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1. Introduction
Venus, different from the Earth, is a hot and dry planet and lacks an intrinsic magnetic field. As the sister planet 
of the Earth, the long-term oxygen loss at Venus is always a fundamental theme of research, especially on account 
of the implication for the Earth's past, future and habitability (Lammer et al., 2008; Way et al., 2016). Different 
mechanisms have been identified to contribute to the oxygen escape process at Venus, such as thermal (Jeans) 
escape (Lammer et al., 2006), non-thermal photochemistry (Shizgal & Arkos, 1996), as well as the effects from 
the solar wind. The continually blowing solar wind interacts with Venusian upper atmosphere/ionosphere and 
removes oxygen via pickup process (Barabash et al., 2007; Luhmann et al., 2006, 2008) and Kelvin-Helmholtz 
instability (KHI) (Pope et al., 2009; Walker et al., 2011). The KHI is a fundamental process in planetary and 

Abstract How oxygens escape from Venus has long been a fundamental but controversial topic in 
the planetary research. Among various key mechanisms, the Kelvin-Helmholtz instability (KHI) has been 
suggested to play an important role in the oxygen ion escape from Venus. Limited by either scarce in-situ 
observations or simplified theoretical estimations, the mystery of oxygen ion escape process associated with 
KHI is still unsettled. Here we present the first three-dimensional configuration of KHI at Venus with a global 
multifluid magnetohydrodynamics model, showing a significantly fine structure and evolution of the KHI. KHI 
mainly occurred at the low latitude boundary layer if defining the interplanetary magnetic field-perpendicular 
plane as the equatorial plane, resulting in escaping oxygen ions through mixing with the solar wind at the 
Venusian boundary layer, with an escape rate around 4 × 10 24 s −1. The results provide new insights into the 
basic physical process of atmospheric loss at other unmagnetized planet.

Plain Language Summary Kelvin-Helmholtz instability (KHI) forms where there's a velocity 
difference across the interface between two fluids: For example, wind blowing over water. The KHI also 
commonly occurs when solar wind flows past a magnetized body. At Venus, the solar wind directly interacts 
with the Venusian ionosphere and KHI takes place at the induced magnetosphere. The KHI is often considered 
as an important source of ion escape and atmospheric loss of Venus, however, limited by either scarce satellite 
observations or simplified theoretical estimations, the mystery of the oxygen ion escape process associated 
with the KHI is still unsolved. In this letter, we present the first three-dimensional (3D) KHI structures at the 
Venusian boundary layer, with a newly-developed, global, high-resolution, magnetohydrodynamic model. 
The KHI is well resolved and exhibits fine evolutions in the 3D global model. We have also found that the 
KHI could lead to significant escape of oxygen ions through mixing with the solar wind at the low latitude 
boundary layer of Venus. The KHI-induced oxygen ion escape rate of 4 × 10 24 s −1 is comparable to the previous 
observation estimations. The results illustrate new insights into the atmospheric loss at the unmagnetized 
planets.
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astrophysical plasma environment, formed by the velocity shear between different plasma medium. At Venus, 
KHI couples mass and energy from solar wind into the upper atmosphere and leads to ion escape through mixing 
with the solar wind at the Venusian boundary layer (e.g., Elphic & Ershkovich, 1984; Thomas & Winske, 1991; 
Wolff et al., 1980).

There has been considerable debate regarding the ion escape rate at Venus due to limited availability of in-situ 
satellite observations (Brace et al., 1987; Futaana et al., 2017; Knudsen & Miller, 1992; Lundin, 2011; Masunaga 
et al., 2011; Nordström et al., 2013). The estimated escape rates varied drastically from an order of 10 23 s −1 to 
10 26 s −1, depending on the data base, assumptions, analysis methods and energy range considered. Consequently, 
how the basic physical process such as KHI contributes to the escape rate of Venusian oxygen ions remains 
unclear. Although theoretical and two-dimensional numerical simulations have been conducted to investigate 
the KHI and the associated ion escape (Amerstorfer et al., 2007; Cloutier et al., 1983; Möstl et al., 2011; Li & 
Lu, 2019; Thomas & Winske, 1991; Terada et al., 2002), the limitation of two-dimension without a global config-
uration, however, restricts the exploration of where, how, and to what extent the oxygen ions escape with KHI at 
the Venusian boundary layer.

