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A DESIGN-BUILD-TEST-FLY PROJECT INVOLVING 

MODELING, MANUFACTURING, AND TESTING 
 
Abstract 

 
This paper describes a junior-level semester-long class project for students in Fluid Mechanics 
courses. The goals of the project are to introduce students to engineering design, project 
management, and to incorporate material from other courses in engineering graphics, numerical 
methods, instrumentation and measurements, and manufacturing processes in a single project. 
The project focuses on airfoil design using computational tools, and the main emphasis lies on 
verification of results obtained from computational methods with experimentally measured 
values. Students will use the airfoil shape they select to make wings to go on a model foam 
glider. The final part of the project will be staged as a competition where student teams vie to see 
whose glider can fly the furthest under standard launching conditions. 
 
Introduction 

 

Previously in order to introduce students to engineering design before their senior design 
capstone experience, a semester-long rocket project was implemented in the junior-level fluid 
mechanics course at Bradley University as described in the paper by Morris and Zietlow1. In that 
project student teams of 3-4 students each had to design and build a small model rocket, with the 
goal of the rocket landing in a target area on a baseball field on its very first launch. Part of the 
score for the project was assigned based on the efficiency of each team in using the resources 
available to them, as measured in the amount of “Bradley Bucks” they spent to complete the 
project. Note that it is easy to create money for these projects by downloading the template for 
Monopoly Money from Hasbro2 and Photoshopping in the faces of professors in your 
department. Printing on brightly colored paper works well to discourage counterfeiting.  
While the rocket project was quite successful and well-liked by the students, it has the limitation 
of that the best rockets end up all looking the same, as the primary design variables available to 
the student are the size of the fins and the amount of weight in the nose cone.  
 
To improve upon this, a new project has been designed. The first objective of the new project is 
to design a airfoil for launch speeds less than 10 mph and for angle of attack from 0 to 10 
degrees, to be tested on a glider. A 2D aerodynamics CFD tool, such as the freely available 
XFOIL3, FOILSIM4,5, or JAVAFOIL6 is the computational tool used in the analysis of the lift 
and drag coefficients. Student can use any airfoil shape they want, but to keep the project simple, 
the NACA 4-digit series of airfoils is recommended. After finding the airfoil shape that gives the 
highest lift to drag ratio (L/D) based on the computational results, an airfoil will be built and 
tested in a wind tunnel to verify the computational results. First a 3D solid model of the airfoil is 
made in drafting software such as AutoCAD, SolidWorks, or Pro-E, and then the 3D airfoil 
section is made with a CNC milling machine or a rapid prototype machine. Though not required 
in the project, some students also made the fuselage of their gliders with the CNC machine. The 
students must devise a way to attach end plates to the narrow airfoil section to minimize the 
induced drag effects, and they must also devise a method for mounting the airfoil section in the 
wind tunnel. If the results of the wind tunnel testing are acceptable to the student team, they may 
proceed to the final stage of constructing a model glider. If not, they may select a different airfoil 
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shape and perform additional wind tunnel testing. In the first semester of this project, student 
teams built from 1-3 airfoils to test. 
 
The final glider each team builds will be made entirely out of foam, and the shape of the glider 
can be determined by each team. They are limited only in that the overall dimensions must fit 
into the launch mechanism, which was 28 inches wide. The students can design and build any 
shape of fuselage they want, and they can select the length, chord, and aspect ratio of the wings. 
Students are responsible for ensuring the glider design is dynamically stable in pitch, yaw, and 
roll. An additional constraint on the design is economic. Students are charged “Bradley Bucks” 
for all material used, and for the use of equipment, including the wind tunnel and CNC milling 
machine, and consulting fees for seeking help from faculty. The final grade in the project 
depends on the distance the glider travels, the accuracy of a numerical prediction of glide 
distance compared to the actual measured distance, the amount of Bradley Bucks spent, and the 
quality of the final project report. The co-authors of this paper are graduate students who verified 
the feasibility of the project as a graduate course project the previous semester.  
 

