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Abstract Ultra low frequency (ULF) electromagnetic waves have been regularly observed by the CRRES,
Cluster, and Van Allen Probes satellites near the plasmapause during substorms. Frequently, the small-scale
waves are detected together with a large-scale quasi-stationary electric field collocating with mesoscale
plasma flows penetrating into the plasmasphere. These observations suggest that the plasmapause plays
an important role in the conversion of the kinetic energy of energetic particles moving toward the Earth
from the reconnection site in the magnetotail into a large-scale electric field. The field penetrates along the
magnetic field into the ionosphere and generates small-scale, shear Alfvén waves and field-aligned currents.
These waves can form a standing pattern between the hemispheres, and under certain conditions, they can
be amplified by interactions with the ionosphere. This scenario is verified in the paper by reproducing with
simulations structure and amplitude of the ULF waves observed by the Van Allen Probe-A satellite near the
plasmapause on 17 March 2015. The simulations are based on the reduced two-fluid MHD model describing
generation of ULF Alfvén waves and field-aligned currents by the ionospheric feedback instability driven
by the large-scale electric field. Simulations demonstrate good, quantitative agreement between spatial
structure, frequency, and amplitude of the simulated waves and the observations.

1. Introduction

A proper description of the plasma and energy flows in the disturbed magnetosphere-ionosphere system is
one of the critical steps in the modeling space weather. Its integral part is a transport of earthbound-ejected,
mesoscale (hot) plasma flows or MPFs (Nishimura et al., 2014) through the magnetotail and penetration of the
hot plasma into the plasmasphere leading to the enhanced ring current and subauroral ion drifts (SAID) and
polarization streams (SAPS) (Mishin, 2013; Mishin et al., 2017, 2010). The plasmasphere boundary layer, aka
plasmapause (Nishida, 1966), is a narrow region in the magnetosphere where the plasma density increases in
the Earthward direction by a factor of 10–100 over the distance often as narrow as 50–100 km (Carpenter &
Lemaire, 2004). It plays an important role in the transport of the hot plasma from the tail toward the Earth as
indicated by the observations in the plasmasheric “hot zone” (Gringauz, 1983; Horwitz et al., 1986) and a good
correlation of the locations of the plasmapause and the inner boundaries of the outer radiation belt (Foster
et al., 2016; Goldstein et al., 2005; Li et al., 2006) and the plasma sheet (Mishin, 2013; Mishin et al., 2017). The
latter, as well as the dispersionless character of the plasma sheet and aurora (Newell & Meng, 1987) boundaries,
is well-explained in terms of a short-circuiting of MPFs near the plasmapause (Mishin, 2013; Mishin et al., 2010).

In brief, the low-ram pressure MPFs with the cross-tail width <3 RE can propagate across the magnetic field
due to the self-polarization field formed at the front of the hot (>1 keV) ion flow when the surrounding plasma
cannot short out the polarization charge. The polarization shorting occurs when the cold plasma density
exceeds 5–10 cm−3 (Mishin, 2013). As a result, the MPF’s electron population stops, and the hot ions keep
moving inward until being halted by the emerging outward electric field. The cold plasma maintains charge
neutrality in the system, while enhanced plasma turbulence provides anomalous diffusion of the magnetic
field and hot ions in the channel. Except for the turbulence and short-circuiting effects, a similar approach
is used to understand impulsive plasma penetration into the dayside magnetopause (Gunell et al., 2012;
Voitcu & Echim, 2016).
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Figure 1. Schematic plot of the energy conversion on the plasmapause.

That scenario suggests that the plasmapause serves as a power plant in
the magnetosphere, because the main goal of any power plant is to con-
vert different types of energy into the electric energy. In this particular
case the plasmapause converts kinetic energy of the hot MPF plasma into
the energy of a large-scale (with the size of the order of the characteristic
size of plasmasphere boundary layer) electric field. Such large-scale fields
are frequently observed near the plasmapause together with small-scale
(with the transverse size much less than the characteristic size of plasmas-
phere boundary layer) electromagnetic waves, especially during substorm
breakups (Califf et al., 2016; Mishin & Burke, 2005; Mishin et al., 2017). For
example, about 20 individual and storm-time substorm events consisting
of crossing the plasmapause in less than 20–30 min after the onset of
substorms by various satellites have been analyzed by Mishin et al., (2017

and references therein). The large-scale fields and small-scale waves have been observed in all duskside
events. The low-altitude DMSP satellites observe such waves routinely equatorward of the substorm auroral
boundary.

