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Observations of Reduced Turbulence and Wave Activity
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David C. Fritts6 , Boris Strelnikov7, Franz-Josef Lübken7 , Brentha Thurairajah8 ,
V. Lynn Harvey9 , Donald L. Hampton2 , and Roger H. Varney10

1Space Sciences Laboratory, University of California, Berkeley, CA, USA, 2Geophysical Institute, University of Alaska
Fairbanks, Fairbanks, AK, USA, 3Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA,
4Department of Physics and Astronomy, Clemson University, Clemson, SC, USA, 5Physical Sciences Department, Embry-
Riddle Aeronautical University, Daytona Beach, FL, USA, 6GATS Inc., Boulder, CO, USA, 7Leibniz-Institute of Atmospheric
Physics, University of Rostock, Kühlungsborn, Germany, 8Center for Space Science and Engineering Research, Virginia Tech,
Blacksburg, VA, USA, 9Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA,
10Center for Geospace Studies, SRI International, Menlo Park, CA, USA

Abstract Measurements of turbulence and waves were made as part of the Mesosphere-Lower
Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research
Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence
in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an
average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average
value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside
and bottomside of theMILs. These low levels of turbulence weremeasured after a minor sudden stratospheric
warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the
stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-
gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific
potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at
Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity
wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the
ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of
turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and
model studies, these observations suggest that there may be reduced turbulence during disturbed winters.

Plain Language Summary Turbulence remains an outstanding challenge in understanding
coupling, energetics, and dynamics of the atmosphere. However, turbulence is recognized as a critical
component in our models of terrestrial and space weather. Obtaining routine and accurate measurements of
turbulence continues to be a major challenge. We present new rocket-borne measurements of turbulence in
January 2015 at Poker Flat Research Range, Alaska. These rocket-borne measurements were coordinated
with a suite of ground-based instruments. The rocket-borne instruments captured the small-scale structure of
the turbulence. The ground-based measurements documented the meteorological and space weather
conditions. We find low levels of turbulence coinciding with a disturbed atmosphere where wave activity is
reduced. These finding suggest that there may be systematically low levels of turbulence in the Arctic middle
atmosphere, as the Arctic middle atmosphere is routinely disturbed in winter.

1. Introduction

Observations of downward transport of nitrogen oxides (i.e., NOx = NO + NO2) from the thermosphere into
the stratosphere during the Arctic winter have highlighted how meteorological processes control of the
impacts of energetic particle precipitation events in the atmosphere (López-Puertas et al., 2006;
Mironova et al., 2015; Randall et al., 2006). While this transport is observed in all winters, it is enhanced
(with NOx concentrations up to 50 times higher than usual) in winters where sudden stratospheric warm-
ing (SSW) events disrupt the polar stratospheric vortex (Randall et al., 2009). The transport of NOx
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coincides with the recovery phase of the polar vortex, when the vortex initially reforms in the mesosphere
and descends into the stratosphere. These observations have prompted studies with contemporary whole
atmosphere models to assess the relative importance of different transport processes (i.e., advection, eddy
diffusion, and molecular diffusion; Meraner & Schmidt, 2016; Smith et al., 2011). However, sensitivity
studies with these models have shown that changes of a factor of two in the eddy diffusion coefficients
yield significant changes in the transport of minor species (Garcia et al., 2014; Meraner & Schmidt,
2016). These models represent eddy diffusive transport by a diffusion coefficient where the values of
the eddy diffusion coefficient, K, vary between 10 and 100 m2/s in the mesosphere and lower- thermo-
sphere (MLT, ~60–110 km; Garcia et al., 2014; Meraner & Schmidt, 2016; Smith et al., 2011). Satellite obser-
vations of carbon dioxide (CO2) and atomic oxygen (O) in the MLT have yielded global-mean estimates of
the eddy diffusion coefficients that are consistent with the model values (Salinas et al., 2016; Swenson
et al., 2018).

However, measurements of density fluctuations or expansion of chemical released trails have reported
that higher values of turbulent energy dissipation and eddy diffusion occur in altitude regions of convec-
tive and/or dynamic instability (e.g., Bishop et al., 2004; Lehmacher et al., 2006, 2011; Lehmacher & Lübken,
1995; Strelnikov et al., 2017; Szewczyk et al., 2013). Turbulence is generated by local wave-driven instabil-
ities (e.g., Becker, 2012; Fritts et al., 2017, 2018; Fritts & Alexander, 2003; Hines, 1988; Sutherland, 2010).
Regions of convective instability, where the temperature gradients are negative and adiabatic or supera-
diabatic (i.e., adiabatic or superadiabatic lapse rates), are often found on the topside of mesospheric inver-
sion layers (MILs). MILs are layers of increasing temperature in the mesosphere that represent a departure
from the expected negative temperature gradient (see review by Meriwether & Gerrard, 2004). Breaking
planetary waves, tides, and gravity waves have all been shown to generate MILs (Liu et al., 2000; Liu &
Meriwether, 2004; Salby et al., 2002; Sassi et al., 2002). The presence of a persistent adiabatic negative tem-
perature gradient on the topside of the MILs is consistent with a well-mixed turbulent layer (Whiteway
et al., 1995). Turbulence has been observed coincident with these adiabatic gradients (Collins et al.,
2011; Lehmacher et al., 2006; Lehmacher & Lübken, 1995; Szewczyk et al., 2013; Thomas et al., 1996).
These studies have reported values of the energy dissipation rate, ε, that are 1–100 mW/kg in the upper
mesosphere (~60–95 km) and increase to 100–1,000 mW/kg in the lower thermosphere (~90–105 km). The
corresponding values of K are 1–100 and 100–1,000 m2/s, respectively. Reconciling these observed values
of turbulent dissipation and diffusion with the values used in model studies remains an area of active
research (e.g., Fritts et al., 2018; Meraner & Schmidt, 2016; Smith, 2012). The situation is further
complicated by the fact that eddy diffusion in models represents transport due to all subgrid scale
processes that include wave transport as well as turbulence (e.g., Grygalashvyly et al., 2011; Guo et al.,
2017; Smith, 2012; Walterscheid, 2001).

Despite these challenges, measurements of turbulence in the Arctic have shown systematic behavior.
Rocket-based measurements of neutral density fluctuations with ionization gauges report seasonally
averaged turbulent energy dissipation rates that are an order of magnitude lower in winter (10–20 mW/
kg) than summer (150 mW/kg; Lübken, 1997; Lübken et al., 2002). Measurements during the spring transi-
tion show increases in turbulent energy dissipation within a period of weeks consistent with rapid changes
in the seasonal winds and expected gravity wave activity (Müllemann et al., 2002). However, these turbu-
lent studies did not include measurements of the gravity wave activity. In this paper we present new win-
tertime observations of turbulence and waves in the Arctic middle atmosphere. These observations were
made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) that was designed
to investigate systematic relationships between turbulence in the MLT, instabilities in the MLT, and gravity
waves propagating through the stratosphere and mesosphere. MTeX consisted of rocket-borne in situ
ionization gauge measurements of turbulence and plasma conditions with ground-based measurements
of the meteorological conditions and plasma conditions. Ground-based Rayleigh and resonance lidars
characterized gravity wave activity and instabilities. The MTeX turbulence measurements were made
following the detection of a MIL by the ground-based Rayleigh lidar. In section 2 we describe the instru-
ments, techniques, and methods used to detect and characterize turbulence and waves. In section 3 we
present the MTeX observations. In section 4 we analyze the relationships between the waves and turbu-
lence and compare the MTeX measurements to other Arctic measurements. In section 5 we present our
summary and conclusions.
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2. Data and Methodology
2.1. MTeX Vehicles and Trajectories

