNmultiplied by the CO2 mixing ratio (rCO2), as 

described later in this section. Also, ∇
⇀

h is the horizontal component of the gradient vector. The steady mean wind, denoted by upper case letters, is 

assumed to be in the horizontal, zonal direction only (U
⇀

= U î). 
The vertically propagating plane monochromatic waves in t, and x are of the form Aj(z) exp i(ω t − kx) where ω is the wave frequency, and k is the 

horizontal components of the wavenumber vector in the x direction. The complex wave amplitude isAj, where the subscript refers to each of the 
perturbation velocity components, pressure and temperature. The lower boundary is at the ground (z = 0) and the upper boundary is nominally at a 
height z = 350 km. At the lower boundary waves are forced in the vertical velocity. At the upper boundary, a radiation condition is applied, but instead 
of defining the vertical wavenumber using the dispersion relation of Hickey and Cole (1987), as has usually been the case with this model, we instead 
define it using a viscosity wave solution as described in more detail in the Appendix B. This solution is more appropriate when the upper boundary is at 
very high altitudes where the kinematic viscosity is extremely large. 
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Radiative damping, arising from the emission of 15 μm radiation from CO2, is employed based on the findings of Crisp (1989). The radiative 
damping of Crisp (1989) has been previously used for tidal simulations by Takagi and Matsuda (2005), for planetary wave simulations by Kashimura 
et al. (2019), and for gravity wave simulations by Hinson and Jenkins (1995) and Yamada et al. (2019). As in these prior studies we assume that the 
relaxation time decreases exponentially from 104 Earth days at the surface to 0.1 Earth days at 120 km altitude. We extend this to higher altitudes than 
the previous studies by assuming that it decreases exponentially above 120 km altitude with a constant scale height of ~10.5 km (equal to that at 120 
km altitude). The inverse of the radiative relaxation time is defined as KN (see Eq. (A3)). Up to ~120 km altitude CO2 is the major constituent, but its 
mixing ratio decreases above that height. To account for the effect of this decrease on the radiative damping, for altitudes greater than 120 km we 
multiply KN by the CO2 mixing ratio (rCO2), as indicated in Eq. (A3). 

Crisp (1989) also accounted for the scale-dependence of the radiative damping and concluded that the radiative damping rates for vertical scale 
sizes of ~7 km and 30 km would be a factor of approximately 5.0 and 1.4 times greater, respectively, than the nominal (infinite vertical wavelength) 
radiative damping rate. Accordingly, we include this scale dependence in our computations, with the appropriate factor being determined by the 
approximate vertical wavelength provided by the Scorer parameter. We use the damping rate appropriate for the ~7 km vertical scale for LT = 11 h 
simulations because the vertical wavelengths assume small values in the vicinity of the critical level. Based on the results of single-wave simulations 
for a horizontal wavelength of 500 km, for LT = 16 h we use the damping rate appropriate for an ~30 km vertical scale. 

Appendix B. Full-wave model upper boundary conditions 

In the thermosphere the molecular kinematic viscosity increases exponentially with increasing altitude. At high thermospheric altitudes the 
molecular kinematic viscosity attains values large enough to significantly dissipate the wave causing a reduction in the wave vertical energy flux with 
increasing altitude. At even greater altitudes the rapid diffusion tends to eliminate vertical phase gradients so that the vertical wavelength becomes 
exceedingly large (e.g., Hickey and Cole, 1987 and references therein) and the waves become quasi-evanescent. At these altitudes the vertical transport 
of wave energy is dominated by the effects of viscosity while the contribution due to the work done by the pressure forces becomes insignificant 
(Walterscheid and Hickey, 2011). At these heights the wave heating is due almost entirely to the divergence of the viscous flux of kinetic energy 
(Hickey et al., 2011). Because of the exceedingly large vertical wavelengths, the viscous wave dissipation (which acts on the velocity gradients) 
approaches zero. This leads to the imaginary part of the vertical wavenumber also approaching small values and the wave amplitudes do not in general 
decrease with increasing altitude. 

Under these conditions just described, with extreme values of kinematic viscosity in the upper region of our model, the waves behave more as 
viscosity waves than as internal gravity waves. Hence, when we apply the radiation condition at the upper boundary of our model, rather than solving 
our dispersion equation for the vertical wavenumber mGW that includes viscosity and thermal conductivity (Hickey and Cole, 1987), we instead assume 
a viscous wave solution. It is important to note that we do this only when the upper boundary is placed at an extremely high altitude, which in this case 
is 350 km. If the upper boundary were placed at a lower altitude, such as 250 km, we would not assume a viscosity wave solution for the radiation 
condition but would instead apply the usual gravity wave radiation condition. We also note that choosing the appropriate root of the cubic gravity 
wave dispersion equation (in m2

GW) becomes more difficult at high altitudes where the kinematic viscosity is extremely high. A detailed discussion of 
the issues associated with identifying the appropriate gravity wave root of the dispersion equation is provided by Knight et al. (2019). 