It is only through highly resolved three-dimensional (3D) boundary layer modeling of the Venus-solar wind inter-
action that we can unveil the property of KHI and the associated oxygen ion escape at Venus. Here we present 
the first 3D KHI structures at the Venusian boundary layer, using a global, high-resolution, multi-fluid magneto-
hydrodynamics (MHD) model for the interaction between the Venusian ionosphere and the upstream solar wind. 
The fine structure of KHI is well resolved in the 3D global model. We have addressed the pathway and the rate of 
the escaping oxygen ions from Venus through the KHI. The results are also of importance for other unmagnetized 
planets such as Mars which has more ongoing satellite observations.

2. Methods
2.1. Multifluid Venusian Ionosphere-Solar Wind Interaction Model

The Venus-solar wind interaction was performed using a multi-fluid, high-resolution global MHD model, 
based on the Grid Agnostic MHD for Extended Research Applications (GAMERA) code (Michael et al., 2021; 
Sorathia et al., 2020; Zhang et al., 2019). The model has high resolving power, enabled by sophisticated numer-
ical algorithms (Zhang et al., 2019), which allowed us to not only resolve the fine structure of the KHI but also 
demonstrate its dynamic nature associated with the oxygen ion escape. The GAMERA code uses a seventh-order 
upwind reconstruction to compute the numerical fluxes at cell interfaces, together with the constraint transport 
method to maintain the divergence of the magnetic field down to round off. The multi-fluid equations allow each 
ion species to move under its own force balance in the parallel direction, while moving in the bulk E×B drift in 
the perpendicular direction through averaging the gyro-motions. The multifluid Venus model solves the conti-
nuity, momentum, and energy equations of four ion fluids (H +, O +, O2 +, and CO2 +) in addition to the magnetic 
induction equation:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
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= ∇ × (𝒖𝒖 × 𝑩𝑩) (4)

where i and n denote the ion and neutral species, respectively. ρi ui, pi, Ti, and εi are the mass density, velocity, 
pressure, temperature and energy of ion i; Si and Li are the ion production and loss rates; 𝐴𝐴 𝑭𝑭

𝑑𝑑
𝑖𝑖  is electromagnetic 

force. Tn is neutral temperature; G is vector of gravitational acceleration; k is Boltzmann constant; γ is the adia-
batic index; mi and mn are the mean molecular mass of ion species i and neutral species n; νin is the collision 
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frequency between ion i and neutral n; u is the bulk velocity; B is the vector of magnetic field. The specification 
of Si, Li, νin, 𝐴𝐴 𝑭𝑭

𝑑𝑑
𝑖𝑖  and the chemical reactions are given in the Supporting Information. The magnetic resistivity, 

which is important in the collisional Venusian ionosphere at low altitude (Ma et al., 2013, 2020), is neglected in 
the magnetic induction equation, since we are concentrating on the boundary layer structures above 400 km under 
constant solar wind driving.

The neutral species considered in the model include O, CO2, O2, and H, which were adopted from Fox and 
Sung (2001). Thus, our results in this work represent the solar maximum condition. Figures S1 and S2 in Support-
ing Information S1 give the altitudinal profiles of photoionization rates, as well as the density and temperature of 
neutrals and ions along the subsolar line.

The model uses the Venus Solar Orbital (VSO) coordinate, in which the X axis is along the Venus-Sun line and 
the Z axis is perpendicular to the orbital plane. We use a computational grid of 256 × 256 × 256 cells in the radial, 
polar, and azimuthal directions to perform high-resolution KHI simulation. The low-altitude boundary of the grid 
is set to be 100 km above the Venus surface. A spherical grid with a radius from 100 to 500 km above the Venus 
surface is applied as the Venusian ionosphere, with a radial resolution of 10 km. Above 500 km, the model has 
an ellipsoid-like grid, with a gradually increasing grid size in the radial direction. The grid resolution is around 
10–30 km at the magnetopause boundary layer. The outer boundaries of X, Y, and Z axes are set to be between 
[−10, 4], [−6 6], and [−6 6] in the unit of Venus Radii (Rv), respectively. We assume a hard wall for ion velocity 
to ensure that no mass flux of plasma goes across the inner boundary, and zero gradient for magnetic field at the 
inner boundary. Moreover, we use a zero-gradient condition for the densities and temperatures for ions except H + 
at the outer boundary. An idealized upstream solar wind/interplanetary magnetic field (IMF) condition was used 
in this study: the solar wind density is 10 cm −3, the IMF and the solar wind velocity are [0, 10, 0] nT and [−400, 
0, 0] km/s in VSO coordinates, respectively.