MTeX was conducted at Poker Flat Research Range (PFRR), Chatanika,
Alaska (65°N, 147°W) on the night of 25–26 January 2015 after the
January 2015 SSW when the atmosphere remained disturbed (Manney
et al., 2015). The MTeX investigation consisted of in situ density and
plasma measurements made by two rocket payloads that were launched
33 min apart just after local midnight at 0013 LST and 0046 LST on 26
January 2015 (0913 and 0946 UT, UT = LST + 9 hr). The MTeX launch vehi-
cles were Terrier-Malemute rockets (National Aeronautics and Space
Administration code 46) and identified as 46.009 and 46.010 respectively.
Photographs of the MTeX payloads and launches have been previously
published (Collins et al., 2015). The payloads were designed to yield mea-
surements over altitudes from 70 to 120 km on both the upleg and down-
leg of their trajectories. The payloads were reoriented near apogee so that
the front of the payloads were oriented in the ram direction on the down-
leg as well as the upleg. We present the MTeX payload trajectories in
Figure 1. In this study we present results from the upleg and downleg of
46.009 and downleg of 46.010.

2.2. CONE Ionization Gauge

The Combined Sensor for Neutrals and Electrons (CONE) ionization gauge
(ion gauge) has been used to make density measurements in the middle
atmosphere since the 1990s (Giebeler et al., 1993; Rapp et al., 2001;
Szewczyk et al., 2013). The CONE instrument consists of a sensor and an
electronics package. The CONE sensor is an ion gauge surrounded by a

shielding grid and a fixed-bias electrostatic probe that was mounted on the front of the payload. The primary
measurement is the electrometer current. For the MTeX investigation the CONE electronics package was
redesigned and constructed using contemporary programmable logic devices. The upgrade resulted in mea-
surements with higher sensitivity, reduced noise, and a higher sampling rate than previous measurements.
The CONE sampling rate was 5,208 samples per second (sps). The CONE current profile was measured in five
ranges, where the electronic gain of the instrument increased by successive orders of magnitude as the
atmospheric density decreased, to maintain a constant dynamic range in the signal. We plot the CONE elec-
trometer current recorded by payload 46.009 during the upleg in Figure 2. The gain switching yields charac-
teristic discontinuities in the measured current profile. At the highest altitudes (and lowest densities) the
CONE profile is constant due to a small constant current. The retrieval of the density profile from the CONE
current profile is conducted in four steps (Triplett, 2016). In the first step we calculate a continuous CONE pro-
file by binning the 192 μs samples at 50 ms corresponding to the timing of the trajectory recording. We cor-
rect the CONE current profile for the change in gain and remove the background current by assuming
continuity across the discontinuities and fitting the logarithm of the signal to a third-order polynomial.
This process is iterated to estimate the change in gain at each range and subtract the constant current scaled
by the gain from the signal at all ranges. In the second step we correct the continuous CONE profile for aero-
dynamic ram effects using the density profile derived from the Rayleigh lidar signal. In the third step we fit a
third-order polynomial to the logarithm of the density profile. The density is then reconstituted by taking the
exponential of the sum of the polynomial and the residual of the polynomial (smoothed at 2 km). The statis-
tical relative uncertainty in the resultant density is 0.2%. In the final step we determine the absolute density
by normalizing the Rayleigh lidar density profile to the local National Weather Service radiosonde measure-
ment profile and then normalizing the CONE density profile to the Rayleigh lidar density profile. The CONE
measurements yielded density and temperature measurements every 50 ms (corresponding to ~50 m). We
plot the density profile derived from the CONE measurements on the upleg of payload 46.009 in Figure 3.
We also plot the corresponding density profile measured by the Rayleigh lidar and from the Mass
Spectrometer Incoherent Scatter (MSIS) model (Hedin, 1991; Papitashvili, 2016). The lidar profile represents
the average of a 2-hr measurement around the CONE measurement. The uncertainties in the Rayleigh lidar

Figure 1. Map of Mesosphere-Lower Thermosphere Turbulence Experiment
(MTeX) flight trajectories. The trajectories are plotted as thin lines for payload
46.009 (black) and 46.010 (red). The legend includes the launch times. A
black circle marks the location of Poker Flat Research Range (PFRR). The thick
lines mark where the trajectory was between altitudes of 70 and 120 km. A
star marks the apogee of each trajectory. Each point is labeled with its alti-
tude, distance from PFRR, and time after launch. For example, in the upleg of
46.009 the trajectory reached an altitude of 70 km, at a distance of 15 km
from PFRR 65 s after launch. At the end of their trajectories the payloads
deploy parachutes and change direction as they drift to the east.
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and the MSIS profiles are discussed further below. The density measured
by CONE differs from the density measured by the lidar by 6% at 90 km,
which is less than the uncertainty in the lidar measurement. The density
measured by CONE is larger than the MSIS model density by 20% at
90 km, which is more than the 10% uncertainty in the MSIS density. We cal-
culate a temperature profile over the 70 to 120 km altitude range from the
CONE density profile. We adapt the standard retrieval methods to allow for
the fact that the composition of the atmosphere, and thus, themeanmole-
cular mass of air decreases with altitude in the thermosphere due to
increases in the concentration of atomic oxygen (O). We use MSIS to both
estimate the mean molecular mass and provide an initial temperature at
120 km for the retrieval (Triplett, 2016). The statistical uncertainty in the
temperature is less than 0.5 K. We calculate the square of buoyancy fre-
quency, N2, from the temperature profile using established relationships
(e.g., Dutton, 1988). The statistical error in N2 is less than 5 × 10�5 s�2.

The CONE instrument also yields measurements of density fluctuations every 192 μs (corresponding to
~20 cm). The turbulent energy dissipation rate is determined from the spectrum of the fluctuations over 1-
s intervals following established methods based on spectral fitting of a Heisenberg model spectrum to iden-
tify the frequency at the transition between the inertial subrange and the viscous subrange of the spectrum
(Lübken, 1992, 1997; Lübken et al., 1993; Szewczyk, 2015). This transition frequency, f0, corresponds to the
inner wave number and the inner scale, l0, of the turbulence and is directly related to the energy dissipation
rate, ε. The spectral fits are subject to three consistency checks: first that the transition frequency lies between
the maximum andminimum significant frequencies in each spectrum, second that the inner and outer wave-
numbers of the spectral fit are mutually consistent, and third that the spectral fit encompasses over 50% of
the energy of the fluctuations (Triplett, 2016). The spectral fit also yields an uncertainty estimate in the inner
wave number and hence the inner scale and energy dissipation rate. We plot an example spectrum from the
upleg of payload 46.009 in Figure 4. We see that the fluctuation signal extends to 30 Hz, and at higher fre-
quencies it is dominated by noise. The signal-to-noise ratio of the spectrum over the fitting range is 104.
We summarize the characteristics of the measurement, background atmosphere, and turbulence associated
with this spectrum in in Table 1. We determine the energy dissipation rate from the inner scale, and then we
determine the outer scale, LB, from the energy dissipation rate (Lübken, 1997). We calculate the root-mean-
square (RMS) fluctuations over the 3 to 30 Hz range to avoid contamination by spin modulation at 2 Hz and to

include only those frequencies that are signal dominated. We calculate the
heating rate from the energy dissipation rate using the specific heat capa-
city of air. We calculate the eddy diffusion coefficient, K, from the turbulent
dissipation rate, ε, using the relationship,

K ¼ 0:81� ε
N2 (1)

where N is the buoyancy frequency (Weinstock, 1978). This relationship
has been widely used to determine K from ε and vice versa (e.g., Bishop
et al., 2004; Collins et al., 2011; Lübken, 1997).

