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1. Introduction
Alfvén waves are fundamental features of magnetized plasmas and participate in various processes on differ-
ent temporal and spatial scales. In the Earth's high-latitude ionosphere, for example, they induce, via electron 
acceleration, a range of intriguing micro-scale plasma processes involving high-frequency waves (e.g., Akbari 
et al., 2012, 2020); they are thought to be responsible for the generation of fine-scale features of auroral arcs 
(e.g., Semeter et  al.,  2008); and, on larger scales, are an important component of magnetosphere-ionosphere 
interactions (e.g., Verkhoglyadova et al., 2018). By accelerating magnetospheric electrons (Chaston et al., 2002; 
Kletzing & Hu, 2001), heating ionospheric ions, and by carrying field-aligned currents and Poynting flux, Alfvén 
waves facilitate the exchange of mass, momentum, and energy between the ionosphere and the magnetosphere.

Some of the most compelling observations of Alfvén waves are obtained in the ionosphere and the lower magne-
tosphere in the form of small-scale, localized, ultra-low-frequency (ULF) electromagnetic waves near auroral arcs 
(e.g., Cohen et al., 2013). Such observations are often associated with the ionospheric Alfvén resonator (IAR)—a 
resonant cavity formed between the conductive E region of the ionosphere and a region of a strong gradient in 
Alfvén speed in the lower magnetosphere (Lessard & Knudsen, 2001; Lysak, 1988, 1991; Pokhotelov et al., 2000; 
Trakhtengerts & Fel’Dshtein, 1987). The resonator can trap Alfvén waves by partial reflection at its boundaries, 
forming a standing wave pattern. Under favorable conditions, the trapped waves may become unstable to the Ion-
ospheric Feedback Instability (IFI; Atkinson, 1970; Lysak & Song, 2002; Sato, 1978; Streltsov & Lotko, 2004; 
Tulegenov & Streltsov, 2017) and grow to large amplitudes where they can further modify the ionosphere via the 
current they carry or via the Ponderomotive force of their electric fields (Streltsov & Lotko, 2008).

The ionospheric feedback instability is based on the idea that an initial field-aligned current (FAC), j∥, modifies 
the E region plasma density (equivalently, conductivity) via adding or removing electrons. This modification, in 
the presence of the background convection electric field, produces secondary j∥, further modifying the conductiv-
ity. This feedback mechanism is the consequence of the density and current continuity equations in the ionospher-
ic E region: 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝑗𝑗‖
𝑒𝑒𝑒

+ 𝛼𝛼
(
𝜕𝜕2
0
− 𝜕𝜕2

)
 and ∇ ⋅ (ΣPE⊥) = −j∥, respectively (Lysak, 1991; Sato, 1978); where, ΣP is the 

height-integrated Pedersen conductivity, E⊥ is the perpendicular electric field in the ionosphere, n and n0 are the 
plasma density and its background value, α is the recombination coefficient, and e and h are the elementary charge 
and the effective thickness of the ionospheric E layer. In the context of Alfvén waves, the initial field-aligned 
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current is that of a downgoing wave and the secondary j∥ is associated with 
the emission of an upward Alfvén wave from the ionosphere. The ionospheric 
feedback instability can then be explained in terms of “overreflection,” where 
the amplitude of the wave reflected from the ionosphere is larger than that 
of the incident wave due to the emission of the secondary current (Lysak & 
Song, 2002; Pokhotelov et al., 2001; Trakhtengerts & Fel’Dshtein, 1991). In 
addition to the overreflection, there exist other conditions for the instability 
to grow. Such details of the ionospheric feedback instability, including the 
dispersion relation of the growing modes, the instability threshold, and the 
growth rate are discussed by Lysak (1991) and Lysak and Song (2002). The 
ionospheric feedback instability and the generation of small-scale Alfvén 
waves in association with field-aligned currents have also been studied in 
many numerical works (e.g., Streltsov & Lotko, 2004, 2008). It is also known 
that the magnetic perturbations associated with IFI may reach to the ground 
and be detected via ground-based magnetometers (e.g., Beggan, 2014; Bely-
aev et al., 1999).