2.2. Power Spectrum Analysis

The power spectrum analysis was widely used in the analysis of KHI wave properties in the terrestrial magneto-
sphere (Claudepierre et al., 2008; Merkin et al., 2013). In this work, we consider 10 min simulation data with an 
output time resolution of 0.01 min. The power spectral density was

𝑃𝑃 (𝑓𝑓𝑗𝑗) =
2𝑑𝑑𝑑𝑑

𝑁𝑁
|𝑋𝑋𝑗𝑗|

2
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2
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Here fj are the discrete Fourier frequencies in Hz, dt is the sampling rate in seconds, N is the number of points in 
the time series xk, and Xj is the discrete Fourier transform of the time series xk. The power spectral density P(f) is 
calculated as a function of frequency, at every spatial point in the simulation domain. Then, the integrated power 
(IP) over a given frequency band of interest [fa, fb] at each spatial grid point can be derived by:

�� =

��

∫
��

� (� )�� (8)

Here if xk is number density and has the unit of cm −3, then the unit of P(fj) and IP are cm −6Hz −1 and cm −6, 
respectively.
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3. Results
Figure 1 displays a 3D snapshot of the surface waves at the boundary layer of Venus. The solar wind flows from 
the left with the IMF of (0,10,0) nT in the VSO coordinate, directly interacting with the Venusian ionosphere 
and forming an induced magnetosphere. Here the X-Z plane, which is perpendicular to the IMF, is the location 
of current sheet, and thus can be defined as the equatorial plane in comparison with the Earth. In the X-Z plane, 
surface waves occur near the flank region, associated with the KHI vortices. The wavelength of the perturbations 
along the boundary layer increases with distance down the tail. The dynamic evolution of the vortices from the 
dayside Venusian induced magnetosphere to the magnetotail is in Movie S1. Perturbations of the currents in the 
X-Y plane are evident with dynamic variations of current sheet. One can notice that there are O + density perturba-
tions at high altitude in Figure S1 in Supporting Information S1. The wave signatures, seen in the electric current 
in Figure 1, are mainly associated with the compressional magnetosonic waves, which are continually excited by 
the shock and propagated into the upper ionosphere of Venus.

A snapshot of vortex structures near the Venusian boundary in the X-Z plane is shown in Figure 2. Here we 
use the number density of H +, which is mainly from the solar wind, to show interactions between the solar 
wind and Venusian ionosphere and visualize the KHI. In Figures  2a and  2a density interface between solar 
wind/magnetosheath plasma and the induced magnetosphere is clearly identified, evolving with dynamic surface 
waves as seen in the Movie S2. Starting at around X = 0.4 Rv on the dayside, vortices are generated near the 
boundary layer. As advected further down tail, the vortices gradually decay. Those waves are associated with 
KHI and a detailed spectral analysis is performed in the following section. In the simulation, the radial cell size 
at the flank magnetopause is approximately 10 km, which allows us to resolve the boundary layer with about 10 
cells across its width. This resolving power has demonstrated excellent effectiveness in Earth's KHI simulations 
along that magnetopause boundary (Merkin et al., 2013). The estimated width of the boundary layer (Figure 2a) 
ranges from around 800 km at the dayside to 2100 km at nightside tail. Besides KH surface waves, structures of 
low frequency standing wave are noted at X > 0.4 Rv in the magnetosheath. Variations of the y-component of 

Figure 1. Overview of the three-dimensional Venusian space environment. The background shows the y component of the magnetic field in X-Z plane and electric 
current magnitude in X-Y plane at 13.8 min simulation time. The triad on the right of the figure indicates the axis orientation. See Movie S1 for the time evolution.
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magnetic field (By) (Figure 2b) exhibit similar structures as the distribution of H + density. One can also note a 
very fine trajectory of O + in the Movie S3 into the nightside wake with two “lobes” coming from the dayside. The 
finely structured wake shown in our simulations can help to explore the observed Venusian plasma features such 
as ionospheric density maxima (Brace et al., 1987) and nightside ionospheric holes (Grebowsky & Curtis, 1981) 
in the future work.