2.3. Langmuir Probe

Each MTeX payload included four plasma density probes. These were a
fixed-bias direct current (DC) multi-surface Langmuir probe (mDCP), a
sweeping impedance probe (SIP), a sweeping Langmuir probe (SLP), and
a multi-needle Langmuir probe (mNLP; Blake, 2014; Blix et al., 1990;
Steigies & Barjatya, 2012; Strelnikov et al., 2017). The SIP yielded absolute
measurements of the plasma density. The mDCP yielded relative measure-
ments of the plasma density that were then normalized to the SIP. During
the MTeX flights the SLP and mNLP were saturated by the auroral ioniza-
tion and did not yield plasma density profiles. The mDCP measurements

Figure 2. Combined Sensor for Neutrals and Electrons ion-gauge electro-
meter current (red solid) and electrometer range (blue dashed) plotted as a
function of time on the upleg of Mesosphere-Lower Thermosphere
Turbulence Experiment (MTeX) payload 46.009. The altitudes of 70, 120, and
156 km (apogee) are marked for reference.

Figure 3. Atmospheric density as a function of altitude derived from MTeX
CONE ion-gauge (solid red), Rayleigh lidar (long dashed green) and MSIS
(short dashed gray). The profiles are plotted with one-sigma error bars. See
text for details. MTeX = Mesosphere-Lower Thermosphere Turbulence
Experiment; CONE = Combined Sensor for Neutrals and Electrons;
MSIS = Mass Spectrometer Incoherent Scatter.

10.1029/2018JD028788Journal of Geophysical Research: Atmospheres

TRIPLETT ET AL. 13,262



were sampled at 5 sps and yielded measurements at approximately 20-cm
resolution. However, there are harmonics in the data from 2.5-Hz spin
modulation, and interference from the SLP (9 Hz) and SIP (20 Hz). We filter
the mDCP profile to remove these effects. We report the electron density
profiles and gradients that we derive from the mDCP and SIP measure-
ments. The instrument noise within the Langmuir probe results in an error
of 2 × 108 m�3 in the electron density.

2.4. Rayleigh and Resonance Lidars

Rayleigh lidar measurements have beenmade at Chatanika on an ongoing
basis since 1997 and yielded measurements of temperature and density
profiles in the upper stratosphere and mesosphere (40–80 km; e.g.,
Collins et al., 2011; Irving et al., 2014; Triplett et al., 2017). The Rayleigh lidar
was operated over a 13-hr period from 1827 LST until 0715 LST (0327–1615
UT). The lidar transmitter included a Nd:YAG laser operating at 532 nm and
20 pulses per second (pps) with an average power of 7 W. The Rayleigh
lidar system was extended in two ways for the MTeX investigation. First,
the original receiver telescope of diameter 0.6 m was replaced with a tele-
scope of diameter 1.04 m. Second, the receiver was extended from a
single-channel to a two-channel system (Triplett, 2016). The two-channel

receiver system had a high-altitude channel that received 94% of the total lidar signal and a low-altitude
channel that received 6% of the total lidar signal. The high-altitude channel signals were a factor of three
greater than the single-channel system (Collins et al., 2011). The increase in signal in the high-altitude chan-
nel reduces the uncertainty in the lidar signals and extends the measurements of density and temperature to
higher altitudes than in previous studies. The decrease in signal in the low-altitude channel reduces the
effects of pulse pile-up and extends the measurements of density and temperature to lower altitudes than
in previous studies. The high-altitude lidar signal is used above 61 km and the low-altitude lidar signal below
61 km. We used the rocket-borne CONEmeasurements of temperature as the initial temperature at the upper
altitude for the high-altitude signal and thus remove this source of uncertainty from the lidar measurements.
We then used the temperature determined from the high-altitude lidar signal as the initial temperature for
the low-altitude lidar temperature retrieval. The temperature profiles are also used to determine the potential
temperature by integrating upward from 61 km assuming the temperature and potential temperature are
equivalent at that altitude (Franke & Collins, 2003). The resolution of the Rayleigh lidar measurements was

50 s and 48m. The Rayleigh lidar measurements yield nightly average tem-
perature and density profiles over the 35- to 100-km altitude range, tem-
perature, and density profiles at 15-min intervals and 120-min
integration (termed 2 hr) over the 35- to 92.5-km altitude range, and den-
sity profiles at 5-min intervals and 30-min integration (termed 30min) over
the 35- to 77-km altitude range. The statistical errors increase from 0.1 to
8 K and from 0.3 to 9 K for the nightly average and 2-hr temperature pro-
files, respectively. The statistical relative errors increase from 0.06% to
2.7%, from 0.2% to 3.7%, and from 0.3% to 2.8% for the nightly average,
2 hr, and 30-min density profiles, respectively.

We determined the gravity wave activity in the stratosphere and meso-
sphere from the Rayleigh lidar temperature and density profiles. We used
established techniques to determine the density fluctuations in altitude
and time and hence calculate the RMS density fluctuations and the specific
potential energy of the gravity waves (Thurairajah, Collins, Harvey,
Lieberman, & Mizutani, 2010; Thurairajah, Collins, Harvey, Lieberman,
Gerding, et al., 2010; Triplett et al., 2017). The RMS density fluctuations
are determined from the 30-min density profiles over a given altitude
range. The fluctuations are high-pass filtered in time remove components
with periods longer than 4 hr and so represent gravity waves with periods

Figure 4. Spectrum of density fluctuations derived from Combined Sensor
for Neutrals and Electrons ion gauge measurements. The spectrum is
plotted as solid red. The spectrum is calculated over one 1-s interval corre-
sponding to the altitude 82.7–84.1 km. The Heisenberg model fit to the
spectrum is plotted dashed black line. The background noise level is plotted
as a horizontal dashed line.

Table 1
MTeX 46.009 Upleg Turbulence Measurement

Turbulence
Outer scale 646 m
Inner scale 43.3 m
Energy dissipation rate 11.1 mW/kg
Heating Rate 0.96 K/day
Eddy diffusion coefficient 41 m2/s

Background atmosphere
Altitude range 82.7–84.1 km
Temperature 224 K
Density 9.26 × 10�6 kg/m3

Kinematic viscosity 1.6 m2/s
Buoyancy period 440 s
RMS relative density fluctuation 0.08%
RMS displacement fluctuation 38 m

Data sampling
Sampling frequency 5,208 sps
Frequency resolution 1 Hz
Rocket speed 1,234 m/s

Note. MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment;
RMS = root-mean-square.
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between 1 and 4 hr (with a geometric mean period of 2 hr). The fluctuations are low-pass filtered at 2 km and
so represent gravity waves with vertical wavelengths between 2 km and a maximum determined by the
altitude range. The RMS displacement and specific potential energy are then determined using the
buoyancy frequency determined from the average temperature profile. We detected monochromatic
waves in the density profiles by determining the best temporal harmonic fits to the density fluctuations at
each altitude and then determining the vertical phase progressions to the harmonic fits. We fitted
harmonics to the 2-hr density profiles to find waves with periods greater than 2 hr and conducted fits to
the 30-min data to find waves with periods between 1 and 4 hr. We determined the vertical wavelength
from the observed frequency and vertical phase progression and then used the gravity wave polarization
and dispersion relationships to estimate the horizontal wavelength, horizontal phase speed, group
velocity, RMS horizontal velocity, vertical displacement, and specific potential energy (Hines, 1960).