While the emphasis of this project is on the design and construction/manufacturing and not on 
the actual flight itself, it does bear similarity to other design-build-fly educational projects. The 
two national design-build-fly (DBF) yearly competitions are the AIAA DBF and the SAE Aero. 
Five papers were found in the educational literature on the AIAA DBF Competition7-11, and two 
on the SAE Aero Competition12-13. These papers would be good resources for a school looking to 
enter one of these competitions for the first time. Allison et al. at the University of Colorado 
discuss the challenges of building a flying wing instead of a conventional configuration7. Cowin 
and Kelly12 discuss the challenges of having students from different majors work on the project, 
which relates to the ABET outcome to function on multi-disciplinary teams. Seven additional 
references were found in the literature on internal DBF projects developed by various 
universities14-20 that include balloon satellites17 and rocket-propelled gliders18. 
 

Project Description 

 

For the students, the main objective of the project is to design and build a glider that will travel 
further than their classmates’ gliders, with the additional educational objectives of: 

• To understand the fluid forces of lift and drag.  
• To use a numerical method to solve an ordinary differential equation,  
• To work on a team and use design methods to solve an engineering problem. 
• To use engineering equipment (wind tunnel) to make engineering measurements.  

The students have complete control over the glider design and fabrication. The students can 
select the airfoil shape and aspect ratio of the wings. The grade for the rocket project is divided 
into the following categories: Final Written Report (40%), Accuracy of Glider Trajectory 
Prediction (20%), Distance Glider Traveled (20%), Economic Efficiency (15%), Aesthetic 
Appeal of Glider (5%). A Preliminary prediction report is due the class period before the glider 
launch, in which the students must show a 2D glider trajectory prediction. The final project 
report is due the week after the launch. The final project report must include a Budget Report, a 
Predictive Model Report (including all MATLAB codes used), an Aerodynamics Testing Report 
that includes a summary of wind tunnel testing, and a report on the Final Measured Performance 
of the Glider. Accuracy is based on how close the computed prediction of glider flight distance 
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comes to the actual distance traveled in final testing. For the economics part of the contest, 
students pay Monopoly Money according to the following rates: 
 
Materials   Rate  Minimum Charge 

1. Foam   $1 per in3 $5 
Facility fees 

1. Wind tunnel  $60/hour $10 
2. Launch fee  $20/launch $20 

Consulting fees 

1. Professor  $40/hour $10 (first visit free) 
2. TA   $20/hour $10 
3. Students  $10/hour $5 

 
The glider should be build almost entirely out of foam. Glue or adhesive may be used to attach 
pieces of foam to each other. There should be no sharp or pointy edges on the gliders. The 
students must use solid modeling software (AutoCAD, Solidworks, or Pro-E) to create a model 
to import to the CNC machine. Either the lab TA or Professor must be present at all tests. Lab 
time is scheduled on a first-come, first-served basis.  
 
Students were assigned into teams of 4 to build a glider. There were 32 students in the course 
and 8 gliders were built. The only constraints on the project were that the glider be made solely 
of foam (glue or adhesive was allowed to attach the different pieces of the gliders. Each team’s 
glider was built from a single piece of 2 ft by 4 ft by 2” thick foam. The students thus had to 
consider the way in which they cut glider pieces out of the sheet in order to maximize the usage. 
As this was the first experience using a CNC milling machine for all of the students, many 
groups decided to make test pieces to test their manufacturing skills before beginning on the final 
glider. They discovered the importance of tool path, tool size, and tool shape in the quality of the 
final parts made. The project also used material from their numerical methods course and their 
drafting course. CAD software used by the student teams included AutoCAD, SolidWorks, and 
Pro-E.  
 
The facilities that are available to the students to complete this project include a low-speed 
subsonic wind tunnel, a CNC milling machine, the facilities of the machine shop (band saw, drill 
press, manual lathe, scroll saw, etc.) and general work space in the Fluid Mechanics Lab and the 
Project Lab. Computer software used will be XFOIL or FOILSIM for CFD simulations and 
MATLAB or EXCEL for trajectory simulations. Additional reference material that may be 
useful to the students include texts on wind tunnel testing, such as that by Barlow21, a general 
aerodynamics textbook22,23, an aerodynamics reference book such as Hoerner24 or Blevins25, and 
the original NACA report on airfoil section shapes26 or the summary from the NASA History 
Office by Talay27. Students are responsible for any necessary calibration of wind tunnel 
measurement equipment. 
 