The in situ observations by the Cluster spacecrafts show that the quasi-static fields persist for more than
1–1.5 hr (Mishin, 2013; Mishin et al., 2017). This time is much greater than the transit time of the Alfvén waves
between the hemispheres which is of the order a few minutes. The MPFs are the plasma jets in the magne-
totail with the width across the tail less than 2–3 RE , so that they occupy the magnetic local time region of
≈2 hr. The formation of the field on the duskside is not associated with gradient-curvature drift, which is too
slow, but with the development of the substorm current wedge (Mishin et al., 2017). The maintenance of the
field does not seem to require continuous impingement of MPF, at least for more than 30 min, the expansion
phase duration.

ULF disturbances in the topside subauroral ionosphere composed of compressional and shear Alfvén waves
are termed SAPS wave structures (Mishin et al., 2003). The small-scale oscillations decay in less than 1 hr
after substorm onsets, while the large-scale fields (SAPS) remain for hours (Mishin & Burke, 2005). Considered
among the most feasible mechanisms of SAPS wave structures are the ionospheric feedback instability (IFI;
Streltsov & Lotko, 2004) and the current convective instability (Mishin & Burke, 2005).

This paper focuses on the connection between the large-scale, quasi-stationary electric field and small-scale
ULF electric fields observed near the plasmapause by the Van Allen Probe-A satellite in the beginning of 17
March 2015 substorm (Mishin et al., 2017). We assume that the large-scale electric field appears near the

Figure 2. (a) Electron plasma density measured by the Van Allen Probes-A
satellite during 07:33−08:11 UT on 15 March 2015 (the 03/17/2015 event).
(b) V and H components of the electric field measured by the satellite
during this event.

plasmapause as a result of the short-circuiting mechanism. Once created
in the equatorial magnetosphere, the electric field penetrates along the
ambient magnetic field into the ionosphere and drives there the IFI. The IFI
generates ULF waves that travel back and forth along the magnetic field
between the hemispheres.

This concept is illustrated schematically in Figure 1, and the primary goal of
this study is to verify it by reproducing structure and amplitude of the fields
detected by the Van Allen Probes in the equatorial magnetosphere near
the plasmapause with simulations of the two-fluid MHD model describing
generation of ULF waves by the electric field in the ionosphere and prop-
agation of these waves through the magnetosphere-ionosphere system.

2. Van Allen Probes 03/17/2015 Event
The observational event analyzed in this study was first published by
Mishin et al. (2017), and it consists of large-amplitude variations of the
electric field detected by the Van Allen Probe-A satellite in the equa-
torial magnetosphere during the time interval 07:33−08:11 UT on 17
March 2015 (hereafter, the 03/17/2015 event). It is illustrated in Figure 2,
where Figure 2a shows the plasma density along the satellite trajec-
tory, and Figure 2b shows V and H components of the measured electric
field. In the VDH coordinate system, V is the radial/outward direction, D
is the azimuthal/eastward direction, and H is the meridional/northward
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Figure 3. (a) Power spectral density (PSD) of EH and EV measured by the Van
Allen Probes-A satellite during the 03/17/2015 event. The low-pass filter
with a cutoff frequency 2.75 mHz is shown with a shaded rectangle. (b)
Original EH and EV signals (solid lines) and the low-frequency parts of them,
EHLF

and EVLF
(dashed lines). (c) The original EV signal and the qEV signal

(here q = max(EVLF
)∕min(EHLF

)).

direction. The spacecraft was moving between 20.3 and 20.6 hours
of magnetic local time. The electric field components were obtained
by transformation from GSE to VDH using ephemeris data. The E ⋅
B = 0 assumption is satisfied with accuracy better than 1%.

A more quantitative analysis of the electric fields shown in Figure 2b is illus-
trated in Figure 3. In particular, Figure 3a shows the power spectral density
(PSD) of EH and EV . It also shows the low pass filter with a cutoff frequency
≈2.75 mHz (as a shaded rectangle) applied to EH and EV . Figure 3b shows
the original signals (solid lines) and the low-frequency parts of them, EHLF

and EVLF
(dashed lines). Figure 3c shows the original EV signal and the

EH signal multiplied by a coefficient q = max(EVLF
)∕min(EHLF

). Figure 3c
demonstrates that all major peaks in the original EH and EV and in EHLP

and
EVLP

are in phase. Which means that during the 03/17/2015 event, the satel-
lite travels through a package of two-dimensional structures, consisting of
ULF waves localized in the radial direction (or in the direction perpendicu-
lar to the dipole magnetic field) and extended in the azimuthal direction.
The total magnitude of the low-frequency part of the electric field can be

found as ELF =
√

E2
HLF

+ E2
VLF

. This magnitude is plotted with a solid black
line in Figure 4.