Sodium resonance lidar measurements have been made at Chatanika on an ongoing basis since 1995 and
yielded measurements of the sodium layer profile in the upper mesosphere and lower thermosphere (e.g.,
Collins & Smith, 2004; Gelinas et al., 2005). The sodium resonance lidar was operated over an 11-hr period
from 2008 LST until 0716 LST (0508–1616 UT). This lidar system is similar to one that was operated during
the Turbopause investigation (Collins et al., 2011; Lehmacher et al., 2011). The excimer-pumped dye laser
used in the Turbopause investigation was replaced with a Nd:YAG pumped dye laser (Martus, 2013). The
Nd:YAG pumped dye laser operated at 589 nm and 10 pps with an average power of 0.25 W. We used the
same standard inversionmethods as used in previous studies to determine the sodium concentration profiles
between 70 and 120 km. We then combined the sodium concentration profiles with the density profiles
measured by the Rayleigh lidar to determine the sodium mixing ratio profiles. The resolution of the reso-
nance lidar measurements was 100 s and 75 m. The sodium resonance lidar measurements yielded sodium
concentration profiles at 15-min intervals and 60-min integration. The statistical relative errors in the sodium
concentrations are less than 6% in the 80- to 100-km altitude range.

2.5. PFISR, All-Sky Imager, and Magnetometer

The Poker Flat Incoherent Scatter Radar (PFISR) has been operating at PFRR since 2007 (Heinselman & Nicolls,
2008). PFISR is a multibeam phased array radar. During the MTeX investigation the radar operated with four
beams to yield measurements of the electron density and the electric field. The measurements of the
electron density profile from three beams were interpolated to yield a measurement of the electron density
profile along the upleg of the MTeX flight path. The radar employed an alternating pulse code to yield elec-
tron density measurements between 90 and 300 km with 56-m and 300-s resolution. A multispectral All-Sky
Imager (ASI) is operated at PFRR and provides high-resolution all-sky images of the aurora at 630, 558, and
428 nm (e.g., Lyons et al., 2015). The ASI operated from evening twilight until morning twilight (1712–0851

Figure 5. MERRA-2 horizontal wind speeds over Chatanika. (left) Daily horizontal wind speed over Chatanika at 70 (~18 km,
gray dashed), 10 (~31 km, red dashed), and 1 hPa (~48 km, blue solid) plotted against UT day from December 2014 to
February 2015. Winds are taken at 0600 UT each day. The black vertical lines mark the dates when the SSW split the stra-
tospheric vortex (SSW, 5 January 2015) and the MTeX launch (MTeX, 26 January 2015). (right) Vertical profile of horizontal
wind on 5 January (short-long dash), 26 January (solid), and median for January 2005–2018 (short dash) plotted as a
function of pressure. The corresponding approximate altitude is given on the right axis. MERRA-2 = Modern-Era
Retrospective Analysis for Research and Applications version 2; SSW = Sudden Stratospheric Warming;
MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment.
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LST, 0212–1751 UT). ASI imagery is made available as movies at 13-s resolution (Hampton, 2017a). A three-
axis fluxgate magnetometer is also operated at PFRR and provides measurements of the three
components of magnetic field and geomagnetic activity (e.g., Collins et al., 1996). The magnetometer
measurements are made at 1 sps (Hampton, 2017b).

2.6. MERRA-2, SABER, and MSIS

The Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data set
describes the meteorological conditions in the troposphere, stratosphere, and mesosphere from 1980 to the
present (Bosilovich et al., 2015; Gass, 2016; Molod et al., 2015). MERRA-2 assimilates temperature and ozone
measurements from the Microwave Limb Sounder (MLS) above 5 hPa beginning in August 2004. This results
in more realistic synoptic meteorology in the upper stratosphere and lower mesosphere than in other reana-
lysis data sets (Fujiwara et al., 2017; Gelaro et al., 2017). We use the MERRA-2 data to characterize the daily
winds over Chatanika. We report MERRA-2 median wind profiles over the 2005–2018 period that assimilates
MLS. We also use the MERRA-2 data to characterize the mesoscale imbalance in the flow (Plougonven &

Figure 6. Planetary wave activity derived from SABER measurements on 26 January 2015 (UT). (top) Geopotential height
perturbation and temperature gradients plotted as a function of longitude and altitude. Geopotential contours are
plotted every 0.25 km. Positive contours are plotted solid, and negative contours are plotted dashed. Negative temperature
gradients are plotted as gray shades every 1 K/km. The shading starts at �1 to �2 K/km and progressively darkens as the
gradient becomes more negative. The location of PFRR, Chatanika, Alaska, is indicated by the dashed line. (bottom)
Geopotential height perturbation and temperature gradients plotted as a function of latitude and altitude.
SABER = Sounding of the Atmosphere using Broadband Emission Radiometry; PFRR = Poker Flat Research Range.
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Zhang, 2014). We calculate the residual in the nonlinear balance equation
to characterize the imbalance in the flow following previous studies of
gravity wave activity at Chatanika (Triplett et al., 2017).

The Sounding of the Atmosphere using Broadband Emission Radiometry
(SABER) is one of four instruments aboard the Thermosphere-
Ionosphere-Mesosphere Energetics and Dynamics satellite that was
launched on 7 December 2001. SABER uses the technique of limb-infrared
radiometry and is capable of continuously sounding the atmosphere both
day and night. The SABER pressure data yield measurements of geopoten-
tial suitable for quantitative studies of the large-scale variability in the mid-
dle atmosphere (Byrd, 2016; Remsberg et al., 2008). We use the Level 2A
version 2.0 SABER geopotential and temperature measurements and
established procedures to determine planetary wave amplitudes, and gra-
dient winds to characterize the planetary wave activity (Irving et al., 2014;
Thurairajah, Collins, Harvey, Lieberman, & Mizutani, 2010; Thurairajah,
Collins, Harvey, Lieberman, Gerding, et al., 2010).

The MSIS model is an analytical model for calculating neutral temperature
and density profiles from the ground to the thermosphere (Hedin, 1991;
Papitashvili, 2016). The density and temperature profiles are representa-
tive of the climatological average. Above 73 km the model is based on
satellite, rocket, space shuttle, and incoherent scatter radar measurements.
Between 20 and 73 km the model is primarily based on the monthly mean
climatology of the Middle Atmosphere Program (Labitzke et al., 1985).
Below 20 km the model uses averages from the National Meteorological
Center. We take the MSIS density profile as having a 10% uncertainty in
the upper mesosphere and lower thermosphere (Moro et al., 2016).

3. Observations
3.1. Arctic Meteorology

A minor SSW occurred in early January 2015 (Manney et al., 2015).
Planetary wave activity had contributed to the development of strong
anticyclones in the upper stratosphere in mid-December and early
January and resulted in the subsequent splitting of the stratospheric vor-
tex in the lower stratosphere on 1 January and throughout the strato-
sphere by 5 January. Although this SSW was classified as minor (during
which the 10-hPa winds remained westerly at 60°N), the warming resulted
in significant impacts on transport and chemical processing inside the
polar vortex. The vortex reformed by 9 January and remained offset from

the pole. On 26 January the polar vortex was located over Eurasia and Chatanika lay outside the edge of
the vortex. The disturbance of the middle atmosphere is evident in the MERRA-2 winds over Chatanika
plotted in Figure 5. We see that the winds through the middle and upper stratosphere weaken significantly
in early January at at 10 and 1 hPa (~31 and ~48 km respectively) coinciding with the SSW. The MTeX inves-
tigation was conducted during a second weakening of the winds in late January. The wind profile at
Chatanika on 5 January UT shows winds that are similar to the median winds for January, while the wind pro-
file on 26 January UT shows winds that are considerably weaker than the median winds and are less than
15 m/s between 100 and 1 hPa (~16 and ~48 km respectively).