In this work, we present recent results from a sounding rocket experiment 
where ULF oscillations are observed in DC electric and magnetic fields at al-
titudes as low as 120 km. We discuss a group of waves observed near 250 km 
as representing standing waves associated with the ionospheric Alfvén reso-
nator. The electric field components of the Alfvén waves include signatures 
of wave steepening in correlation with large variations of the background 
plasma density that may result from a nonlinear evolution of the ionospheric 
feedback instability. The results are compared to previously published nu-
merical studies of Alfvén waves in the lower auroral ionosphere and with 
other sounding rocket observations.

2. Observations
The Auroral Jets dual-sounding rocket experiment was launched from Poker Flat, Alaska on 2 March 2017. The 
experiment was designed to investigate, among other topics, dynamics of auroral arcs by collecting simultane-
ous in-situ measurements on similar magnetic field lines at two altitudes. The two instrument payloads—each, 
equipped with electric and magnetic field sensors, energetic electron instruments, and plasma density probes—
simultaneously achieved their apogees of 190 (hereafter called the “low-flyer”) and 330 km (the “high-flyer”). 
The sounding rocket experiment was coordinated with ground-based observations by the Poker Flat Incoherent 
Scatter Radar (PFISR) and optical imagers operated by the University of Alaska. A detailed description of the 
experiment design and instrumentation will be published elsewhere.

Figure 1 shows the trajectory of the payloads as a function of altitude and geographic latitude. The two rockets 
were launched in the northward direction such that their trajectories remained roughly at a constant geographic 
longitude of ∼147.5°W, obtaining a maximum separation of ∼10 km in the east-west direction. Superimposed on 
the trajectories are the perpendicular components of the DC electric field in the magnetic zonal and meridional 
directions. Electric field measurements were obtained on the surface perpendicular to payloads' spin axis, which 
throughout the flights were aligned in the direction of the magnetic field. Consequently, full components of the 
electric field were measured in directions perpendicular to the magnetic field while no information was obtained 
in the parallel direction. Also superimposed on the trajectories are color-coded circles that represent the location 
of the payloads at different times in increments of 25 s. The same colors at the peaks of the trajectories indicate 
that the two payloads achieved their apogees simultaneously.

The countdown for the two launches started during the growth phase of a substorm, where an arc located north of 
Poker Flat was expanding southward. As shown in Figure 1, during the upleg of the flights northward DC electric 
fields of magnitude ∼75 mV/m were observed, consistent with data from the PFISR and the convection patterns 
from the Super Dual Auroral Radar Network (SuperDARN). However, before the payloads reached their apogees, 
the arc broke up, leading to a dynamic environment with variable auroral features and in-situ electric fields. 

Figure 1. The trajectory of the two payloads in geographic coordinates. 
Superimposed on the trajectories are the perpendicular components of the 
DC electric field with a maximum amplitude of 75 mV/m. The background 
magnetic field lines are shown with dashed blue lines. The color-coded circles 
on the trajectories represent the location of the payloads at different times in 
increments of 25 s. Six intervals of wave activity (“events”) are identified with 
black arrows which will be further discussed.



Journal of Geophysical Research: Space Physics

AKBARI ET AL.

10.1029/2021JA029854

3 of 9

Strong wave activities, extending to altitudes as low as 150 km, were observed throughout the flights in both the 
electric and magnetic field measurements. A summary of particles and fields data from the low-flyer rocket is 
shown in the left panels of Figure 2. Here, the top panel shows the omni-directional energetic electron flux. The 
next four panels show the zonal and the meridional components of the DC electric field and the zonal and me-
ridional components of the magnetic field fluctuations. The latter two are obtained by subtracting the measured 
fields from the predictions of the IGRF model. The bottom panel shows the field-aligned Poynting flux calculated 
from the electric and magnetic field measurements. In the same format as those in the left panels, results from the 
high-flyer payload are shown on the right. Several periods of strong wave activity (“events”) in the electric and 
magnetic field data are tagged in the zonal component of the electric field in both the high- and low-flyer data. 
These correspond to the intervals marked in Figure 1 by black arrows. In order to aid the comparison between the 
two sets of measurements, the detrended zonal electric field and the meridional magnetic field data from the two 
payloads are repeated in Figure 3 as a function of magnetic latitude.