It is important to notice that during 03/17/2015 event, ULF waves had
been observed for ≈38.5 min, and observations reveal many events sim-
ilar to the one considered here. For example, Mishin et al. (2003), Mishin
and Burke (2005), and Mishin et al. (2017) analyzed in detail the electric
and magnetic variations in various events similar to the 03/17/2015 event
in the ionosphere from DMSP satellites and in the magnetosphere from
CRRES to show that such waves are indeed Alfvén waves. The phase rela-
tionship was found to be dependent of the frequency. That is, 0.1–1-Hz
waves are propagating waves, while millihertz-range waves seem to be
standing, as anticipated. These waves will be modeled with a two-fluid
MHD model described in the next section.

3. Model
The two-fluid MHD model used in this study consists of the magnetospheric
and ionospheric parts (Streltsov et al., 2012). The magnetospheric part con-
siders the parallel motion of electrons and the perpendicular motion of
ions in the dispersive Alfvén waves, and it consists of the electron paral-
lel momentum equation, the density continuity equation, and the current
continuity equation:

𝜕v∥e

𝜕t
+ v∥e∇∥v∥e +

e
me

E∥ +
1

men0
∇‖ (nTe

)
= −𝜈ev∥e, (1)

𝜕n
𝜕t

+ 𝛁 ⋅
(

nv‖eb̂
)
= 0, (2)

𝛁 ⋅ j∥b̂ + 1
𝜇0

𝛁 ⋅

(
1
c2

+ 1
v2

A

)
𝜕E⟂

𝜕t
= 0. (3)

Here the subscripts ∥ and ⟂ denote vector components in the directions parallel and perpendicular to
b̂ = B0∕B0, respectively; v‖e is the parallel component of the electron velocity; Te is the background electron
temperature, c is the speed of light; vA = B0∕

√
𝜇0n0mi is the Alfvén speed; and 𝜈e is the electron collision

frequency. At low altitudes, plasma mostly consists of heavy ions (O+
2 and NO+), and the ion mass is mod-

eled as mi = mp

(
1 + 31e−((r−r1)∕r0)2

)
, where mp is the proton mass, r1 = 110.0∕RE , and r0 = 600.0∕RE

(Streltsov & Lotko, 2004).

Since the analysis of 03/17/2015 event illustrated in Figure 3 reveals predominantly two-dimensional structure
of the observed fields, equations(1)–(3) are implemented numerically in a two-dimensional, axisymmetric
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Figure 4. The solid black line shows the magnitude of the electric field
measured during the 03/17/2015 event. The red-dashed line shows the
magnitude of the electric field used to construct a background electric field
inside the computational domain. The solid blue line shows the magnitude
of the background plasma density used in the simulations in the
equatorial region.

dipole magnetic field geometry. The finite-difference time-domain
technique is used to approximate the partial derivatives in (1)–(3),
and the fourth-order predictor-corrector methods based on the
Adams-Bashforth numerical scheme is used to advance the model in time
(Streltsov et al., 2012).

The computational domain represents a 2-D slice of the dipole magnetic
field bounded by L1 = 4.30 and L2 = 5.15 magnetic shells. The ionospheric
boundaries of the domain are set at 110-km altitude. There the iono-
spheric part of the model describes interactions between the field-aligned
currents carried by ULF Alfvén waves and plasma in the E region. The
key aspect of these interactions is the active ionospheric feedback of the
density disturbances caused by field-aligned currents on structure and
amplitude of these field-aligned currents.

The ionospheric feedback mechanism has been extensively studied at
high latitudes for more than 40 years (e.g., Atkinson, 1970; Lysak, 1991;
Lysak & Song, 2002; Miura & Sato, 1980; Pokhotelov et al., 2000; Russell
et al., 2013; Sato, 1978; Streltsov & Lotko, 2004, 2005; Trakhtengertz &

Feldstein, 1981, 1991; Watanabe et al., 1993). These studies demonstrate that under favorable conditions,
the feedback can work in a constructive way, leading to the IFI, which can generate intense, small-scale
field-aligned currents and density structures in the E region. The favorable conditions for IFI development
include the large-scale electric field and the low ionospheric density in the E region. The electric field provides
the energy for the intensification of the small-scale ULF waves and field-aligned currents due to the so-called
over reflection from the ionosphere (e.g., Lysak & Song, 2002). The low ionospheric density (a) provides a low
conductance of the E region, which allows the electric field generated in the equatorial magnetosphere to
penetrate into the ionosphere, and (b) reduces the effects of the recombination, which saturate the instability.