The SABERmeasurements also confirm this picture of a disturbedmiddle atmosphere. There was a reversal of
the gradient winds at 65°N in early January associated with the SSW. We plot the planetary wave activity and
winds derived from the SABER measurements for 26 January UT in Figure 6. The upper panel shows the
geopotential height perturbation as a function of longitude and altitude. The data reveal a relatively weak
planetary wave-1 that was propagating westward with altitude. The regions where the phase of the wave
changed abruptly in altitude with coincident temperature inversions indicate planetary wave breaking

Figure 7. Electron density (black) and relative electron density gradients
(blue and read) plotted as a function of altitude for 46.009 (top) and 46.010
(bottom) payloads. The rocket measurements are plotted in solid for upleg
(closed square) and downleg (open circle). The PFISR measurements are
plotted as a gray dashed line. The uncertainty in the Langmuir probe mea-
surements is 2 × 108 m�3 in the electron density. The PFISR profiles are
plotted with one-sigma error bars. PFISR = Poker Flat Incoherent Scatter
Radar.
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(e.g., 55 km, 210°–270°E; France et al., 2015; Irving et al., 2014; Salby et al., 2002). These phase changes are also
evident in the lower panel, where we plot the geopotential height perturbation as a function of altitude and
latitude. Again, we see that the positive phase of the planetary wave reversed abruptly near 50 km, rather
than propagating upward, indicating wave breaking in the upper stratosphere. The gradient winds derived
from the SABER on this day show zonally averaged wind speeds that are low throughout the stratosphere
and mesosphere over Chatanika consistent with MERRA-2 winds.

We characterize the balance in the circulation using the reanalysis data. The residual of the nonlinear balance
equation has low values in the middle atmosphere that remain lower than the threshold for gravity wave
generation (Limpasuvan et al., 2011; Triplett et al., 2017). Thus, we conclude that in January 2015, the middle
atmosphere was disturbed, with weak winds at the end of the month, planetary wave breaking, and low
levels of imbalance in the circulation.

3.2. Geomagnetic Activity

The aurora was moderately active on the night of 25–26 January 2015. The planetary K index was less than
five, being three throughout most of the night and reaching four from 0000 to 0300 LST (0900–1200 UT;

Matzka & Stolle, 2017; Vancanneyt & de Bont, 2017). By 1800 LST (0300
UT), the ASI recorded an active auroral arc near the northern horizon. A
substorm breakup had been initiated to the east followed by a westward
traveling surge that covered the sky by 0830 UT. Bright auroral arcs over-
head were present until 0100 LST (1000 UT). These arcs hadmagenta lower
borders indicating that the auroral precipitation was ionizing the atmo-
sphere down to 90 km (e.g., Lummerzheim & Lilensten, 1994). The auroral
display then weakened, but there was diffuse aurora overhead into the
morning. The magnetometer recorded negative excursions in the horizon-
tal component of the magnetic field starting at 2300 LST (0800 UT). The
magnetic field excursion remained negative until 0140 LST (1040 UT) with
a maximum excursion of ~400 nT at 0105 LST (1005 UT) and several fluc-
tuations of ~100 nT. At the time of the MTeX launches there was bright
aurora overhead with auroral arcs passing from north to south and nega-
tive excursions in the horizontal magnetic field of ~400 nT. The MTeX
launches occurred after breakup in the recovery phase of the auroral sub-
storm. We plot the electron density profiles and relative electron density
gradients in Figure 7. The density profile measured by the Langmuir
Probes are in good agreement with the profile measured by PFISR. The
electron densities are over 1011 m�3 above 100 km consistent with the
auroral precipitation. The strongest gradients in the electron densities

Figure 9. Temperature derived from MTeX CONE ion-gauge measurements
at PFRR on the morning of 26 January 2015 (LST). The temperature profiles
are plotted in red. Temperature gradients are marked in gray. The gradients
are indicated on the topside of mesospheric inversion layers near 75 and
80 km. MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment;
CONE = Combined Sensor for Neutrals and Electrons.

Figure 8. Temperature derived from Rayleigh lidar measurements at PFRR on the night of 25–26 January 2015 (LST). (left) Temperature plotted as a function of alti-
tude and time. The two vertical white lines indicate the times when theMTeX payloads were launched (46.009 at 0013 LST, 46.010 at 0046 LST). (middle) Temperature
plotted as function of altitude over full altitude range of lidar measurement. Average temperature profile for the whole night (1827–0714 LST, solid red), 2-hr
profile spanning the MTeX launch period (2330–0130 LST, light red), one-sigma uncertainties in 2-hr profile (light red dashed), multiyear sample mean (solid gray),
and standard-deviation profile (dashed gray). (right) Temperature plotted as function of altitude over subset of lidar measurement highlighting inversion layer
and superadiabatic temperature gradient. The temperature gradients of �18 and �4 K/km are indicated on the temperature profiles. PFRR = Poker Flat Research
Range; MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment.
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are near 80 and 90 km. These gradients are consistent with the auroral pre-
cipitation and the presence of arcs with magenta lower borders. However,
despite the active auroral display, PFISR measured relatively weak electric
fields. Thus, we conclude that the moderate geomagnetic activity did not
significantly impact the neutral dynamics of the upper mesosphere and
lower thermosphere.

3.3. Temperatures at Chatanika

The temperature profile over Chatanika on the night of 25–26 January
2015 reflects the disturbance of the atmosphere due to the stratospheric

planetary wave activity. The temperature profiles do not show a well-defined stratopause. We plot the tem-
perature profiles measured by the Rayleigh lidar in Figure 8. In the left panel we plot the temperature as a
function of altitude and time based on 2-hr temperature profiles. In the center panel we plot the nightly aver-
age temperature profile (1827–0714 LST, 0327–1614 UT) and the 2-hr temperature profile around the launch
of the MTeX payloads (2315–0115 LST, 0830–1030 UT). We also plot the average temperature profile for
January based on 35 nighttime observations made between 1998 and 2014 (Triplett et al., 2017). On the night
of 25–26 January 2015 the stratosphere is colder than the average (by about one sample standard deviation)
and the mesosphere is warmer than the average (by about two sample standard deviations). In the right
panel we plot the nightly average and 2-hr temperature profiles over the 75- to 95-km altitude range. The
nightly average maximum temperature is 238 K at 67 km, and there is well-defined temperature gradient
of�4 K/km above 85 km that persisted through the night. The 2-hr temperature profile shows a MIL present
at 85 km. This MIL has an amplitude of 13 K with an overlying super-adiabatic temperature gradient of
�18 K/km. This inversion layer is present over a 4-hr period from 2130 to 0130 LST (0630–1030 UT) between
83 and 86 km with an average peak altitude of 84 km, depth of 1.4 km, amplitude of 9 K, and average topside
temperature gradient of �12 K/km.