Prominent features of the observations shown in Figure 2 include two intervals of strong Alfvén wave activity 
in the high-flyer data, identified as events 2 and 3. Enlargements of these intervals are shown in Figure 4. We 
begin with a discussion of event 2 which is presented in the left panels. The Alfvén waves that constitute event 2 
were observed within a broad “inverted V” type electron feature whose peak energy reached 10 keV. Electric and 
magnetic field oscillations with various frequencies are present, primarily carrying a downward Poynting flux. 
Between 5:45:55 and 5:46:15 UT, relatively monochromatic oscillations at 0.25 Hz are observed in the zonal 
electric field (Ezon) and the meridional magnetic field (Bmer). The ratio of 𝐴𝐴

Δ𝐸𝐸𝑧𝑧𝑧𝑧𝑧𝑧

Δ𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

≈
17mV∕m

35nT
 is close to the Alfvén 

speed of 700 km/s calculated from the measured plasma density of ne = 1.5 × 1011 m−3, assuming Mi = 16. At the 
altitude of the observations in the lower ionosphere the electron inertial length, 𝐴𝐴 𝐴𝐴𝑒𝑒 =

𝑐𝑐

𝜔𝜔𝑝𝑝𝑒𝑒

∼ 10 m, is small com-
pared to the perpendicular wavelength, λ⊥ ∼ 2 km, and the modification of the Alfvén wave dispersion relation 
due to electron inertial effects is negligible. The ratio of ΔE/ΔB around 𝐴𝐴 𝐴𝐴𝐴𝐴

√
(1 + 𝑘𝑘2

⟂
𝜆𝜆2
𝑒𝑒) ≈ 𝐴𝐴𝐴𝐴 , thus, identifies 

the observed electromagnetic fluctuation as of Alfvénic nature. In the above equations, c is the speed of light, 
ωpe is the angular electron plasma frequency, VA is the local Alfvén speed, and λ⊥ and k⊥ are the perpendicular 
wavelength and wavenumber associated with the oscillations. The latter two are obtained given the northward 
∼500 m/s velocity of the payload and the assumption that the oscillations represent spatial variations that are 
static during the passage of the payload. As will be discussed in the following, this assumption is not necessarily 

Figure 2. Summary plots of particle and field measurements from the low- and the high-flyer payloads are shown in the left and right panels, respectively. Shown, from 
top to bottom, are the omni-directional energetic electron flux; the zonal and the meridional components of the DC eclectic field; the zonal and meridional components 
of the magnetic field fluctuations; and the field-aligned Poynting flux. Several periods of strong wave activity (“events”) in the electric and magnetic field data are 
tagged in both the high- and low-flyer data. Several instances of discontinuity in the electric field, magnetic field, and Poynting flux are due to interference and have 
been removed to avoid unnecessary attention. The local time in Poker Flat, AK is UTC—9 hr .
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correct since the small-scale Alfvén waves could have a phase velocity of the order of km/s in ⊥B directions. 
This, however, will not significantly affect our analysis at this time. The electric and magnetic oscillations are 
roughly π/2 out of phase, consistent with the interpretation of a standing wave pattern (Clemmons et al., 2000). 
The Poynting flux oscillates at twice the frequency of Ezon and Bmer while remaining mostly downward. The bias 
in the Poynting flux toward negative values indicates that a portion of the flux is likely converted to Joule heating 
at altitudes below the payload. A careful examination of the electron flux at this time reveals modest modulations 
of the peak energy of the keV electrons that appear correlated with the electric and magnetic field variations.

In the same format as the left panels, the right panels in Figure 4 show an interval in the vicinity of the event 
3 in Figure 2. Here, large-amplitude oscillations are observed in both perpendicular components of the electric 
and magnetic fields. At around 5:48:12 UT, the amplitude of the oscillations in Ezon and Bmer reaches to values as 

Figure 3. (Top) detrended zonal electric field and (bottom) meridional magnetic field from the high- (black) and low-
flyer (red) as a function of magnetic latitude. For better representation, the red curves are shifted toward negative values by 
30 mV/m and 100 nT. The three events identified in Figures 1 and 2 are tagged in the top panel.