Because the height of the conducting portion of the ionosphere is much less than the parallel wavelength
of ULF waves, it can be considered as a narrow slab, where the density and the electric field are relatively
uniform. In that case, the simplest mathematical form of the ionospheric part of the model can be given by two
equations connecting the perpendicular electric field, E⟂, and the plasma density, nE , in the ionosphere with
the field-aligned current density, j‖. One is the Poisson equation, derived by integrating the current continuity
equation 𝛁 ⋅ j = 0 over the effective thickness of the ionospheric E region (h ≈ 20 km):

𝛁 ⋅ (ΣPE⟂) = ±j∥. (4)

Another is the ionospheric density continuity equation:

𝜕nE

𝜕t
=

j‖
eh

+ 𝛼n2
E − 𝛼n2

E0. (5)

HereΣP = MP nE h e∕ cos𝜓 ; MP = 104 m2/sV is the ion Pedersen mobility (the Hall conductivity is not included
in (4) due to the two-dimensionality of the considered problem); e is the elementary charge; 𝜓 is the angle
between the normal to the ionosphere, and L = 4.9 dipole magnetic field line at 100-km altitude. In (4) the “+”
sign is used in the southern hemisphere, and the “-” sign is used in the northern hemisphere. The term 𝛼n2

E in
the right-hand side of (5) represents losses due to the recombination (𝛼 = 3× 10−7 cm3∕s is the coefficient of
recombination); and the term 𝛼n2

0E represents the unperturbed source of the ionospheric plasma providing
an equilibrium state of the ionosphere, nE0.

The assumption that the ionospheric E region is a narrow conducting slab described with equations (4) and
(5) substantially simplifies the model. The ionospheric part of the model can be made more sophisticated
by including various physical mechanisms. For example, it may include effects of the neutral winds and the
effects of the inhomogeneity with altitude of the ion-neutral collision frequency in the ionospheric E region.
Inclusion of these effects will make the boundary conditions more complex and require more assumptions
about various ionospheric parameters (because the direct measurements may not be conducted in the “right”
place in the ionosphere when some events-of-interest are observed on satellites in the magnetosphere), but,
what is very important, they do not change the basic physics of the ionospheric feedback interactions.
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Figure 5. (a) The background electric field and (b) the electron plasma
density inside the computational domain.

For example, Sydorenko and Rankin (2017) suggested that the inhomo-
geneity with the altitude of the ion-neutral collision frequency can satu-
rate IFI development or even prevent it from occurring because it creates a
shear in the ion velocity at low altitudes which can “smooth out” the local-
ized disturbances of the ionospheric conductivity which are an important
part of IFI. However, this particular effect had been carefully investigated
by Trakhtengertz and Feldstein (1981, 1984, 1991), who demonstrated that
this inhomogeneity can change the threshold and the growth rate of the
instability, but it certainly does not prevent its occurrence when the mag-
nitude of the electric field in the ionosphere exceeds the threshold value.
The ionospheric feedback boundary conditions for the model including
effects of the altitude-dependence of the ion-neutral collision frequency
are given by equations (A6)–(A11) in Trakhtengertz and Feldstein (1991).
These equations demonstrate that the effect of the inhomogeneity of the
collision frequency with altitude strongly depends on the density profile
in the ionosphere, and the more the conductivity is localized in the narrow
region, the less important this effect is.

The nighttime density and conductivity profiles below the ionospheric F
region are given by Titheridge (2003). These profiles demonstrate that dur-
ing the nighttime, the density in the ionosphere is low, and the Pedersen
conductivity indeed is concentrated in the narrow slab with ≈10–20-km
effective height. In this case effects of velocity shear are not important
for the development of IFI, and the active ionospheric response on the
magnetospheric field-aligned current in ULF frequency range can be ade-
quately described with equations (4) and (5)

3.1. Background Parameters
The main background parameters defining spatial structure, amplitude, and dynamics of ULF waves in the
numerical model are the magnetic field, electric field, and plasma density. The background magnetic field is
assumed to be a dipole: B0 = B∗ (1+3 sin2 𝜃)1∕2∕r3, where B∗ = 31.000 nT; 𝜃 is the magnetic latitude; and r is a
geocentric distance measured in RE = 6, 371.2 km. The dipole magnetic field is a reasonable approximation of
the background field near the plasmapause (L = 4.5− 4.9), and we do not expect that our results will change
qualitatively if a more realistic model for the magnetic field will be used.

The background electric field, E⟂0, is defined from the low-frequency part of the field measured by the Van
Allen Probe-A satellite during the 03/17/2015 event. This field is measured in the equatorial magnetosphere,
and it is shown with the red-dashed curve in Figure 4. The electric field inside the entire domain is constructed
in two steps. In the first step, the field shown in Figure 4 is integrated in the direction perpendicular to the
background magnetic field to get the electric potential, 𝜙, in the equatorial magnetosphere. In the second
step, this potential is mapped equiv-potentially along the ambient magnetic field through the entire domain,
and the background electric field is calculated as E⟂0 = −𝛁⟂𝜙 everywhere. The 2-D plot of the resulting
electric field is shown in Figure 5a.