We plot the three temperature profiles derived from the CONEmeasurements in Figure 9. All three CONE pro-
files have similar features with a MIL near 80 km and a negative temperature gradient above the MIL extend-
ing upward from an altitude between 83 and 85 km. The amplitude of this MIL is between 9 and 14 K with a
topside temperature gradient between �6 and �10 K/km. Another MIL is present near 74 km in both the
upleg and downleg of 46.009. This MIL has an amplitude between 11 and 16 K and a topside temperature

gradient of �6 K/km. The negative temperature gradient above 85 km is
consistent with SABER multiyear measurements of the Arctic winter meso-
pause at 100 km (Xu et al., 2007).

In summary the Rayleigh lidar and CONE temperature measurements
show a disturbed stratosphere and mesosphere where there are MILs pre-
sent. There are multiple altitude regions with negative temperature gradi-
ents in the upper mesosphere, and several of these regions are
convectively unstable.

3.4. Gravity Waves at Chatanika

We first determine the wave activity over the 40- to 50-km altitude range
consistent with previous studies of gravity wave activity at Chatanika that
includes waves with vertical wavelengths between 2 and 10 km (Table 2).
We find a specific potential energy of 0.8 J/kg. This level of gravity wave
activity is among the lowest values measured by Rayleigh lidar at
Chatanika (Triplett et al., 2017). In 35 nighttime measurements in January
over 13 winters at Chatanika the specific potential energies of gravity
waves vary between 0.4 and 12 J/kg with an average value of 2.6 J/kg
and only three values less than 0.8 J/kg. Low levels of gravity wave activity
have been shown to be consistent with weak winds and low levels of
imbalance in the circulation (Triplett et al., 2017). To understand the verti-
cal propagation of gravity waves, we determine the gravity wave activity
over two distinct altitude ranges. We consider the gravity wave activity

Table 2
MTeX Rayleigh Lidar Measurement of Buoyancy Period and Gravity Wave Activity

Altitude range 40–50 km 37.5–52.5 km 62–67 km
Buoyancy period (s) 309 s 323 s 313 s
RMS relative density 0.26% 0.37% 0.75%
RMS vertical displacement 66 m 94 m 180 m
Specific potential energy 0.8 J/kg 1.7 J/kg 6.4 J/kg

Note. MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment;
RMS = root-mean-square.

Table 3
MTeX Rayleigh Lidar Measurement of Quasi-Monochromatic Gravity Waves

Measured
characteristics
Observed period 9.8 hr 2.5 hr
Altitude range 44–51 km 63–74 km 44–50 km 64–77 km
Vertical wavelength 8 ± 4 km 12 ± 7 km 11 ± 5 km 6 ± 4 km
Relative density
amplitude

0.73% 1.3% 0.36% 1.2%

Derived
characteristics
Horizontal
wavelength

1270 km 1930 km 323 km 185 km

Horizontal phase
velocity

36 m/s 55 m/s 36 m/s 21 m/s

Vertical group
velocity

0.10 m/s 0.15 m/s 1.2 m/s 0.68 m/s

RMS horizontal
velocity

6.6 m/s 11.9 m/s 1.8 m/s 6.2 m/s

Vertical
displacement
amplitude

179 m 322 m 88 m 299 m

Specific potential
energy

6.3 J/kg 20.1 J/kg 1.5 J/kg 17.6 J/kg

Note. RMS = root-mean-square.
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over a lower range of 37.5 to 52.5 km and an upper range of 62 to 77 km that includes waves with vertical
wavelengths between 2 and 15 km. We summarize the wave characteristics in Table 2. In the lower range
we find a specific potential energy of 1.7 J/kg. In the upper range we find a specific potential energy of
6.4 J/kg. The specific potential energy increases by a factor of 3.8 corresponding to a growth length of
18 km. The density scale height over this altitude range is 7 km indicating that the specific potential
energy of freely propagating gravity waves would increase by a factor of 33. We conclude that these
gravity waves are losing energy as they propagate upward.

We find two monochromatic waves in the Rayleigh lidar density profiles. We find a 9.8-hr wave present in
both the stratosphere (44 to 51 km) and mesosphere (63 to 73 km). This wave exhibits a downward phase
progression consistent with a vertical wavelength of 8 km (±4 km) in the stratosphere and 12 km (±7 km)
in the mesosphere. The amplitude of the wave is 0.73% in the stratosphere and 1.3% in the mesosphere.
We also find a 2.5-hr wave present in the stratosphere (41 to 50 km) and mesosphere (64 to 77 km). This

Figure 10. Temperature (solid red), turbulent energy dissipation rate (blue square with × and black square with +), and tur-
bulent inner scale (blue circle and black circle in square) derived from MTeX CONE ion gauge measurements plotted as
function of altitude. The symbols are alternated in altitude to indicate clusters of turbulence. (top) Upleg of payload 46.009.
(middle) Downleg of payload 46.009. (bottom) Downleg of payload 46.010. The turbulent quantities are plotted with
one-sigma error bars. MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment; CONE = Combined Sensor for
Neutrals and Electrons.
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2.5-hr wave is only present during the first half of the night until 0000 LST
(0900 UT) in the mesosphere. The vertical wavelength of the 2.5-hr wave is
11 km (±5 km) in the stratosphere and 6 km (±4 km) in the mesosphere.
The amplitude of the wave is 0.36% in the stratosphere and 1.2% in the
mesosphere. We summarize the characteristics of these waves in Table 3.
The derived quantities are determined from the measured quantities
using gravity wave dispersion and polarization relationships (Hines,
1960). The growth lengths of the 9.8- and 2.5-hr waves are 18 and
10 km, respectively, indicating that the waves are losing energy as they
propagate upward. The horizontal phase speeds are greater than the
RMS horizontal velocities indicating that the individual waves are linearly
stable at these altitudes (Fritts & Rastogi, 1985). However, the waves grow
with altitude and by 76 km the combined RMS horizontal velocity of both
waves is greater than the horizontal phase speed of the 2.5-hr wave. Thus,
the shorter-period 2.5-hr wave may be rendered unstable by the superpo-
sition of the longer-period wave and the shorter-period wave as has been
documented in other observational studies (Collins & Smith, 2004; Fritts
et al., 1997; Williams et al., 2006).

3.5. Turbulence at Chatanika

The CONE measurements yielded 140 estimates of turbulence between 70
and 88 km. The RMS relative density fluctuations vary between 0.02% and
0.39%with an average value of 0.1%. Over the 70- to 88-km altitude region
the turbulent inner scales vary between 12 and 121 m with an average

value of 56 m. The energy dissipation rates vary between 0.1 and 24 mW/kg with an average value of
2.6 mW/kg. We plot the estimates of the energy dissipation rate and the turbulent inner scale with the tem-
perature profiles measured by the CONE instrument in Figure 10. The corresponding heating rates vary
between 9 × 10�3 K/day and 2 K/day with an average of 0.2 K/day. The corresponding eddy diffusion rates
vary between 0.3 m2/s and 134 m2/s with an average of 10 m2/s. The individual turbulent estimates plotted
in Figure 10 are not mutually independent as they represent estimates over overlapping 1 s (~1 km) intervals.

Figure 11. Turbulent energy dissipation rate plotted as a function of buoy-
ancy frequency squared derived from MTeX CONE ion gauge measure-
ments. The turbulent energy dissipation rates are separated based on either
the presence of a MIL or the temperature gradient; on the bottomside of a
MIL (blue circle), on the topside of a MIL (black square), and where the tem-
perature gradient is negative above the MILs (red square with +). The error
bars represent one-sigma statistical uncertainties in the measurements.
MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment;
CONE = Combined Sensor for Neutrals and Electrons; MIL = mesospheric
inversion layer.