Figure 4. Enlargements of two intervals in the vicinity of event 2 (left panels) and event 3 (right panels) identified in the high-flyer data in Figure 2. Shown are the 
electron differential energy flux, oscillations in the electric and magnetic fields, and the Poynting flux. The format is the same as that in Figure 2.
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large as ±40 mV/m and ±100 nT, respectively, corresponding to the ratio of 
 ΔEzonal/ΔBmer = 400 km/s. This is comparable to the Alfvén speed of 500 km/s 
derived from the measured electron density of ne = 4 × 1011 m−3, assuming 
Mi = 20 (a mixture of O+ and molecular ions). A similar ratio is obtained for 
ΔEmer/ΔBzon, although, Ezon and Emer (and similarly Bmer and Bzon) appear to 
oscillate with different periods at the beginning of the event around 5:48:15 
UT. A phase shift of ∼π/2 is also observed between the conjugate electric and 
magnetic oscillations. This, along with the oscillatory form of the Poynting 
flux, is interpreted as the signature of a standing wave pattern. The largest 
oscillations are observed at the leading edge of an isolated period of energetic 
electrons (panel a’) that show modulations in their peak energy of ∼5 keV. 
Below the peak energy, there exist signatures of electron acceleration by in-
ertial Alfvén waves—presumably accelerated at much higher altitudes where 
inertial effects are important. These appear in the form of bands extending 
from 1 to 3 keV down to 600 eV, the lowest energy range measured by the in-
strument. Electron flux accelerated by inertial Alfvén waves typically extend 
to energies as low as 100 eV. At later times, between 4:48:40–5:49:10 UT, 
energetic inverted V electrons are again observed which coincide with a sud-
den increase in the background electron temperature measured by Langmuir 
probes (data not shown). Electromagnetic oscillations extend to this interval, 
although with much smaller amplitudes.

Returning to the top panel of Figure 3, it is clear that several important fea-
tures in the electric field measurements observed by the high-flyer are not 
present in low-flyer data. Specifically, the large-amplitude quasi-coherent 
oscillations identified as standing waves (i.e., events 2 and 3 in Figure 2) are 
not observed by the low-flyer. Instead, electric field fluctuations with signif-
icantly smaller amplitudes are observed. This is despite the fact that at the 
time of the events the two payloads were probing similar magnetic field lines 
at around the same times (compare the color-coded circles superimposed on 
the trajectories in Figure 1). It is possible that the waves are attenuated by 
the finite ionospheric conductivity before reaching the lower payload (Lysak 
et al., 2013). Looking at the meridional magnetic fields in the bottom panel 

of Figure 3, however, we find that magnetic field oscillations with similar amplitudes and frequencies as those 
observed by the high-flyer are present in the low-flyer data. It is, therefore, possible that the absence of the 
quasi-coherent electric field oscillations in the low-flyer measurements is a consequence of the standing wave 
pattern, for which the boundary conditions in the E region enforce a null in perpendicular electric fields (thus, a 
rapid decrease in amplitude as a function of altitude) and a maximum in the magnetic fields.

An interesting aspect of the observations presented in Figure 4 are the signatures of wave steepening in the zonal 
component of the electric field (panel b’) which is accompanied by an overall asymmetry of the oscillations to-
ward negative values. This feature is further explored in Figure 5 where the electric and magnetic field data are 
shown along with the ion current obtained by a cylindrical Langmuir probe operating at a fixed bias of Vb = −3 V, 
and the field-aligned current density j∥ derived from the curl of the vector magnetic field measurements. Also 
shown in Figure 5 are the energetic electron flux and the Poynting flux. Langmuir probe's ion current (shown 
in Figure 5e) is proportional to the local plasma density. Its variations are, therefore, interpreted as significant 
modulations of the background plasma density that are clearly correlated with the steepened features in the zon-
al electric field. At the time of these measurements, the Langmuir probe is located in the ram direction of the 
payload and is not affected by the plasma wake produced by the moving body. The gaps in the Langmuir probe's 
current are associated with intervals of Current-Voltage (I–V) sweep that are regularly performed to determine 
the electron temperature and the payload's potential. These intervals are removed in order to direct the attention 
to the periods of fixed bias voltage.