Each member of the team must contribute something tangible to the project. Each person should 
have a primary area of specialization listed in the team report. These areas could include: 
Prototype assembly, Modeling, Report Writing, Experiments, Launch Specialist, etc.  P
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Airfoil Geometry Generation 

 
While any airfoil shape or group of airfoil families can be used, the NACA-4-digit series has the 
advantage that the geometry is completely and easily determined from the airfoil name. The 
following discussion of the NACA 4-digit airfoil series is adapted from the fluid mechanics 
textbook by Post28. The first attempt to systematically characterize airfoil shapes performed by 
the National Advisory Committee on Aeronautics (NACA), which was the predecessor 
organization to NASA. NACA created specifications for airfoils classified in the 4-digit series, 
5-digits series, and 6-digit series, among others. The more complex 5 and 6 digit series will not 
be discussed here. In the NACA four digit series, a four-number designation is used to define 
each airfoil uniquely by specifying the geometry. The first number of the 4 digits specifies the 
maximum camber, m, of the airfoil as a percentage of the chord length, c. The second number in 
the name specifies the position, p, of the maximum camber from the leading edge in tenths of the 
chord length. The camber is the amount of curvature in a wing. A wing with zero camber is 
symmetric. The last two digits together specify the thickness, t, of the airfoil as a percentage of 
the chord. So for example, a NACA 4515 airfoil has a maximum camber of 4% of the chord, 
located 50% of the chord back from the leading edge (halfway back), with a maximum thickness 
of 15% of the chord. As another example, a NACA 0012 airfoil is a symmetric airfoil, with a 
maximum thickness 12% of the chord. A symmetric airfoil generates no lift at zero angle of 
attack, and thus must be flown at positive angle of attack in order to generate lift. The NACA 
2412 airfoil has 2 percent camber at x = 0.4 c from the leading edge and is 12 percent thick. The 
4-digit number is sufficient to generate the shape of the airfoil. The four digits can be written as 
NACA mptt. From the values of m and p, the equation for the mean camber line can be 
generated as 
 

yc =
m

p
2
2px  x

2( )  for 0 < x < p 

and 

yc =
m

1 p( )
2
1 2p + 2px  x 2( )  for p < x < c     (1) 

 
Here x is the axis along the length of the airfoil running from the leading edge to the trailing 
edge, and y is the height above (or below) the x-axis. To generate the profile of the airfoil the 
thickness above and below the mean camber line must also be known. By definition, the 
thickness above and below the mean camber line at each point x is the same. The equation for 
the local thickness, y, as a function of the x location is 
 

y =
tt

0.2
0.2969 x  0.1260x  0.3516x

2 + 0.2843x 3  0.1015x 4( )    (2) 

 
The locations for the upper and lower surfaces of the airfoil at each axial location x is taken by 
adding or subtracting yt to yc respectively. Further geometric constraints on the NACA 4 digit 
airfoil are that yc = 0 at x/c = 0 and x/c = 1. The maximum value of yc = m*c/100 occurs at x/c = 
p/10, and also at this point dyc/dx = 0.  

With Equations (1) and (2) the 2D geometry of the airfoil section can be defined, using 
software such as MATLAB. MATLAB can be programmed to output the coordinates in a file 
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that can be imported to solid modeling software such as Pro-E. When an analysis is to be 
conducted on an airfoil with a chord lengths not equal to one, the coordinates for the airfoil must 
first be found for a chord length of one and then multiply the coordinates, both x and y, by the 
desired chord length. As referenced in Figure 4, the coordinates for the upper surface can be 
found with the following equations: 

 
xu = x -  yt sin   
yu = yc +  yt cos          (3) 

 
Likewise the lower surface coordinates can be found using the equations below: 
 

xl = x +  yt sin   
yl = yc -  yt cos          (4) 

 
where x is the position along the chord, yt is the corresponding thickness distribution and   is the 
local angle between the previous point and current point. The leading edge radius of the four-
digit airfoils is defined by the equation: 

 
rt = 1.1019t2         (5) 

 
where the center of the circle this radius defines is located at 0.05 percent of the chord on the 
mean line. Through the use of the above equations any number of four-digit airfoil coordinates 
for the upper and lower surfaces can be defined. 
 