The equation describing a viscosity wave is (e.g., Hickey and Cole, 1987, and references therein) 

3η̂ R̂ = β (B1)  

where β = Ω2/gHk2, η̂ = iΩμm/3p and where 

R̂ =
1
k2

{

k2 +m2 +
1

4H2 −
im
2H

}

(B2) 

All other terms are as previously defined in Appendix A. For m2 ≪ k2 and setting Ω = − kU for mountain waves, (B1) and (B2) lead to the vertical 
wavenumber at the upper boundary, mUB, defined as 

mUB =
− 2kHU

η − 2iH
(

k2 +
1

4H2

)

(B3) 

Eq. (B3) shows that the vertical wavelength, 2π/ Re (mUB), is proportional to the product of the kinematic viscosity and the horizontal wavelength. 
For waves with large horizontal wavelengths λh such that the second term in the parentheses dominates (that is, λh ≫ 4πH), then Im(mUB) ≈ − 1/2H. 
This term exactly offsets the usual ez/2H growth that gravity waves experience in the absence of dissipation, and therefore the wave amplitudes remain 
approximately constant with increasing altitude at great heights. More typical gravity waves, for which λh does not satisfy this condition, will 
experience a decreasing amplitude with increasing height. Using (B3) at the upper boundary instead of the more usual mGW based on the gravity wave 
dispersion equation provides a more robust solution for the upper radiation condition at very high altitudes. This is because, as previously stated, when 
the gradients become exceedingly small the viscous damping and resulting imaginary part of the vertical wavenumber approach zero and wave 
amplitudes will not decrease with increasing altitude. Knight et al. (2019) have also noted that the imaginary part of the vertical wavenumbers of the 
dissipative modes (comprising the viscosity and thermal conduction waves) are larger than those of the gravity waves, meaning that the former 
experience a more rapid amplitude decrease with increasing altitude than do gravity waves. 
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Fig. B1. Vertical velocity amplitude versus altitude for the low stability lower atmosphere, LT = 11 h and 16 h, and for λh = 100, 500 and 1000 km. The upper 
boundary condition is based on either the gravity wave dispersion equation (solid curves) or the viscosity wave solution (dashed curves). The curves are colored red, 
green and violet for horizontal wavelengths of 100 km, 500 km and 1000 km, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. B1 shows altitude profiles of the vertical velocity amplitudes obtained for three different values of horizontal wavelength (λh = 100, 500 and 
1000 km) and for two local times (LT = 11 h and 16 h) based on using either the dispersion relation of Hickey and Cole (1987) or Eq. (B3) to evaluate 
the radiation condition at the upper boundary. At high altitudes the use of the two different upper boundary conditions usually led to similar results 
except for the case when the longest wavelength (λh = 1000 km). In this case the dispersion equation of Hickey and Cole (1987) led to an unrealistic 
increase of |w′| with increasing altitude above about 220 km, whereas the use of Eq.(B3) led to |w′| approaching a constant value at high altitudes. 

Appendix C 

In order to present a general view of the simulations, below we provide an additional table summarizing all the figures based on the following 
nomenclature: 

u1_LT11_eA_w500_ls means lower boundary wind of − 1 m/s, LT = 11H, eddy diffusion profile A; wavelength 500 km; low stability, etc. …   

Figure Case 

5a u1_LT11_eA_ns_w100; u1_LT11_eA_ns_w500; 
u1_LT11_eA_ns_w1000; 
u1_LT11_eA_ls_w100; u1_LT11_eA_ls_w500; u1_LT11_eA_ls_w1000; 

5b u1_LT11_eC_ns_w100; u1_LT11_eC_ns_w500; u1_LT11_eC_ns_w1000; 
u1_LT11_eC_ls_w100; u1_LT11_eC_ls_w500; u1_LT11_eC_ls_w1000; 

6a u1_LT16_eA_ns_w100; u1_LT16_eA_ns_w500; u1_LT16_eA_ns_w1000; 
u1_LT16_eA_ls_w100; u1_LT16_eA_ls_w500; u1_LT16_eA_ls_w1000; 

6b u1_LT16_eC_ns_w100; u1_LT16_eC_ns_w500; u1_LT16_eC_ns_w1000; 
u1_LT16_eC_ls_w100; u1_LT16_eC_ls_w500; u1_LT16_eC_ls_w1000; 

7a; 7b u1_LT11_eA_ls_w500_nodamp; 
u1_LT11_eA_ls_w500_100CO2; 
u1_LT11_eA_ls_w500_varCO2; u1_LT16_eA_ls_w500_nodamp; 
u1_LT16_eA_ls_w500_100CO2; 
u1_LT16_eA_ls_w500_varCO2; 

8a u1_LT11_eA_ls 
8b u1_LT16_eA_ls 
9 u1_LT11_eA_ls; u1_LT11_eA_ns u3_LT11_eA_ns; 

u1_LT11_eC_ls; u1_LT11_eC_ns u3_LT11_eC_ns; 
10 u1_LT11_eC_ls; u1_LT11_eC_ns; 

u1_LT11_eD_ls; u1_LT11_eD_ns; 
u1_LT16_eC_ls; u1_LT16_eC_ns; 
u1_LT16_eD_ls; u1_LT16_eD_ns; 

11; 12; 13 u1_LT11_eA_ns; u1_LT16_eA_ns  
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Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.icarus.2022.114922. 
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