In the bottom panel of Figure 5, the derivation of the field-aligned current density from the magnetic field data 
via the relation j = 1/μ0∇ × B is based on several assumptions which need clarification. First, as mentioned 

Figure 5. An enlargement illustrating the onset of Alfvén waves for event 
3 shown in Figure 4. Energetic electron flux (a), the zonal component of 
the electric field (b), and the meridional component of the magnetic field 
fluctuations (c) are correlated with the Poynting flux (d), Langmuir probe's 
ion current (e) and the field-aligned current density (f) determined from vector 
magnetic field data. The gaps in Langmuir probe's data are associated with 
Current-Voltage (I–V) sweeps that are removed in order to direct attention 
to periods of fixed bias voltage. In the bottom panel, j∥ is marked with “*,” 
indicating that the calculated current densities are subject to large variations 
based on the values assumed for unknown parameters—specifically, the 
perpendicular phase velocity of the waves.
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before, we note in Figures 4b’–4e’ that dBmer and Ezon appear to be oscillating at a different frequency than dBzon 
and Emer—possibly indicating the presence of separate waves whose electric and magnetic fields only appear in 
either the zonal or the meridional direction. In this case, the oscillations in dBmer and Ezon may be identified as a 
wave with a north-south-directed phase front, propagating in the zonal direction. This can be considered in the 
context of the observed northward dB between 5:48:00–5:48:50 UT—consistent with a latitudinal upward current 
sheet—and a south-westward plasma flow of ∼800 m/s. Given the northward trajectory of the payload the static 
current sheet approximation to calculated field-aligned current densities from magnetic field data may not be ac-
curate. Instead, we calculate j∥ by assuming that the oscillations are associated with waves with a predominantly 
westward wave vector in ⊥B directions with the phase velocity of 2 km/s. The calculations are extremely sensitive 
to the assumed parameters; accordingly, in Figure 5f, j∥ is marked with “*,” indicating that the calculated currents 
are subject to large variations based on the values assumed for the unknown parameters.

3. Discussion
In the previous section, the large-amplitude oscillations in the electric and magnetic fields are interpreted in 
terms of standing wave patterns, potentially associated with Alfvén waves trapped in the ionospheric Alfvén res-
onator. The interpretation is based on the oscillatory characteristic of the Poynting flux, the phase shift between 
the electric and the magnetic oscillations, and the ratio of ΔE/ΔB in the vicinity of the local Alfvén speed. The 
frequencies of the oscillations, 0.25 and 0.5 Hz for events 2 and 3, fall within the range of the eigenfrequencies of 
the resonator between 0.1 and 1 Hz (Hiraki & Watanabe, 2011; Lysak, 1991; Trakhtengerts & Fel’Dshtein, 1987). 
The local time of the observations (∼20:45) is consistent with the time periods when ground-based magnetome-
ters often show signatures of ionospheric Alfvén resonances (e.g., Beggan, 2014). Despite such clues that suggest 
a connection between the observations and IAR and IFI, however, there exist other observational and theoretical 
factors that need to be discussed. For example, amplification of trapped ULF waves by the ionospheric feedback 
instability should occur under favorable conditions in the ionosphere. The conditions, that are extensively dis-
cussed in the literature (e.g., Doe et al., 1995; Streltsov & Lotko, 2004), include low ionospheric conductivity 
and large perpendicular electric fields. Such conditions often exist in the return current regions in the vicinity 
of auroral arcs where conductivity is reduced by the upward motion of electrons that carry field-aligned current 
from the ionosphere. We note, however, that in Figure 2, both events 2 and 3 are observed in conjunction with 
energetic electron precipitation. Furthermore, the amplitude of the perpendicular electric field, E⊥, at these times 
is rather modest, of the order of 30 mV/m or less.