Table 4
MTeX CONE Measurement of Turbulence

Measurement leg Range Mean (median) Range Mean (median)

46.009 upleg
Altitude (km) 70.7–76.2 72.2 (71.2) 79.7–87.2 83.5 (83.2)
Inner Scale (m) 16–53 26 (21) 42–121 64 (60)
Energy dissipation rate (mW/kg) 0.13–0.85 0.35 (0.28) 0.91–24 6.0 (3.4)
Points 18 40

46.009 downleg
Altitude (km) 71.2–75.4 73.1 (72.6) 81.3–85.9 83.1 (82.9)
Inner scale (m) 12–45 26 (22) 51 (113) 80 (79)
Energy dissipation rate (mW/kg) 0.10–7.2 1.6 (0.30) 0.16–3.2 1.2 (0.89)
Points 26 36

46.010 downleg
Altitude (km) N/A N/A 79.4–83.9 80.6 (80.0)
Inner scale (m) N/A N/A 40–93 63 (62)
Energy dissipation rate (mW/kg) N/A N/A 0.16–15 1.9 (0.69)
Points N/A N/A 20

All three legs
Altitude (km) 70.7–76.3 72.2 (71.7) 79.4–87.2 82.7 (82.8)
Inner scale (m) 12–53 26 (21) 40–121 70 (72)
Energy dissipation rate (mW/kg) 0.10–7.2 1.1 (0.29) 0.16–24 3.3 (1.0)
Points 44 96

Note. MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment; N/A = not applicable; CONE = Combined Sensor of Neutrals and Electrons.
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However, the turbulence occurs in clusters that extend over 1 km in alti-
tude. There are eight clusters in the both the upleg and downleg of
46.009, and there are three clusters in the downleg of 46.010. The absence
of turbulence at the lower altitudes in the downleg of 46.010 (lower panel)
coincides with the absence of a MIL. Of the 19 turbulence clusters, four
coincide with a MIL bottomside, nine coincide with a MIL topside, and
six coincide with the negative temperature gradient above the MILs at alti-
tudes above 84 km. To investigate the relationship between turbulence
and stability, we consider the relationship between the energy dissipation
rate and the square of the buoyancy frequency. In each cluster we identify
the maximum estimate of the energy dissipation rate and the correspond-
ing buoyancy frequency. We also determine the location of the turbulence
relative to the MILs (i.e., topside or bottomside) and the temperature pro-
file above the MILs (i.e., temperature gradient). We plot these maximum
energy dissipation rates as a function of buoyancy frequency squared in
Figure 11. While the largest values of energy dissipation rates coincide
with the negative temperature gradient at the highest altitudes (0.8–
24 mW/kg), the values of the turbulent dissipation rate are similar on both
the topside (0.3–11 mW/kg) and bottomside (0.4–7 mW/kg) of the MILs,
with no significant difference in the average values. The corresponding
values of the eddy diffusion coefficient increase as the buoyancy fre-
quency decreases, and the values are larger in the topside of the MILs
(1–134 m2/s) and the negative temperature gradient (4–54 m2/s) than in
the bottomside of the MILs (0.4–11 m2/s).

In general, the MTeXmeasurements show turbulence occurring in two dis-
tinct altitude regions with lower values of energy dissipation at lower alti-
tudes (70–77 km) and higher values at higher altitudes (79–88 km). We
summarize the turbulence characteristics in Table 4. We find that the inner
scale increases with altitude from 26 to 70 m and the corresponding outer
scales increase from 129 m to 360 m. The turbulent dissipation rate also
increases, by a factor of 3, from 1 to 3mW/kg over 10 km. These dissipation
rates correspond to heating rates of 0.1 and 0.3 K/day.

4. Analysis of Turbulence and Waves
4.1. Waves as a Source of Turbulence

To understand these low levels of turbulence, we consider the gravity waves we identified in section 3.4 as
sources of the turbulence. We plot the sodium concentration as a function of altitude and time in the upper
panel of Figure 12. The sodium has downward phase progressions typical of wave propagation through the
sodium layer and overturning between 80 and 90 km between 2200 LST and 0230 LST (0700–1130 UT). Model
studies of such overturning events indicate that these are signatures of waves that are approaching instability
(Xu et al., 2006). We also plot the potential temperature and sodium mixing ratio in the lower panel of
Figure 12. The potential temperature contours spread apart with a near vertical contour at 2230 LST at the
same time as the overturning in the sodium concentration. During this overturning event the sodiummixing
ratio also spreads upward. The spreading of the potential temperature and sodium extends over a depth of
3 km in altitude and persists for 2 hr in time. The upward spreading of the 600-K potential temperature con-
tour is consistent with numerical studies of wave breaking where a layer of cooling due to wave advection
overlies a layer of heating due to turbulent diffusion (Liu et al., 2000). High-resolution lidar observations of
sodium and temperature have shown that such overturning events are associated with spreading of energy
to higher frequencies in the temporal temperature spectrum and generation of smaller-scale motions (Franke
& Collins, 2003; Williams et al., 2002).

We use the depth of the wave breaking to estimate the energy that can be deposited by the gravity waves
and available for the generation of turbulence. We assume that as the wave dissipates, all the energy that

Figure 12. Sodium and potential temperature derived from resonance and
Rayleigh lidar measurements at PFRR on the night of 25–26 January 2015.
(top) Sodium concentration as a function of altitude and time. The two ver-
tical lines mark the times when the MTeX payloads were launched (46.009 at
0013 LST, 46.010 at 0046 LST). The contours are 250, 500, 1,000, 1,250, 1,500,
1,600, 1,700, 1,800, 1,900, 2,000, 2,250 cm�3. (bottom) Sodium mixing ratio
(false color) and potential temperature (white contour). The potential tem-
perature is calculated starting at 61 km, and thus, the values of potential
temperature are lower than if calculated from the ground level. The 600-K
contour is plotted bold. The potential temperature contour labels are plotted
white and blue for clarity. The two vertical dashed lines mark the times when
the MTeX payloads were launched. PFRR = Poker Flat Research Range;
MTeX = Mesosphere-Lower Thermosphere Turbulence Experiment.
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is lost generates inertial subrange turbulence. However, in reality the dissi-
pating waves will generate a variety of other motions (e.g., secondary
waves) as well as turbulence (VanZandt & Fritts, 1989). We consider a
breaking altitude of 85 km coincident with the spreading of the 20-pptv
mixing ratio contour in Figure 12. We first consider the 2.5-hr wave. We
allow the 2.5-hr wave to grow with an energy growth length of 10 km from
70 to 85 km. The wave has a vertical group velocity of 2.5 km/hr and would
deposit all of its potential energy over 3 km in 1.2 hr, yielding an energy
dissipation rate of 18 mW/kg. We second consider the ensemble of 1- to
4-hr waves. For this ensemble of waves, with a geometric mean period
of 2 hr and a vertical wavelength of 5.5 km, the corresponding vertical
group velocity is 2.7 km/hr. We allow the waves to grow with an energy
growth length of 18 km from 65 to 85 km and determine the energy lost
relative to waves that are freely propagating with a growth length of
7 km. The energy lost is 92 J/kg in 7.7 hr yielding an energy dissipation rate
of 3 mW/kg. We find that the relatively low levels of turbulent energy dis-
sipation are consistent with the low level of gravity wave energy.

