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Key Points: 16 

1. A machine learning model (CAMNet) tailored for nonlinear gravity wave 17 

simulations is developed.  18 

2. CAMNet can achieve a several order-of-magnitude acceleration relative to 19 

physics-based model without sacrificing accuracy. 20 

3. CAMNet opens a new window to improve the parameterization of primary and 21 

secondary GWs in the global atmospheric models. 22 
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Abstract 23 

Gravity waves (GWs) and their associated multi-scale dynamics are known to play 24 

fundamental roles in energy and momentum transport and deposition processes 25 

throughout the atmosphere. We describe an initial, two-dimensional (2-D), machine 26 

learning model – the Compressible Atmosphere Model Network (CAMNet) - intended 27 

as a first step toward a more general, three-dimensional, highly-efficient, model for 28 

applications to nonlinear GW dynamics description. CAMNet employs a physics-29 

informed neural operator to dramatically accelerate GW and secondary GW (SGW) 30 

simulations applied to two GW sources to date. CAMNet is trained on high-resolution 31 

simulations by the state-of-the-art model Complex Geometry Compressible 32 

Atmosphere Model (CGCAM). Two initial applications to a Kelvin-Helmholtz 33 

instability source and mountain wave generation, propagation, breaking, and SGW 34 

generation in two wind environments are described here. Results show that CAMNet 35 

can capture the key 2-D dynamics modeled by CGCAM with high precision. Spectral 36 

characteristics of primary and SGWs estimated by CAMNet agree well with those 37 

from CGCAM. Our results show that CAMNet can achieve a several order-of-38 

magnitude acceleration relative to CGCAM without sacrificing accuracy and suggests 39 

a potential for machine learning to enable efficient and accurate descriptions of 40 

primary and secondary GWs in global atmospheric models. 41 

Plain Language Summary 42 

Atmospheric gravity waves (GWs) are well described by the Navier-Stokes equations, 43 

but solving these equations including small scale remains daunting, limited by the 44 

very high computational cost of resolving the smallest spatial-temporal features in a 45 

global context. To address this challenge, we developed a machine learning model 46 

called CAMNet. Our model demonstrates that neural networks can be trained on 47 

high-resolution compressible atmospheric model data and then used to simulate 48 

gravity wave evolution. Importantly, initial results show that using such trained 49 

model can achieve computational savings of >1000 times compared to a physics-based 50 
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simulation while still achieve highly accurate results. These findings are exciting, as 51 

they suggest that CAMNet can overcome the limitations of current GW 52 

parameterizations and provide a promising avenue for studying the effects of sub-53 

grid-scale processes in atmospheric science and properly incorporating them in global 54 

models. The development of CAMNet opens up major new opportunities for improving 55 

effective model resolution, accuracy, and efficiency. 56 

1. Introduction 57 

Gravity waves (GWs) play prominent roles throughout Earth's atmosphere. They are 58 

generated at lower altitudes by various primary sources including airflow over 59 

topography (i.e., mountain waves, MWs), convection, and jet streams. Additional 60 

GWs are generated due to strong GW/mean-flow interactions described as “self-61 

acceleration” (SA) dynamics and by resonant and off-resonant wave-wave 62 

interactions that can take many forms. These diverse GWs play central roles in 63 

Earth's atmospheric dynamics and climate by transporting energy, pseudo-64 

momentum, and constituents over depths extending into the thermosphere (Fritts & 65 

Alexander, 2003).  66 

Accounting for larger- and smaller-scale GW transports and influences remains a 67 

challenging problem due to the complex physics involved and the need for high-68 

resolution simulations to describe detailed responses where these are important. 69 

Traditional simulation methods, such as finite difference or finite volume methods, 70 

can be computationally expensive, and quantifying sub-grid scale processes has been, 71 

and remains, a major challenge. Multiple parameterization schemes spanning 40 72 

years have aimed to account for GW pseudo-momentum deposition for various GW 73 

sources, discretely or spectrally (i.e., linearly or nonlinearly), from the surface into 74 

the thermosphere (e.g., Lindzen, 1981; Holton, 1982; Palmer et al., 1986; Fritts and 75 

Lu, 1993). More recent schemes have built on these earlier efforts and insights 76 