Figure 2c depicts a snapshot of the By magnetic field perturbations, together with the vectors of the velocity 
perturbations. At 13.8 min simulation time, four KHI vortexes are present at X = 0.3 Rv, 0.1 Rv, −0.2 Rv, and 
−0.5 Rv along the boundary layer, respectively. The spatial extension of the vortices increases from dayside 
to nightside, and becomes most prominent at X = −0.2 Rv. The disappearance of the vortices at the Venusian 
magnetotail is due to reduced velocity shear at the boundary layer through non-linear evolution of the KHI. An 
animation of the simulated H + density, velocity, magnetic field and pressure is provided in the Movie S2, which 
shows that the KHI is initiated at dayside and grows convectively along the flank magnetopause with dynamic 
evolution.

KHI has been proposed to provide important pathway for oxygen ions to escape from a planetary atmosphere 
without an intrinsic magnetic field. Here we introduced a power spectral method of analysis of the fluctuations 

Figure 2. Structure of boundary layer in the X-Z plane at Venus. (a) Distribution of H + number density and (b) magnetic 
field By component in the X-Z plane at 13.8 min simulation time at Venus. (c) The vector field of the H + velocity 
perturbations, δV = V−〈V〉, is shown with black arrows. The background shows By magnetic field perturbations relative to 
their average values, δBy = By−〈By〉. 〈V〉 and 〈By〉 are the 10-min averages at each grid point. See Movie S2 for the related 
time evolution.
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to represent the properties of the surface waves induced by the KHI, with the integrated power spectral density 
(PSD) denoting the magnitude of wave activity at the Venusian space environment. Details of the spectral anal-
ysis is described in the Method section. Figure 3a displays the KHI activity at the 3D Venusian boundary layer, 
which is determined by the maximum value of O + wave power in each radial direction from the Venus center. 
Here the O + wave power represents the integrated PSD of O + mass density. The wave activity is most prominent 
at the flank region and locates primarily in a narrow band between [−0.3 0.3] Rv in the Y direction, stretching 
from dayside to the magnetotail. This indicates that the KHI favors more at the low latitude boundary layer 
(LLBL) if we define the plane perpendicular to IMF (X-Z plane) as the equatorial plane. The wave activity is 
weak at the subsolar region, due to lower velocity shear between solar wind and ionospheric plasma. At the 

Figure 3. Three-dimensional Venusian ion escape associated with Kelvin-Helmholtz instability. Scatter plot of the three-
dimensional distribution of (a) O + number density integrated power (IP) and (b) O + escaping number flux at the Venusian 
boundary layer. The three-dimensional boundary layer is determined by the maximum value of IP in each radial direction 
from Venus center. O + escaping number flux is calculated by nVr where Vr is the radial velocity of O + with outward positive.
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magnetotail, large wave power occurs at both low and high latitudes, which is a consequence of the turbulent 
nature of the Venusian magnetotail.

We explore the three-dimensional global ion escape at Venus in terms of the O + ion number flux (nVr). Figure 3b 
shows the corresponding O + number flux at the boundary layer of Venus. The outflowing O + ions are located 
between [−0.3 0.3] Rv in the Y direction with a narrow stripe, which resembles the distribution of the KHI wave 
power shown in Figure 3a. However, the O + flux is weak at dayside where the wave activity is strongest, since 
more oxygen ions escape anti-sunward to the nightside. As compared to the LLBL, the simulated outflowing O + 
escaping flux at high latitudes is negligible. For nominal solar wind and interplanetary magnetic field driving 
conditions, the calculated escaping rate of O + at the boundary layer (by integrating number flux within Y ∼ [−0.3 
0.3] Rv) is 4 × 10 24 s −1, which is comparable to the estimated O + escape rates in the literature (Luhmann, 1986; 
Futaana et al., 2017). These results demonstrate the importance of the low latitude ionospheric boundary as the 
main escape pathway of oxygen ions at the Venusian boundary layer via the KHI.

Figure 4a shows the distribution of the integration of the PSD for the variations in the H + number density near the 
flank in the x-z plane. A distinct narrow layer of the wave perturbations can be seen in the side of the flank from 
X = 0.4 Rv in the dayside to around X = −1.2 Rv at the magnetotail, representing prominent variations associated 
with KH instability dominates at the Venusian boundary layer. Moreover, an additional layer appears at the inner 
part of the aforementioned power maximum layer, with a much weaker integrated power. This is associated with 
the transport of O + from the dayside ionosphere.