4.2. Strength of Turbulence

We compare the MTeX measurements of turbulence to other Arctic mea-
surements. We consider three studies based on Arctic rocket-borne ion
gauges (Lübken, 1997 [L97]; Lehmacher et al., 2011 [Letal11], and
Szewczyk et al., 2013 [Setal13]). We plot the energy dissipation rates and
eddy diffusion coefficients from MTeX and these three investigations in
Figure 13. It is important to note that for MTeX, Letal11, and Setal13, the
ion gauges made measurements above the maximum altitudes plotted
(i.e., 88 km MTeX, 90 km Letal11, 93 km Setal13) but did not detect turbu-
lence. We conclude that there was no detectible turbulence present above
these altitudes. The Letal11 and Setal13 profiles were measured on single
nights at Chatanika on 17–18 February 2009 and at Andennes on 18–19
December 2010, respectively. The L97-W profile represents the average
of 12 wintertime measurements over two winters at Andøya Science
Center, Andennes, Norway (69°N, 16°E). The L97-S profile represents the
average of seven summertime measurements over three summers at
Andennes. The MTeX values of turbulent activity increase with altitude,
but the peak values are similar to the peak values from Letal11 and much
lower than the peak values from Setal13. The MTeX average values are
lower than the L97-W values. The turbulent energy dissipation rates in win-

ter (L97-W) are 10 times less than in summer (L97-S) and have been interpreted to indicate low levels of tur-
bulent dissipation and heating in the wintertime Arctic middle atmosphere. The transition fromwintertime to
summertime turbulence values has been observed and attributed to seasonal transitions in the breaking of
gravity waves associated with changes in the wind regimes (Müllemann et al., 2002).

Both the low values of turbulent activity reported by MTeX and Letal11 are similar to the low values of win-
tertime turbulence reported by L97. The Letal11 turbulence measurements at Chatanika were accompanied
by Rayleigh lidar measurements of the temperature profile and gravity wave activity. Themeteorological con-
ditions at Chatanika in both January 2015 and February 2009 are similar. In 2009 there was amajor SSW in late
January and the middle atmosphere remained disturbed until March (Manney et al., 2009). The Rayleigh lidar
temperature profile at Chatanika on the night of 17–18 February 2009 shows a stratosphere that is colder
than usual and a mesosphere that is warmer than usual similar to MTeX (Collins et al., 2011). We plot the
MERRA-2 wind profiles in Figure 14. The wind profiles on the night of 17–18 February 2009 (18 February
UT) show horizontal wind speeds at Chatanika of less than 15 m/s between 100 and 2 hPa (~16 km and
~43 km respectively) similar to MTeX. On both nights the winds are significantly lower than the median winds
for January and February at Chatanika. On 17–18 February 2009, like on 25–26 January 2015, the gravity wave

Figure 13. Turbulent energy dissipation rate, heating rate, and eddy diffu-
sion coefficients as a function of altitude from MTeX and other Arctic
rocket-borne measurements. (top) Energy dissipation rate and heating rate.
(bottom) Eddy diffusion coefficient. MTeX = Mesosphere-Lower
Thermosphere Turbulence Experiment.
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activity in the 40- to 50-km region was low with a specific potential energy
of 0.9 J/kg. MTeX and Letal11 report a consistent scenario of low turbulent
activity associated with reduced gravity wave activity during a period
when the circulation of the stratosphere and mesosphere is disturbed
and the winds are weak. Observational studies at Chatanika have shown
that weak winds (<15 m/s) in the lower stratosphere block the upward
propagation of gravity waves and reduce the gravity wave activity in the
lower mesosphere (Thurairajah, Collins, Harvey, Lieberman, & Mizutani,
2010; Thurairajah, Collins, Harvey, Lieberman, Gerding, et al., 2010;
Triplett et al., 2017).

In contrast to MTeX and Letal11 the values of turbulence reported by
Setal13 are significantly higher. Setal13 report significant wave activity in
the upper mesosphere but do not report the stratospheric wave activity.
The MERRA-2 wind profiles on the night of 18–19 December 2010 show
horizontal wind speeds at Andennes that increase steadily between 100
and 2 hPa (~16 km and ~43 km respectively) to 48 m/s. There was no
SSW during the winter of 2010–2011, and the circulation was undisturbed
with an unusually strong polar vortex and unprecedented ozone loss in
March 2011 (Manney et al., 2011). The higher turbulent activity reported
by Setal13 was recorded during a period when the circulation of the strato-
sphere and mesosphere was undisturbed, winds were strong, and the
gravity wave activity was high.

5. Summary and Conclusions

We have presented a study of turbulence in the upper mesosphere-lower thermosphere following a minor
SSW in January 2015 where the circulation remained disturbed due to continued planetary wave activity.
The study, called MTeX, combined in situ rocket-borne measurements of turbulence with ground-based lidar
measurements of gravity wave activity, satellite measurements of planetary wave activity, and reanalysis data
of the meteorological conditions. The circulation was characterized by weak winds and the absence of a dis-
tinct stratopause. We find low levels of turbulence coinciding with reduced levels of gravity wave activity. The
average turbulent energy dissipation rate was 2.6 mW/kg, and the average eddy diffusion coefficient was
10 m2/s. This average energy dissipation rate corresponds to a heating rate of 0.2 K/day. The turbulence
was detected in an altitude region where there were MILs and overturning gravity waves. The turbulence
is found on both the bottomside and topside of the MILs as well as regions of negative temperature gradi-
ents. The wave overturning event is characterized by upward altitude spreading in both potential tempera-
ture and sodium mixing ratio. Investigation of the propagation of the energy in both the ensemble gravity
wave field and monochromatic gravity waves confirms that the low levels of turbulence coincide with the
low levels of gravity wave activity. The MTeXmeasurements reveal the occurrence of low levels of turbulence
and wave activity in a disturbed winter middle atmosphere where weak winds block the upward propagation
of gravity waves. Higher planetary wave activity in the northern hemisphere than the southern hemisphere
results in much greater disturbance of the circulation of the Arctic middle atmosphere. We suggest that there
may be lower levels of wave-driven turbulence in the wintertime northern hemisphere than in the southern
hemisphere. This scenario has been suggested in an earlier model study where the weaker andmore variable
polar night jet in the northern hemisphere results in gravity wave breaking over a greater depth and lower
altitude and significant decrease in turbulent diffusion in the MLT than in the southern hemisphere
(Becker, 2004).

The MTeX investigation was based on high-resolution density measurements and derived temperature mea-
surements made with ion gauges and lidars. The wave observations are limited to inertia gravity waves with
periods of more than 1 hr and vertical wavelengths greater than 2 km. The wave scales and turbulent scales
measured during MTeX are separated by an order of magnitude. A sodium resonance wind-temperature lidar
is currently being deployed at PFRR and will provide measurements of higher frequency gravity waves. A
meteor radar system is currently being deployed at PFRR and will be able to provide wind measurements
and characterization of waves and tides in support of future investigations.

Figure 14. Modern-Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2) horizontal wind speed plotted as a function of altitude
over Chatanika and Andennes. The winds are plotted over Chatanika for 06
UT on 26 January 2015 (solid blue) and 18 February 2009 (solid red). The
median winds are plotted over Chatanika for January (dashed blue) and
February (dashed red). The winds over Andennes are plotted for 18 UT on 18
December 2010 (solid green). The median winds are plotted over Andennes
for December (dashed green). The vertical gray line indicates the 15-m/s
wind speed.
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Erratum

In the originally published Figure 6, the lower panel appeared twice. Figure 6 has been replaced and the cur-
rent version shows the correct upper and lower panels. This version may be considered the authoritative ver-
sion of record.
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