The background plasma density in the domain is constructed using data from 03/17/2015 event and the
information about the background electric field. We consider a general case when the ionospheric plasma
densities in the southern and northern hemispheres are not equal to each other. The density in each
hemisphere is given with the formula

n0(L, 𝜇) =

{
n1N,S

(L) (r − r2) + n2N,S
(L), r1 < r < r2

n3N,S
(L) e−(r−r2)∕r0 + n4N,S

(L)∕r, r > r2
. (6)

Here r = r(L, 𝜇) is the geocentric distance to the point with the dipole coordinates L and 𝜇; r0 = 0.0175;
r1 = 1 + 110∕RE (near the E region maximum); r2 = 1 + 270∕RE (near the F region maximum); and the
functions n1N,S

(L), n2N,S
(L), n3N,S

(L), and n4N,S
(L) define densities in the ionospheric E region, F region, and in

the equatorial magnetosphere. In particular, n4N
(L) ≡ n4S

(L) is chosen to provide the density profile in the
equatorial magnetosphere shown in Figure 4. Function n2S

(L) is chosen to provide a density magnitude of
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Figure 6. Five snapshots of the parallel current density in the
magnetosphere taken from the simulation.

2.0 × 105 cm−3 in the southern F region, and n2N
(L) is chosen to provide

a density of 1.0 × 106 cm−3 in the northern F region. The factor of 10 dif-
ferences in the ionospheric density between the northern and southern
hemispheres is very typical for the situation when one hemisphere is in
the night and another is in the day light, which happens quite frequently.
Both values of the ionospheric density are well within the range of the
observational values.

Function n1N,S
(L) is chosen from a current-free equilibrium state: They both

are inversely proportional to E⟂0 in the ionosphere, so that ∇ ⋅ (ΣPN,S
E0⟂) =

0. But the constants of proportionality between E⟂0 and n1N,S
(L) are dif-

ferent in the southern and northern hemispheres: In particular, n1N
(L)

provides a minimum density in the northern E region of 5.0 × 104 cm−3,
and n1S

(L) provides a minimum density in the southern E region of 1.0 ×
104 cm−3. The resulting 2-D plot of log10(n0) inside the computational
domain is shown in Figure 5b.

The current-free relation between E0 and n0 used in this study is
observed in the subauroral ionosphere by the low-orbiting satellites and
ground-based radars (e.g., Foster & Burke, 2002; Mishin et al., 2003). This
current-free equilibrium state is an important feature of the considered
events, because the main hypothesis investigated here is that the ULF
waves are generated by the electric field in the ionosphere, and these
waves are observed for an extended period of time. For example, in the
03/17/2015 event, the ULF waves are observed during ≈38.50 min, which
means that the electric field in the ionosphere exists at least during that
time. If this field is not in the current-free equilibrium with the den-
sity/conductivity in the ionosphere, then it will generate there a large-scale
field-aligned currents which will produce the electric field with the oppo-
site polarity diminishing the original field.

4. Results and Discussion
In this section we summarize the results from a large number of simu-
lations and chose for illustration purposes only the results matching the
03/17/2015 observations in most detail. Thus, Figure 6 shows five snap-
shots of the parallel current density taken from the simulation at t = 710.5,
1,421.0, 2,131.5, 2,842.0, and 3,552.5 s. The red color marks “positive”
field-aligned currents flowing in the direction of the ambient magnetic
field (from the southern to northern hemispheres), and the blue color
marks “negative” field-aligned currents flowing in the opposite direction.
The simulations were conducted for the minimum value of the E region
density in the southern hemisphere of nES = 1.0 × 104 cm−3 (corresponds
to ΣP = 0.32 mho) and the minimum value of the E region density in
the northern hemisphere of nEN = 5.0 × 104 cm−3 (corresponds to ΣP =
1.60 mho). The density value in the F peak is nFS = 2.0 × 105 cm−3 and
nFN = 1.0×106 cm−3 in the southern hemisphere and nFN = 1.0×106 cm−3

in the northern. The background electric field has the maximum amplitude
of 49 mV/m on the ionosphere in both hemispheres. The two dimensional
plots of the magnitude of the background electric field and density inside
the computational domain are shown in Figure 5.

This particular set of parameters had been chosen from several runs of simulations as the ones providing
the best correlation between the numerical results and the 03/17/2015 observations. For example, numeri-
cal results similar to the one discussed in the paper were obtained in the simulations with (1) nES = 0.25 ×
104 cm−3, nEN = 5.0×104 cm−3, nFS = 1.0×105 cm−3, and nFN = 1.0×106 cm−3; (2) nES = 0.5×104 cm−3, nEN =
5.0 × 104 cm−3, nFS = 1.0 × 105 cm−3, and nFN = 1.0 × 106 cm−3; and (3) nES = 2.0 × 104 cm−3, nEN =
6.0 × 104 cm−3, nFS = 2.0 × 105 cm−3; and nFN = 6.0 × 105 cm−3.