(Warner and McIntyre, 1996; Hines, 1997; Alexander & Dunkerton, 1999; Yiğit et al., 77 
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2008; Eckermann et al., 2015; Amemiya & Sato, 2016; Gettleman et al., 2019; Miyoshi 78 

& Yiğit., 2019; Ribstein et al., 2022).  79 

Importantly, all these various schemes are based on simplified, often linear or weakly 80 

nonlinear, mathematical models and/or empirical relations that are significant 81 

approximations having limited quantitative predictive abilities. As such, they 82 

introduce significant model uncertainties and biases in predictions of middle and 83 

upper atmosphere responses (Pedatella et al., 2014). Additionally, parameter settings 84 

in these schemes may require adjustments for different models, model configurations, 85 

and/or model resolutions.  86 

Parameterizations addressing GWs that are partially resolved (the "gray zone") that 87 

maintain physical consistency between the resolved and parameterized dynamics are 88 

promising (Vosper, 2015; Vosper et al., 2016), but can also be challenging (Liu, 2019).  89 

Such efforts attempt to represent the complex and highly nonlinear physics of GWs. 90 

However, there remain many aspects of GW dynamics, e.g., SA dynamics, local 91 

instabilities and breaking, multi-scale interactions, and secondary GW (SGW) 92 

generation that become increasingly important at increasing altitudes, but that 93 

cannot be addressed by linear theory or existing GW parameterization schemes. 94 

The recent boom in hardware and software developments relevant to machine 95 

learning (ML) has motivated some efforts to examine the possible benefits that ML 96 

can bring to GW parameterization (e.g., Chantry et al., 2021; Espinosa et al., 2022). 97 

ML methods offer several potential advantages over traditional parameterization 98 

schemes. These include the following:  99 

1) ML applications can learn complex, nonlinear relationships directly from 100 

data, without the need for pre-determined equations or assumptions. This 101 

makes ML methods well-suited for problems exhibiting highly nonlinear 102 

dynamics;  103 
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2) ML can identify complex patterns and relationships in the data that may be 104 

difficult to discern using traditional methods. This can lead to improved 105 

accuracy and transferability of the resulting flow descriptions; and 106 

3) ML has the potential to dramatically reduce the computational cost 107 

associated with descriptions of nonlinear GW dynamics by replacing 108 

traditional parameterizations with highly-efficient, data-driven models. 109 

Such methods have been shown to yield significant benefits in several applications to 110 

date. Chantry et al. (2021) trained a neural network on an upgraded version of an 111 

existing parameterization scheme that yielded improved results describing GW drag 112 

in a numerical weather prediction (NWP) system. In another study, Espinosa et al. 113 

(2022) developed an artificial neural network to emulate the pseudo-momentum 114 

forcing described in a traditional GW parameterization in an idealized climate model. 115 

By coupling the climate model with their ML-based GW parameterization, they were 116 

able to accurately reproduce the quasi-biennial oscillation, a well-known atmospheric 117 

phenomenon. However, these ML-based GW parameterizations rely on traditional 118 

GW parameterizations, hence inherit their assumptions and simplifications. They 119 

also remain unable to represent the true, highly nonlinear GW dynamics. 120 

As mentioned earlier, the dynamics of GWs are governed by the Navier-Stokes 121 

equations. In recent years, several ML-based solvers for partial differential equations 122 

(PDEs) have been proposed to approximate or improve various numerical methods. 123 

The most explored of these can be divided into two categories: physics-informed 124 

neural networks (PINN, e.g., Maziar et al., 2019; Wandel et al., 2022) and neural 125 

operators (NOs, e.g., Lu et al., 2019; Li et al., 2020; Xiong et al., 2023). PINN uses a 126 

neural network as the solution function and optimizes a loss function to minimize 127 

violation of the given equation. However, it experiences difficulties in propagating 128 

information from initial or boundary conditions to unseen parts of the interior and to 129 

future times. NOs are better suited for solving PDEs and have been successfully used 130 

in flow prediction (e.g., Lu et al., 2019; Li et al., 2020; Xiong et al., 2023). However, 131 
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they require large volumes of simulation data. Recently, physics-informed neural 132 

operators, e.g., both the physics-informed Deep Operator Network proposed by 133 

Goswami et al(2022) and physics-informed Fourier neural operator proposed by Li et 134 

al (2022) employ both data and physics losses on operator learning to overcome the 135 

shortcomings of purely PINN or data-driven learning. Our ML approach is also based 136 

on this physics-informed neural operator. 137 

While MLs offer potential advantages for GW simulation, there are also challenges 138 

that must be addressed. The primary challenge is the limited availability of high-139 

quality data for training and validation. To address this need, we utilize the Complex 140 