Figure 4. Wave spectrum of Kelvin-Helmholtz instability at Venus. (a), Spatial distribution of integrated power (IP) of the spectrum of H + number density in the 
X-Z plane. The frequency range of the IP is from 0 to 51.2 mHz. (b), Power spectral density distribution as a function of distance from subsolar point and frequency 
along the boundary layer denoted by the IP maximum in Figure 4a. (c), Power spectrum density variation with frequency at (0.38, 0, 1.05) Rv marked by green dot in 
Figure 4a. (d), IP fluctuations integrated in different bands from 0 to 51.2 mHz as a function of distance from subsolar point.
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A further analysis on the KHI-induced surface waves was given in Figures 4b–4d. We created the analysis by 
selecting a sequence of PSD density data from X = 0.8 Rv to X = −0.5 Rv along the power maximum line. 
Figure 4b shows the PSD variations with the distance from the subsolar point and frequency. PSD was mainly 
distributed between 0 and 51.2 mHz. As the distance goes farther away from the dayside subsolar point, more 
high frequency waves are generated. The frequency distribution of PSD (Figure 4c) near the terminator, which is 
marked by the green dot in Figure 4a, peaks at approximately 20 mHz with a PSD of 30 cm −6Hz −1, representing a 
primary period of KHI waves of about 50 s. Other frequency peaks such as 10 mHz, 20 mHz, and 35 mHz are also 
evident, with weaker PSDs of around 10 cm −6Hz −1. Above 40 mHz, the corresponding PSD is relatively small.

The corresponding surface wave power integrated in different frequency bands is given in Figure 4d, as a func-
tion of distance from subsolar point along the boundary layer marked by the maximum value of wave power. A 
two-stage growth of KHI is evident along the magnetopause: a linear growth from 0.82 Rv to 1.17 Rv, followed 
by a non-linear stage after 1.17 Rv. The overall slope yields a grow rate of 3.69 Rv −1 in the linear stage. For the 
individual modes in different bands, nearly all bands of KHI grows linearly first from the dayside boundary layer 
to the terminator region at a distance from subsolar point of 1.17 Rv. After that, the KHI develops into non-lin-
ear, turbulent structures in the magnetotail. The mode (13.3 mHz 24.5 mHz), which denotes the averaged period 
of 50 s in Figure 4c, dominant the linear stage while the (0 mHz 11.1 mHz) mode is more prominent when the 
instability grows non-linearly. This growth feature of KHI is generally similar to that can be seen in the Earth's 
magnetospheric boundary layer, despite of different spatial scales. Further analysis (not shown here) gives a wave 
length of 0.8 Rv and a phase speed 0.016 Rv/s (∼97 km/s), the latter of which corresponds well with the Earth 
under a similar solar wind speed (Claudepierre et al., 2008). However, the wave length is much smaller than the 
Earth's value of 4.2 RE, possibly due to the much smaller size of the Venusian induced magnetosphere.

4. Discussion and Summary
In this letter, we present the first 3D KHI structures at the Venusian boundary layer, with a newly-developed, 
global, high-resolution, multi-fluid MHD model for the interaction between the Venusian ionosphere and the 
upstream solar wind. The KHI is well resolved and exhibits fine evolutions in the 3D global model. The KHI 
leads to significant escape of oxygen ions through mixing with the solar wind at the low latitude boundary layer 
of Venus.

Despite Venus is being explored for more than 60 years, the escape of oxygen ions at Venus by solar wind still 
remains an unclear and fundamental topic. Our results provide a physical explanation for the ion escape and 
atmospheric loss at Venus. The estimated O + escape rate associated with KHI is 4 × 10 24 s −1, by comparing the 
estimated loss rates of O + from sputtered model results of O atoms of about 6 × 10 24 s −1, the modeled ion pick up 
escape rates during medium-speed solar wind conditions of about 1.6 × 10 25 s −1, as well as the negligible ther-
mal atmospheric escape processes and atmospheric loss by photo-chemically produced oxygen atoms (Lammer 
et al., 2006; Luhmann & Kozyra, 1991). This indicates that the KHI plays a significant role in removing oxygen 
ions from Venusian atmosphere. In addition, the downtail outflow resulted from the E × B drift by the solar wind, 
also contributes to the escape of O + from the Venusian ionosphere, as indicated in Movie S3. We have used a Y-Z 
plane with X = −1.5 Rv and estimated the O + escape rate of around 2–2.4 × 10 24 s −1 from this vertical plane. 
Therefore, together with the KHI-induced escape, the total escape rate is around 6 × 10 24 s −1. However, further 
investigation is required to explore the strong downtail outflux of O + in detail in the future work. These results 
also provide implications for the evolution of other unmagnetized planets, comets, as well as exo-planets.