STRELTSOV AND MISHIN 7446



Journal of Geophysical Research: Space Physics 10.1029/2018JA025899

Figure 7. (a) Temporal dynamics and spatial structure of the simulated
perpendicular electric field along the trajectory of the RBSP-A satellite in the
magnetosphere during the 03/17/2015 event. Two dashed lines marks two
space-time “trajectories” of virtual satellites RBSP-V1 and RBSP-V2 “flying”
through the computational domain in different moments of time. (b) Power
spectral density (PSD) in the frequency range 0–20 mHz of the electric field
shown in (a). RBSP = Van Allen Probes (aka Radiation Belt Storm Probes).

There are two particular features of these parameters worth to be dis-
cussed. The first one is a relatively low ionospheric density/conductivity
to the nighttime conditions at least in one hemisphere. The low state of
the ionospheric conductivity is an important necessary condition for the
development of the instability. When the conductivity is high, the insta-
bility can be suppressed by the recombination in the E region, which is
proportional to the 𝛼n2

0 (Miura & Sato, 1980; Streltsov & Lotko, 2005), and
such suppression had been observed in several simulations conducted
with a relatively high ionospheric density. It should be mentioned here
that the instability can develop even in the high-density/conductivity case,
but it will require much larger magnitude of the electric field than it is
observed during 03/17/2015 event.

Another important feature of these parameters is the asymmetry between
the ionospheric density/conductivity in two hemispheres. It has been
shown by Pokhotelov et al. (2002) that such asymmetry causes asymmetry
in amplitude of electric fields and currents produced by standing Alfvén
waves in southern and northern hemispheres. The electric field has larger
magnitude in the hemisphere with a smaller ionospheric conductivity,
and the field-aligned current has smaller amplitude in this hemisphere.
This effect is a direct consequence of how the electromagnetic waves
reflect from a surface with a finite conductivity. The practical importance
of this asymmetry for modeling 03/17/2015 event is that during this event,
the satellite crosses the magnetic field lines near the magnetic equator.
(The trajectory of the Van Allen Probe-A satellite along the magnetic lat-
itude 𝜃 ≈ −12∘ mapped into the computational domain is shown with
a dashed line in the top frame in Figure 6.) And if the ionospheric densi-
ties/conductivities are identical in both hemispheres, then the structure
of standing ULF waves will be symmetrical relative to the equator with
minimum in the electric field and field-aligned currents in the equatorial
region. Thus, different density magnitudes in two hemispheres provide dif-
ferent magnitudes of the small-scale electric fields near the equator for the
same magnitude of the large-scale electric field. We define a “large-scale”
structure as the structure with the size larger then or equal to the size of
the plasmapause, (≈0.5 L, see Figure 4), and a “small-scale” structure as the
structure with the size much less than the size of the plasmapause (see
Figure 6).

In the simulation illustrated in Figure 6, the development of the small-scale currents produced by the IFI has
been triggered by the numerical noise which can be interpreted as a random thermal fluctuations of plasma
density in the real ionosphere. The top panel in Figure 6 shows that the small-scale structures start to develop
almost in the entire region where the electric field exceeds the threshold amplitude for the instability. Four
other panels in Figure 6 show that during the time interval from 1,421 to 3,552.5 s, the instability reaches
saturated states, and it produces small-scale ULF waves with almost constant amplitudes and spatial scales
within the same spatial region bounded by L ≈ 4.45 and L ≈ 5.00.

These effects are illustrated in more detail in Figure 7. Figure 7a shows the temporal dynamics and spatial
structure of the perpendicular electric field taken from the simulation along the the trajectory of the Van
Allen Probe-A satellite mapped into the computational domain. (It is shown with the dashed line marked as
Radiation Belt Storm Probes (RBSP)-A in the top panel in Figure 6.) The bottom panel (Figure 7b) shows spatial
structure of the PSD in the range 0–20 mHz of the electric field shown in Figure 7a. Figure 7b again emphasizes
the fact that the instability produces small-scale electromagnetic waves with almost constant frequencies and
spatial scales localized in some particular region in space and lasting for more than 40 min. The frequencies
of these waves are 6 mHz and 12 nHz.