The requirement for overreflection of Alfvén waves from the ionosphere, which is a necessary condition for the 
development of the feedback instability, is given by the linear theory as ω < k⊥⋅ (uE + γ ud) (Lysak & Song, 2002). 
Here, uE is the E × B drift, 𝐴𝐴 𝒖𝒖𝒅𝒅 = 𝑀𝑀𝑃𝑃𝑬𝑬⟂ −𝑀𝑀𝐻𝐻𝑬𝑬⟂ × �̂�𝒃 is the relative drift between electrons and ions in the 
ionosphere; ω and k⊥ are the angular frequency and the perpendicular component of the wave vector; MP and 
MH are the Pedersen and Hall conductivity of the E region; and γ = 1, indicating that field-aligned currents are 
carried by thermal electrons. In situations where the upward current region is accompanied by energetic electron 
precipitation, γ is greater than one and accounts for the amount of extra ionization produced by the precipitating 
electrons. Verifying the instability requirement in our observations is difficult considering the number of un-
known variables; nevertheless by assuming ω/2π = 0.5 Hz (for event 3), MP = 104 m2/sV, and further considering 
k⊥∥E⊥, and thus ignoring the Hall conductivity, the instability threshold for E⊥ ∼ 30 mV/m requires λ⊥ < 600 m. 
This implies vϕ⊥ < γ × 300 m/s, where vϕ⊥ = ω/k⊥ is the perpendicular phase velocity. Assuming γ = 1 leads 
to vϕ⊥ < 300 m/s, which is far below the 2 km/s that was assumed in order to obtain a realistic j∥ is Figure 5f. 
However, the electromagnetic oscillations of event 3 are observed in the vicinity of energetic electrons for which 
γ > 1. Following γ = 1 + eΦ∥/E0 (Lysak & Song, 2002), where eΦ∥ = 4.5 keV is the characteristic energy of the 
precipitating electrons at the time of event 3, and E0 = 35 eV is the energy required for the production of a new 
electron-ion pair (Rees, 1963), we have γ ∼ 130, and thus the instability threshold is met as long as vϕ⊥ < 40 km/s. 
The above calculation of the instability threshold is clearly dependent on the accuracy of a number of assump-
tions that are adopted.

Another important parameter associated with the ionospheric feedback instability is the ratio of the height-inte-
grated ionospheric Pedersen conductivity, ΣP, and the “Alfvén conductivity” defined as ΣA = 1/μoVA. As discussed 
in many theoretical and numerical works, the “impedance matching condition”, ΣA ≈ ΣP, allows Alfvén waves 
that are excited in the E region to efficiently couple into the resonator—an effect that maximizes the growth 
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rate of the instability (Lysak, 1991; Lysak & Song, 2002; Pokhotelov et al., 2001; Streltsov & Lotko, 2004). 
Assuming an average E region electron density of ∼2 × 1011 m−3, E layer thickness of h = 20 km, and the ion 
Pedersen mobility of MP = 104 m2/sV, ΣP and ΣA are estimated around 6.4 and 1.8 mho, respectively. Despite the 
fact that the impedances are not matched, the ionospheric feedback instability can still develop successfully with 
a smaller growth rate. In fact, ΣP > ΣA may be a favorable condition under which a large-scale FAC splits into 
kilometer-scale filaments (Trakhtengerts & Fel’Dshtein, 1984).

It is helpful to consider our events in the context of the statistical study of kilometer-scale magnetic perturbations 
observed by the CHAMP satellite (Rother et al., 2007). Rother et al. (2007) finds that during periods of moderate 
geomagnetic disturbances similar to the conditions of our experiment, for which Kp = 4.3, magnetic field per-
turbations consistent with signatures of waves trapped inside the ionospheric Alfvén resonator are preferentially 
observed at magnetic latitudes of around ∼65 − 72°—as is the case in Figure 3. They also find that the occurrence 
rate of the magnetic field perturbations maximizes around MLT = 12 hr, and minimizes around MLT = 18 hr; 
and that in the afternoon section the magnetic perturbations predominantly collocate with large-scale Region 1 
upward field-aligned currents. In comparison, the magnetic perturbation events shown in Figure 2 are detected at 
MLT 18.5 hr, and are seen at and slightly pole-ward of a region characterized by an intense flux of precipitating 
electron, which statistically map to the Region 1 upward FAC (Xiong et al., 2020).