 

 
 
Figure 1: Visual definition of four digit airfoil geometry.26 
 
 
Aerodynamics Simulations  

 
XFOIL is an interactive program for the design and analysis of subsonic isolated airfoils. 

XFOIL was developed by Prof. Mark Drela, Massachusetts Institute of Technology, and is freely 
available for download as open-source software. XFOIL also includes several standard airfoils in 
its database, including the NACA 4-digit series. Once the airfoil geometry is selected or defined, 
the user has to specify the Reynolds number, Re and the angle of attack,  , to perform a 

simulation. The results that are outputted by XFOIL include a plot displaying the pressure 
distribution along the airfoil, and the following data are displayed on the plot: 

 
1. Lift coefficient, 
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2. Pitching moment coefficient, 
3. Coefficient of Drag, 
4. Lift/Drag ratio. 
 

XFOIL can run a series of simulations at different angles of attack and output the results to a text 
file, which can be read in MATLAB. See the Appendix for an example of exact commands to be 
entered into XFOIL. A screenshots of the results for a NACA 2412 airfoil is shown in Figure 2. 
Some student groups alternatively chose to use JAVAFOIL or FOILSIM, screenshots of which 
are shown in Figures 3 and 4, respectively.  

 

 
 
Figure 2: NACA 2412 XFOIL PRESSURE DISTRIBUTION (  = 0) 
 

 
 
Figure 3: NACA 4615 Airfoil modelled in JAVAFOIL.  
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Figure 4: FOILSIM prediction of air flow around SG6043. 
 
Glider Construction and Manufacturing 

 
Two graduate students validated that it was in fact possible to make wing sections from solid 
foam insulation using the available facilities before the project was implemented in the junior-
level undergraduate course. Suitable proportions, based on the size of available foam, were used 
to design the airfoil on ProE Wildfire 3.0, and CNC code was generated with the appropriate post 
processor. Figures 5 and 6 show a screenshot of the solid model created and the actual machined 
airfoil section. Foam was the material used to machine the airfoil on the CNC machine due to its 
low weight and ease of machinability.  
 

 
 

Figure 5: Surface profile used by CNC milling machine. 
 

 
Figure 6: Completed foam wing section created by CNC milling machine. 
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Though not required in the project, some groups also chose to make the fuselage on their 
glider in the CNC to ensure a smooth, controllable surface geometry. Figure 7 shows an example 
of a fuselage half being made in the CNC from the block of foam. Due to the limitations of the 
size of the CNC working volume, the fuselage sections typically had to be made in two or more 
segments, which were then assembled.  

 
Figure 7: CNC Mill Machining Half of the Fuselage. 
 
Wind Tunnel Testing 

  
One requirement of the project is that the students validate the 2D CFD simulations with 
experimental data. Teams either made an airfoil section of the wind they used, or some teams 
made an additional scale model of the final wind used on the glider. Figure 8 shows a picture of a 
foam airfoil in the wind tunnel. The wind tunnel results typically showed significantly lower L/D 
ratios than the model predictions. Students attributed this to the rough surface of the foam.  
 

 
Figure 8: Airfoil section being testing in wind tunnel to verify 2D CFD simulations. 
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MATLAB Trajectory Simulations 

 
Figure 9 shows an example of basic nearly parabolic trajectory of the students’ MATLAB codes. 
In discussions with the students after launch, it was found that they typically assumed a ballistic 
trajectory and did not account for the possibility in changes of angle of attack after the glider was 
launched.  
 

 
Figure 9: 2D MATLAB glider trajectory prediction.  
 

 
Figure 10: Possible glider paths. (does not show possibility of loop-de-loop).  
 
 
Results  

 
While most groups built fairly conventional designs, there were some interesting variations. One 
group built an adjustable tail. One group’s glider performed a loop during the test launch.  
One team stretched the rules by adding a large amount of glue to the nose of the glider to move 
the center of mass forward and insure stability. All of the 8 teams went with a conventional 
design with a basic tail. 6 of the teams went with a straight-wing design while 2 went with a 
swept-wing design. One team made their fuselage body hollow so as to be able to change the 
center of mass without changing the aerodynamics. The MATLAB predictions varied from 6.5 ft 
to 19.5 ft, with an average of 14.0 ft predicted. Actual travel distances varied from 7 ft to 68 ft, 
with an average of 32 ft. The students were surveyed about the project at the end of the semester 
and asked the following question: 
 
The amount I learned from doing the Glider Project was worth the time and effort I put into it.  
a) agree b) disagree 
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a – 87%, b – 13% 
 

 
Figure 11: Final Launching. Initial launch speed was measured with a radar gun to confirm the 
initial launch velocity used in MATLAB simulations, which was found by measuring the spring 
constant of the elastic band.  
 