With improved computing capacity and numerical algorithm, planetary environment models have come to a 
new era. The recent numerical efforts have revealed important properties of the magnetic field, ion escape and 
solar wind interactions at Venus (Kallio & Jarvinen, 2012; Kallio et al., 2006; Ma et al., 2013, 2020; Terada 
et al., 2009). In this work, the sophistication and low numerical dissipation of the new global Venus model allow 
us to explore the ion escape and boundary layer of the Venusian induced magnetosphere, as well as the physics 
behind them. Our results exhibit a fine and dynamic evolution of the ions and magnetic fields (see Movies S1–
S3) from dayside into the nightside wake via the E × B drift force. Previous estimations of the KHI-induced O + 
escape rate via theoretical estimation (Lammer et al., 2006) and 2-D hybrid models (Terada et al., 2002) provide 
only a partial view of the loss process with the KHI. The 3D results give insights into how and where the oxygen 
ions escape from the Venus through the KHI. It is also notable that the oxygen ion escape rate depends on the 
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conditions of solar activity and solar wind/IMF (Masunaga et al., 2019). The magnetic field and dynamic pressure 
of the solar wind as well as the source ionospheric O + density dominated by the solar EUV irradiation can modu-
late the KHI behavior and the oxygen ion loss rate, but the general physical process illustrated in this work should 
not change. Furthermore, with a hybrid model, Terada et al. (2002) illustrated that there was asymmetry in KHI 
between hemispheres of upward and downward solar wind motional electric fields. This asymmetry is associated 
with the effect of ion gyro motion, that is, the Hall effect, which is neglected in our multifluid ideal MHD model. 
This effect is closely related to ion gyroradii (the ratio of ion gyroradius to planetary radius), with estimated H + 
gyroradii of 0.063, 0.1, and 0.43 at Venus, Earth, and Mars, respectively (Ledvina, 2008). Hence, the Hall effect 
cannot be ignored at Mars (Ma et al., 2019; Najib et al., 2011), but it is reasonable to assume neglecting the Hall 
effect in the Venus study for large-scale flows (Ledvina, 2008).

The oxygen ion escape with KHI is not easily addressed using observations, especially considering currently there 
is no existing Venus missions focused on the solar wind interactions. A few observational efforts have been made 
regarding the KHI at Venus based on Pioneer Venus Orbiter (PVO) and Venus Express (VEX) (Brace et al., 1982; 
Chong et al., 2018; Pope et al., 2009). The VEX (Svedhem et al., 2007; Titov et al., 2006), has greatly improved 
our understandings of the Venusian space environment (e.g., Barabash et al., 2007; Zhang et al., 2007, 2012). It 
was inserted into an elliptical polar orbit around Venus and crossed the induced magnetosphere boundary twice 
each orbit. However, the observation interval is too limited to examine KH waves. For example, for the spacecraft 
speed of 10 km/s and an average boundary layer thickness of 1,000 km, the spacecraft can cross the boundary 
layer in 100 s, which is only one or two periods of the KH waves. Hence, these past satellites could hardly provide 
a suitable trajectory, measurements, and coverage of the KHI properties as well as the associated oxygen ion 
escape at Venus. Moreover, the flybys via Venus cannot be understated, since Venus always acts an important 
body for gravity assist or maneuver for the route to other planets. The BepiColombo for Mercury, Solar Orbiter 
and Parker Solar Probe for the Sun, and JUICE for Jupiter are equipped with electrostatic analyzers, Langmuir 
probes and magnetometers and could provide both magnetic field and plasma observations. Also, the flyby satel-
lite has a different trajectory while the VEX is in a polar orbit, providing a potential different opportunity with 
longer staying in the boundary layer to examine the possible KH evidences.

Data Availability Statement
The data, plotting code, and materials used in the analyses in this paper are available at website (NSSDC Space 
Science Article Data Repository: https://dx.doi.org/10.12176/03.99.01701). The model source code is not 
publicly accessible yet but can be available upon request for the collaboration purpose.
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