Geometry Compressible Atmospheric Model (CGCAM), a finite volume model that 141 

has been used extensively to study GW dynamics and their instabilities in the 142 

Mesosphere and Lower Thermosphere (MLT) at very high resolution, see, e.g., Dong 143 

et al., 2020, 2021,2022,2023; Fritts et al., 2020, 2021,2022a, 2022b; Lund et al., 2021). 144 

CGCAM is capable of capturing highly nonlinear GW and GW-related dynamics 145 

yielding high-fidelity GW training datasets for ML-based approaches. 146 

Inspired by previous research in this field, this study investigates the application of 147 

ML algorithms for simulating GW dynamics. Our focus is on the potential of ML to 148 

improve the efficiency of GW simulations while capturing their highly nonlinear 149 

dynamics with high fidelity,  specifically including instabilities, breaking, and SGW 150 

generation. Our approach employs the Compressible Atmosphere Model Network 151 

(CAMNet) model based on CGCAM that solves the compressible Navier-Stokes 152 

equations in the Complex Geometry Compressible Atmosphere Model (CGCAM). To 153 

explore the performance of CAMNet, we train the model using single-channel inputs 154 

instead of multi-channel inputs as explored by Pathak et al (2022), with a focus on 155 

improving training efficiency. We expect this study to provide valuable insights into 156 

the potential benefits of ML in modeling GW and instability dynamics and to inform 157 

future research in this area. When optimized, this method will be extended to three-158 

dimensions in order to achieve much more efficient descriptions of GW effects in 159 

global models while achieving sufficient accuracy.  160 
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2. Method 161 

2.1 Complex Geometry Compressible Atmospheric Model (CGCAM) 162 

The Complex Geometry Compressible Atmosphere Model (CGCAM) solves the 163 

two/three-dimensional (2/3-D) nonlinear and compressible Navier-Stokes equations 164 

written in strong conservation law (flux) form as follows: 165 

𝜕𝜌𝜕𝑡 + 𝜕%𝜌𝑢!'𝜕𝑥! = 0 (1) 166 

𝜕(𝜌𝑢")𝜕𝑡 + 𝜕%𝜌𝑢"𝑢!'𝜕𝑥! = − 𝜕𝑝𝜕𝑥" − 𝜌𝑔𝛿"# +
𝜕𝜎"!𝜕𝑥! (2) 167 

𝜕(𝜌𝐸)𝜕𝑡 + 𝜕5(𝜌𝐸 + 𝑝)𝑢!6𝜕𝑥! = −𝜌𝑔𝑢# + 𝜕%𝑢"𝜎"!'𝜕𝑥! − 𝜕𝑞!𝜕𝑥! (3) 168 

where 𝜎"! and 𝑞! are the viscous stress and thermal conduction, respectively, defined 169 

as 170 

𝜎"! = 	𝜇 ;<𝜕𝑢"𝜕𝑥! +
𝜕𝑢!𝜕𝑥"= −

23>𝜕𝑢$𝜕𝑥$? 𝛿"!@ (4) 171 

𝑞! =	−𝜅 𝜕𝑇𝜕𝑥! (5) 172 

and where 𝜇  is the dynamic viscosity, 𝜅  is the thermal conductivity, 𝛿"!  is the 173 

Kronecker delta, 𝜌	is density, and g is the gravitational acceleration. 𝜇 and 𝜅 depend 174 

on the temperature through Sutherland’s Law (White, 1974).  175 

The solution variables are 𝜌, the momentum per unit volume,  𝜌𝑢" 	𝑜𝑟	(𝜌𝑢, 𝜌𝑣, 𝜌𝑤), and 176 

the total energy 𝐸 = 𝑒 + 𝑢$𝑢$ 2⁄ = 𝑐%𝑇 + 𝑢$𝑢$ 2⁄ , with velocity components 177 

(𝑢" , 𝑢! , 𝑢$)	along (𝑥, 𝑦, 𝑧). Also 𝑐% = &

'()
 is the specific heat at constant volume and T is 178 

the temperature. The compressible equation set is discretized using a second-order 179 
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finite-volume scheme identical to the method discussed by Felten & Lund (2006). 180 