To make a detailed comparison between the numerical results and the 03/17/2015 observations, two virtual
satellites, RBSP-V1 and RBSP-V2, were “flying” through the simulation along the trajectory and with the veloc-
ity corresponding to the real Van Allen Probe-A satellite. The virtual trajectory was chosen to be perpendicular
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Figure 8. (a) V component of the perpendicular electric field observed during 03/17/2015 event. (b) Power spectral
density (PSD) in the frequency range 0–20 mHz of V and H components of the electric field observed during the
03/17/2015 event. (c and e) Perpendicular electric field “measured” by the RBSP-V1 and RBSP-V2 satellites. (d and f) PSD
in the frequency range 0–20 mHz of the electric field measured by the RBSP-V1 and RBSP-V2 satellites.

to the background dipole magnetic field near the magnetic latitude 𝜃 = −12∘. The velocity of the satellite had
been estimated from the 03/17/2015 observations showing that the Van Allen Probe-A satellite travels from
L = 4.30 to L = 5.15 in ≈38.5 min, which gives the satellite speed 3.68 × 10−4 L/s or 2.34 km/s in the equa-
torial magnetosphere. Navigational data of the Van Allen Probe-A satellite show that during the 03/17/2015
event, the L component of the satellite velocity was not uniform, but the difference between the real velocity
and the estimated value is insignificantly small. Therefore, the trajectories of the virtual satellites are shown
with two straight, dashed lines in the time-space domain illustrated in Figure 7a. Two trajectories were chosen
to illustrate the difference in the structure of measured ULF waves depending on the time when the satellite
crosses the plasmapause.

The comparison between the numerical results and the observations is shown in Figure 8. Figure 8a shows
EV measured by the Van Allen Probe-A satellite during the 03/17/2015 event with a solid black line. The
low-frequency part of the signal is shown with a dashed line. It should be reminded here that the structure
of EV and EH observed during 03/17/2015 event is very similar (see Figure 3c), and this is the reason to show
only EV in Figure 8a. Figure 8b shows the PSDs of the measured EV and EH in a frequency range 0–20 mHz.
Figures 8c and 8e show the perpendicular electric field, EL, taken from the simulation along the virtual “tra-
jectories” RBSP-V1 and RBSP-V2. Figures 8d and 8f show the PSDs of the fields shown in Figures 8c and 8e
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correspondingly. The main conclusion from Figure 8 is that the numerical results demonstrate good, quan-
titative agreement with the waves observed in the magnetosphere near the plasmapause. In particular, the
amplitudes, location, and the spatial structures of the simulated waves match observations quite well. The
PSDs of the measured and simulated fields also show good correlations, particularly in the frequency range
3–8 mHz, which may corresponds to the first dominant frequency obtained in the simulation of 6 mHz. PSDs
of the observed and simulated fields in Figures 8b, 8d, and 8e also shows some peaks in the frequency range
10–13 mHz, which may correspond the second dominant frequency obtained in the simulation of 12 mHz.
The high degree of correlation between the numerical results and observations let us conclude that the model
of the ionospheric feedback interactions considered in this study adequately represents the basic physics of
the magnetosphere-ionosphere (MI) coupling carried by ULF waves and field-aligned currents.

Our simulations demonstrate that the presented model can produce a broad range of small-scale ULF
waves/structures with different amplitudes, frequencies, and spatial scales depending on the background
parameters. However, the model has its own limitations which should be discussed as well. The two major
parameters of this model is the background electric field and the plasma density in the ionospheric E region.
The field serves as the constant source of the free energy for the generation of small-scale electric fields and
currents by IFI, but the model does not explain what physical mechanism produces this electric field. To pro-
vide the long-lasting generation of the ULF waves by the ionospheric feedback, the field should be in the
current-free equilibrium with the ionospheric density/conductivity. If this condition is not satisfied, this field
will generate large-scale field-aligned currents in the ionosphere, and these currents will travel with the Alfvén
velocity between the hemispheres, and the entire magnetosphere-ionosphere system will oscillate with some
ULF frequency. These oscillations are not detected neither in the observations nor in the simulation. There-
fore, the model does not describe the transition process when the electric field and the plasma density in the
ionosphere reaches some equilibrium state.

One such transition process had been successfully modeled with the same set of equations for ULF
waves/field-aligned currents in the magnetosphere and the active ionospheric feedback as the one con-
sidered in this study by Streltsov and Lotko (2005); however, the main difference between that work and
the present study is the presence of the large-scale field-aligned current interacting with the ionosphere
at high altitudes in Streltsov and Lotko (2005). That field-aligned currents self-consistently cause the elec-
tric field in the ionosphere and modify the ionospheric density accordingly. That approach is suitable for
the open/extended magnetic field lines mapping the auroral ionosphere into the distant tail, but it is not
applicable to the subauroral zone, near the plasmapause, where the magnetic field lines are closed.

