The Design, Testing, and Implementation of a Halon 1301 Fire Extinguishment System for Use in the Service Lunar Adapter at KSC Launch Complex 39

J. T. Myers
Catalytic-Dow

D. C. Weaver
Catalytic-Dow

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v2/session-8/3
A system was to be designed, therefore, that would permit occupants of the SLA to egress in relative safety in the advent of a spill, and would sustain a 20% by volume Halon 1301 atmosphere until the problem causing the spill could be corrected. Due to the precise nature of work performed within the SLA, highly conditioned air is introduced in large quantities (3,200 standard cubic feet per minute into a volume of 6,000 cubic feet). Because the Halon 1301 system was to be installed on the work platforms of the Mobile Service Structure, care was taken to utilize the lightest available material compatible with its usage.

The extinguishing agent is injected as a liquid and vaporizes on leaving the delivery nozzles; therefore, further consideration was given to minimize the possibility that the low temperature discharge would directly impinge upon occupants of the SLA or damage the SLA or LM. This consideration was required because a change of temperature of as much as 140°Fahrenheit could be experienced in the immediate vicinity of the discharge nozzles.

SYSTEM DESCRIPTION

The system is made up of three basic subsystems, two of which are Halon 1301 Storage and Delivery Subsystems; the third is the Control Subsystem. Since Halon 1301 breaks down into toxic by-products when exposed to temperatures in excess of 800° centigrade, it was determined that the initial application of the agent must be rapid. Extinguishment will occur within milliseconds of achieving the required concentrations. This requirement is achieved by the first subsystem which consists of six 85-pound containers and their associated valves and piping which have been placed in groups of two, at three different locations (Figures 2 and 3). Each group enters the SLA from a different access point. The access points were selected to provide as close a uniform dispersal as possible in accordance with operational demands.

The second subsystem consists of three 1-ton cylinders of the extinguishing agent, manifolded in such a way that the discharge from these cylinders enters the SLA through a common piping system which utilizes the same entrance ports as the first system. The Halon 1301 stored in the containers is pressurized with nitrogen to 600 psi, which remains constant throughout discharge (Figures 2 and 3). The piping system is so designed, a sustained rate of flow of either 2.3 or 4.6 pounds per minute can be introduced into the SLA.
The Control Subsystem is so designed that by actuating one switch, the operator can release half (255 pounds) of the rapid discharge system into the SLA and activate a flow rate of 2.3 pounds per minute from the sustaining system. The actuation of another switch can simultaneously release the total contents of the rapid discharge system, and activate the flow rate of 4.6 pounds per minute from the sustaining system.

OPERATIONAL CONCEPTS

The Halon 1301 system has been designed to have two modes of operation. The first mode (Inert Mode) is to be used if a hypergol spill is detected within the SLA. After the system has been armed, by throwing a single toggle switch, the 10% switch is thrown, causing the immediate release of a 10% concentration of the halon, and a sustaining flow of approximately 2.3 pounds per second. The second mode of operation (Extinguish Mode) will be used if a fire is detected within the SLA. After arming as described previously, the Extinguish switch is thrown, releasing a 20% concentration which will extinguish the fire and initiate a flow of 4.3 pounds per second which will prevent reignition. Concentration versus time curves are provided in Figures 4 and 5.

TESTING

In the fall of 1968, tests were conducted utilizing full scale mockups for a major portion of the test program. Test results indicated that concentration of Halon 1301 which would inert or extinguish would be obtained within 2 seconds of activation, and that the sustaining system would prevent combustion for a period of not less than 20 minutes. The rapid introduction of this quantity of Halon 1301 into the SLA did not cause critical overpressures because of the associated cooling.

Sound pressure levels reached 120 decibels for periods not exceeding 20 milliseconds. While this approaches the threshold of pain, the short duration minimizes the probability of permanent ear damage.

While the Halon 1301 gas is colorless and odorless, its rapid discharge causes cooling which condenses the moisture within the air and does cause limited visibility within the SLA. Visual acquisition was recorded with a high speed camera.

In general, it has been determined that the present configuration of the system installed at the Kennedy Space Center Launch Complex 39 will provide a significant level of safety not heretofore possible for those personnel required to work in what could be an extremely hazardous environment.

BIBLIOGRAPHY

SATURN V SPACE VEHICLE

SLA FREON

FIG. 1

FIG. 2
FREON SUSTAINING

FIG. 3

LC-39 SLA FREON INERTING SYSTEM (10%)

FIG. 4
LC-39 SLA FREON
EXTINGUISHING SYSTEM (20%)

FIG. 5