 
Conclusions 

 
This paper outlines a design-build-fly project that can be used by educators to teach 

engineering design, and also includes aspects from many disciplines of mechanical engineering, 
including engineering economics, engineering graphics and solid modeling, instrumentation and 
measurements, numerical methods and simulation, and manufacturing. Most schools will have 
sufficient hardware on hand to perform the project, and the only actual cost incurred will be that 
for the material (foam). An additional reference that may be useful to students is the UIUC 
airfoil geometry database29.  
 
Acknowledgements 

 
The authors would like to acknowledge the assistance of David Miller, Shop Technician in 

the College of Engineering and Technology at Bradley University, Dr. Kalyani Nair for her help 
with the Pro-E modeling, Dr. Abanto-Bueno for his help with AutoCAD, Curtis Boirum, 
graduate student in M.E. for his help with the CNC milling machine, and Dr. Martin Morris for 
several useful discussions on the scope of the project and useful ideas.  P

age 15.25.11



Bibliography 

 
1. Morris, M., and Zietlow, D., “An Integrated Design Competition Using Model Rockets,” 2002 American 
Society for Engineering Education (ASEE) Annual Conference & Exposition, Montreal, Canada, June 2002. 
2. Hasbro Game Tools, 2008, http://www.hasbro.com/games/ 
kidgames/monopoly/default.cfm?page=strategyguide/gametools 
3. Drela, M., 2007, XFOIL Subsonic Airfoil Development System, http://web.mit.edu/drela/Public/web/xfoil/ 
4. Benson, T., 2008, FOILSIM II  - http://www.grc.nasa.gov/WWW/K-12/airplane/foil2.html 
5. Benson, T., 1997, Interactive Educational Tool for Classical Airfoil Theory. AIAA-1997-849. 
6. Hepperle, M., 2008, JavaFoil, http://www.mh-aerotools.de/airfoils/javafoil.htm 
7. Allison, J., Bidaiah, S., Colwell, D., DeFranco, R., Findley, M., Hall, E., Miller, B., and Kemper, B., University 
of Colorado Design/Build/Fly 2008 - 2009: A Guide to Designing a Stable Flying Wing Aircraft. AIAA. 
8. Boyer, L., and Peck, C. AC 2009-1346: AIAA Design, Build, Fly Project Highlights. ASEE 2009. 
9. Arena, A., Experience with the Student Design/Build/Fly Contest at Oklahoma State University. 6th AIAA 
Aviation Technology, Integration and Operations Conference. AIAA 2006-7833  
10. Broughton, A. An Approach to Integration of Academic Studies with Practical Applications: Georgia Tech 
Design, Build, Fly. 6th AIAA Aviation Technology, Integration and Operations Conference. AIAA 2006-7831 
11. Bovais, C., Levy, D., Page, G., Powell, S., Selig, M., and Zickuhr, T., Writing the Rules:  An Inside Look at the 
AIAA Student Design/Build/Fly Competition. 6th AIAA Aviation Technology, Integration and Operations 
Conference. AIAA 2006-7832 
12. Cowin, A., and Kelly, T., Using the SAE Aero-Design Competition to Expose Students to Multidisciplinary 
Design Teams. Proceedings of the 2002 American Society for Engineering Education Annual Conference & 
Exposition 
13. Green, S., and Evans, R., UBC Experiences in the SAE Aero Design Competition. 1995 ASEE Annual 
Conference Proceedings, pp. 104-110. 
14. Craig, J., and Young, P., Analysis of Team Performance and Report Quality in a Sophomore Design-Build 
Project. 42nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA 2004-419.  
15. Young, P., de Weck, O., and Coleman, C., Design and Implementation of an Aeronautical Design-Build-Fly 
Course. Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition 
16. Bellocchio, A., Crawford, B., and Byers, L., Applying Physics to an Undergraduate UAS Design. October 22 – 
25, 2008, Saratoga Springs, NY. 38th ASEE/IEEE Frontiers in Education Conference 
17. Kuhlman, J., and Palmer, G. AC 2008-1297: A “Balloon Satellites” Project Course. ASEE 2008.  
18. George, L., and Brown, R. AC 2007-2988: Engineering 100: An Introduction to Engineering Systems at the US 
Air Force Academy. ASEE 
19. Mason, W., Robertshaw, H., and Inman, D. Recent Experiments in Aerospace and Design Engineering 
Education. AIAA-2004-0415.  
20. Biber, K., Impact of Design/Build/Fly Activity in Aeronautical Engineering Education. AIAA 2002-0961. 40th 
AIAA Aerospace Sciences Meeting & Exhibit.  
21. Barlow, J., Rae, W., and Pope, A., 1991, Low Speed Wind Tunnel Testing, Wiley.  
22. Houghton, E., and Carpenter, P., 2001, Aerodynamics for Engineering Students, Butterworth-Heinemann. 
23. Bertin, J., and Cummings, R., 2008, Aerodynamics for Engineers, Prentice-Hall.  
24. Hoerner, S., 1965, Fluid Dynamic Drag, self-published.   
25. Blevins, R., 2003, Applied Fluid Dynamics Handbook, Krieger.  
26. Jacobs, E., Ward, K., and Pinkerton, R., NACA The Characteristics of 78 Related Airfoil Sections from Tests in 
the Variable-Density Wind Tunnel. Report 460. 1933. 
27. Talay. T., 1975, Introduction to the Aerodynamics of Flight. NASA SP-367. http://history.nasa.gov/SP-
367/cover367.htm 
28. Post, S., 2009, Applied and Computational Fluid Dynamics, Jones and Bartlett Publishers.  
29. Selig, M., 2008, UIUC Airfoil Coordinates Database, http://www.ae.uiuc.edu/m-selig/ads/coord_database.htm 
30. Eppler, R. and Somers, D.: A Computer Program for the Design and Analysis of Low-Speed Airfoils, NASA 
TM-80210, 1980. P