Another physical mechanism considered in the literature to explain excitation of the large-scale electric field
in the magnetosphere is the field line resonance. It is produced by the standing shear Alfvén waves and can
be driven by the compressible, fast MHD modes, propagating across the magnetic field from the magnetotail
(Samson et al., 1992; Southwood, 1974) or by the incompressible, large-scale surface waves (Hasegawa, 1976;
Streltsov & Lotko, 1995). The transverse gradient in the magnetospheric plasma is important for the excitation
of field line resonance by both mechanisms. It promotes coupling between fast and intermediate MHD modes
in the first case and development of the surface waves on the sharp density gradients in the second case.
Both of these mechanisms were not applicable to the 03/17/2015 event because in order to excite field line
resonance, the driver (and the large-scale field) must oscillate with the eigenfrequency of the resonator. But
the observations of the 03/17/2015 event (and several other similar events reported by Mishin et al., 2017)
demonstrate that the large-scale electric field is quasi-static, at least during the time of the event (≥40 min).

Therefore, the most suitable mechanism for the explanation of the large-scale electric field in the magne-
tosphere is the injection of the hot plasma from the reconnection site in the magnetotail into the inner
magnetosphere and the interactions between hot particles and the cold plasma inside the plasmasphere.
This process, investigated by Mishin et al. (2010), Mishin (2013), and Mishin et al. (2017), suggests that the rel-
atively cold and dense electrons inside the plasmasphere “short cut” the electric current carried by the hot
electrons, and the hot ions transport the positive charge further inside the plasmasphere then the hot elec-
trons can transport negative charge. As a result, a large-scale electric field pointed in the outward from the
Earth direction is generated near the plasmapause by the hot ions penetrating inside the plasmasphere fur-
ther than the hot electrons. The magnitude and polarity of this field correspond to the parameters of the field
observed during 03/17/2015 event.
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Therefore, the plasmapause in the short cut mechanism acts as a boundary for the hot electrons injected from
the magnetotail, and consequently, it defines the location where the large-scale perpendicular electric field
is generated in the magnetosphere. In other words, one can say that plasmapause serves as a power plant
in the magnetosphere, because the main goal of any power plant is to convert different types of energy into
the electric energy. The small-scale waves are produced by the IFI in the ionosphere, and their parameters
(frequency and the perpendicular wavelength) are defined mostly by the parameters of the ionosphere. This
can be seen from the frequencies of the ULF waves illustrated in Figure 7b. In particular, the main dominant
frequency of the ULF waves obtained in the simulations changes very little in the region between L = 4.47
and L = 4.98, whereas the plasma density in the equatorial magnetosphere changes there almost by a factor
of 100 (which means that the local Alfvén speed changes by a factor of 10).

5. Conclusions
The results from this numerical study demonstrate that the small-scale electromagnetic waves frequently
observed by satellites in the equatorial magnetosphere in the vicinity of the plasma pause can be generated
by the magnetosphere-ionosphere interactions carried by the ULF field-aligned currents in the subauroral
zone. These currents are produced by the IFI driven by the large-scale electric field in the ionosphere. This
quasi-stationary field is generated in the equatorial magnetosphere by the interactions between the hot, ten-
uous particles injected into the inner magnetosphere from the reconnection site in the magnetotail and the
cold, dense plasma inside the plasmasphere. The field is mapped electro-statically along the geomagnetic
field into the ionosphere in both hemispheres.

This theoretical concept has been used to explain observations performed by the Van Allen Probe-A satel-
lite in the equatorial magnetosphere at the radial distance ≈5 RE on 17 March 2015. The observations reveal
small-scale, two-dimensional electromagnetic waves accompanied by the large-scale electric field in the vicin-
ity of the strong transverse gradient in the plasma density (aka plasmapause). The observations have been
modeled with the two-fluid MHD code, describing propagation of the ULF waves and field-aligned currents
in the magnetosphere and interactions between these currents and the ionospheric plasma. In particular, the
model includes effects of the active ionospheric feedback on structure and amplitude of the currents causing
variation in the ionospheric density/conductivity.

Simulations demonstrate that for the magnitude and structure of the large-scale electric field observed during
the 03/17/2015 event, the IFI develops when the conductivity in at least one of the hemispheres is relatively
low (ΣP = 0.32 mho). The instability produces ULF waves with frequencies and perpendicular sizes match-
ing the observations in good, quantitative detail. In particular, numerical results match observations in the
wave frequency, amplitude, and the perpendicular wavelength. The simulations also show that the instabil-
ity develops in the localized region in the ionosphere where the necessary conditions for it are satisfied, and
it reaches some dynamic steady-state which can last for more than 40 min. This last finding explains the fact
that these waves are observed in the vicinity of the plasma pause quite frequently.

6. Data Availability
The electric field and density measured by the Van Allen Probe-A satellite during 07:33–08:11 UT on
17 March and shown in Figure 2, the executable code used in the simulations, the data files used to
run the code, and the results from the simulation shown in Figure 6 are available from Figshare.com
(https://doi.org/10.6084/m9.figshare.6823091.v1).
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