In Figure 5, the steepening of the zonal component of the electric field and the overall asymmetry toward negative 
(westward) values show a strong resemblance to the numerical results of Lysak and Song (2002). Similar results 
are also observed in the simulations of Streltsov (2018) where the signatures are discussed in terms of the non-
linear stage of the feedback instability—although, the latter work involves the global resonator formed between 
the conjugate ionospheres in the northern and southern hemispheres. It is expected that in the linear regime of the 
instability, when the amplitude of the wave's electric field and the perturbations of the ionospheric conductivity 
are small compared to the background quantities, the instability produces periodic fluctuations in the ionospheric 
conductivity, electric field, and the field-aligned current density with peaks and valleys of equal amplitudes and 
length scales. As the instability develops into the nonlinear regime, however, the symmetry may break; the am-
plitudes of the downward currents increase, and their perpendicular sizes decrease compared with those of the 
upward currents. The asymmetry arises as a consequence of large variations in ionospheric conductivity. Specifi-
cally, in regions of reduced conductivity, that is, in downward current regions, the electric field intensity increases 
in order to ensure the current closure in the ionosphere. This is accompanied by an increase in the amplitude of 
the downward currents and, consequently, a decrease in their width.

The observations shown in Figure 5 can be compared to the above description in several aspects. First, the large 
variations of the electric field and the implied plasma density compared to the background values may indicate 
that the instability is in the nonlinear regime. Second, the spiky peaks of the electric field coincide with the re-
gions of plasma density depletions. This is similar to the numerical results of Lysak and Song (2002), but in con-
trast to the simulation results presented in Figure 3 of Streltsov (2018). While in the steady-state the downward 
j∥ (corresponding to upward motion of ionospheric electrons) is expected to peak at the location of the maximum 
density gradient, this is not necessarily the case in a dynamic situation. In fact, the phase difference between the 
two determines whether the perturbations decay or grow (Miura & Sato, 1980). The level of implied density var-
iations also requires some attention. Downward field-aligned currents associated with ULF shear Alfvén waves 
are predominantly carried by the upward motion of ionospheric thermal electrons (Streltsov & Mishin, 2018). 
Assuming ∂ne/∂t ≈ j∥/eh, where h is now the effective thickness of the F region, and considering the average F 
region background density of ne ∼ 2 × 1011 m−3 at the time of event 3, the ∼25% variations in plasma density 
suggested in Figure 5e, over a half-wave period of 1 s and a vertical extent of h = 150 km, would require a filed-
aligned current density of the order of 1 mA/m2. Such large currents, while not very common, are also implied 
from the magnetic field perturbations observed by the CHAMP satellite in the same magnetic latitudes and local 
times as our observations (Rother et al., 2007). Our estimate of the current density will decrease if we assume a 
lower frequency for the Alfvén waves or the background ionospheric density. Alternatively, the density variations 
could be associated with modulations in precipitating electron flux and the resulting ionization. Although modu-
lations in electron flux are seen in Figure 5a, they do not appear to be correlated with the variations of Langmuir 
Probe's ion current shown in Panel e.

The observations presented above clearly reflect a dynamic nature of the auroral ionosphere during active peri-
ods which is difficult to fully reconstruct in numerical works. For example, the results presented here and those 
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reported by Cohen et al. (2013) show complex patterns of energetic electron flux in conjunction with ULF elec-
tromagnetic oscillations. The possibility of electron acceleration by Alfvén waves trapped inside the ionospheric 
Alfvén resonator or by Alfvén waves propagating along plasma density cavities is studied by several works (e.g., 
Chaston et al., 2002; Mottez & Génot, 2011; Trakhtengerts & Fel’Dshtein, 1991). While we cannot explain all the 
observational features at this time, the observations should be helpful in guiding future simulations.

4. Summary
An unprecedented set of observations of particles and fields in the auroral ionosphere obtained by a dual-sound-
ing rocket experiment is presented. Localized, large-amplitude (±40  mV/m and ±100  nT), small-scale (λ⊥∼ 
1 km) Alfvén wave structures are observed at altitudes as low as 150 km in the vicinity of up- and downward 
current regions. The oscillations are interpreted as standing waves trapped inside the ionospheric Alfvén resona-
tor that are likely amplified by the ionospheric feedback instability. The electric field components of the Alfvén 
waves show signatures of wave steepening in correlation with electron precipitation and large (∼25%) variations 
of the background plasma density. Aspects of the observations strikingly resemble numerical results that are 
interpreted as the nonlinear regime of the ionospheric feedback instability.

Data Availability Statement
The data used to conduct this research can be accessed at https://doi.org/10.5281/zenodo.5889351.
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