age 15.25.12



APPENDIX - XFOIL procedure for NACA 2412 Airfoil 

Once XFOIL has been installed to load an airfoil we just type in the standard airfoil. For example, we have used 
NACA 2412 in this project. So, we just type in  
 XFOIL c> NACA 2412 
XFOIL returns some specifications of the selected airfoil when this command is typed. Pane command can be used 
to smoothen out the airfoil geometry. This ensures that the airfoil obtained does not have panels that create very 
sharp edges. OPER sublevel produces a prompt  
 .OPERi c> - The ‘i’ next to OPER indicates that XFOIL is in inviscid mode. To go to viscous mode we 
type ‘visc’. This produces the prompt: 
  .OPERv c> - The user is prompted to enter the Reynolds Number for the flow. We now input different 
values for angle of attack. The command used for the same is  
 .OPERv c> - alfa 6  
This command results in a plot displaying the pressure distribution along the airfoil. There is a dashed line plot 
besides the normal plot. The dashed line plot displays the inviscid flow model and the normal line plot displays the 
viscous flow model. Thus, we could easily compare viscous and inviscid flows. To generate a simulation for a series 
of angle of attack, we follow the following steps: 
 .OPERv c> - iter 1000  
is used to increase the number of iterations. This done so that we can avoid any unconverged solutions for a 
particular angle of attack. 
 .OPERv c> - pacc  
enables point accumulation and is used to create a text file where data such as Pitching moment coefficient, 
coefficient of lift and coefficient of drag are stored. We would also be prompted to enter a file name. This text file 
could be imported to MATLAB for any analysis. Pressing enter when prompted to enter a polar dump filename 
would result in the command prompt: .OPERva c> - Next we type the command: 
 .OPERva c> - aseq 0 10 .5,  
which XFOIL runs for a series of angles of attack from 0 to 10 with increments of 0.5 degrees. Next we type in  
 OPERva c> - pacc  
which disables the point accumulation. To quit XFOIL we press enter until we reach the command prompt XFOIL 
c> and then type  
 XFOIL c> quit 
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