Time advancement is achieved via a third-order accurate Runge-Kutta scheme. 181 

Additional details for CGCAM are provided by Dong et al. (2020) and Lund et al. 182 

(2020). CGCAM has been successfully used in various studies on GW generation, 183 

breaking, and SGW generation (e.g., Dong et al., 2020,2021,2022; Fritts et al., 184 

2020;2021; 2022a; 2022b; Lund et al., 2021). 185 

2.2 Compressible Atmospheric Model Network (CAMNet) 186 

CAMNet is a hybrid machine learning model that combines data-driven and physics-187 

informed approaches. It is based on the Adaptive Fourier Neural Operator (AFNO) 188 

proposed by Guibas et al., 2021. AFNO is a Fourier transform-based token-mixing 189 

scheme with a vision transformer backbone (Dosoviskiy et al., 2020). AFNO is based 190 

on the Fourier neural operator (FNO) that learns in a resolution-invariant manner 191 

and has shown success in modeling challenging partial differential equations such as 192 

fluid dynamics (Li et al., 2020). The Fourier architecture of AFNO applies a fast 193 

Fourier Transform (FFT) to the data and applies its fully connected layers in Fourier 194 

space before performing an inverse FFT back to real space. Moreover, the Fourier 195 

architecture has been demonstrated the ability to perform zero-shot super-resolution, 196 

predicting on higher-resolution data having only seen low resolution data. The 197 

introduction of vision transformer enables it to model long-range dependencies well 198 

and yields a state-of-the-art high-resolution model that resolves fine-grained features 199 

and scales well with resolution and size of dataset. AFNO enables training high-200 

fidelity data-driven models as truly unprecedented resolution (Pathak et al., 2022).  201 

The power of AFNO stems from its ability to combine linear integral operators, 202 

implemented through the Fourier transform, with non-linear activation functions, 203 

enabling it to learn highly non-linear operators. This is similar to standard Multi-204 

Layer Perceptron (MLP) and Convolutional Neural Network (CNN), where linear 205 

multiplications are combined with non-linear activations to learn highly non-linear 206 

functions. Although AFNO truncates higher frequency modes in the Fourier layer, Li 207 
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et al. (2020) argue that the entire operator can still approximate functions with the 208 

full frequency range, due to the function being represented in a high-dimensional 209 

channel space. The non-linear decoder network then recovers the higher frequency 210 

modes when projecting back to the desired dimension. In our case of predicting multi-211 

scale GW dynamics, the Fourier layer truncation of high-frequency information 212 

resulted in poor small-scale structure prediction. To address this, we added a 213 

convolutional layer, which is able to amplify high-frequency components and 214 

complement the information truncated by the Fourier layer.  215 

Additionally, CAMNet further extends the AFNO architecture by incorporating 216 

physics information from the Navier-Stokes equations, which govern the GW 217 

dynamics. These equations are used to create a loss function that captures the 218 

violation of these laws, and Fourier derivatives (Li et al., 2021) are used to compute 219 

the derivatives for the physics constraints, as the automatic differentiation in 220 

PyTorch is very memory-intensive for this type of architecture. The physical 221 

constraints reduce the demand for training datasets and improve the generalization 222 

and physical validity of CAMNet learning compared to purely data-driven methods.  223 

 224 
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Figure 1. CAMNet architecture that utilizes the modified Adaptive Fourier Neural 225 

Operator (AFNO) and follows a patch-based approach. The input frame is divided 226 

into a ℎ × 𝑤 grid of patches, each of size 𝑝 × 𝑝, and encoded in a higher dimensional 227 

space with position embedding is added to form a sequence of tokens. These tokens 228 

are then mixed spatially using AFNO, which is repeated for L layers, and then a 229 

decoder reconstructs the patches for the next frame. A single AFNO layer is 230 

composed of multiple heads for parallel processing. Parts 2-4 of the layer applies the 231 

Fourier transform 𝓕 to the input, followed by a linear transform 𝓡  that acts on the 232 

lower-frequency Fourier modes and filters out the higher-frequency modes, this is 233 

then followed by an inverse Fourier transform 𝓕(𝟏. Part 5 stands for a convolutional 234 

layer that is used to capture the higher-frequency modes that are missed by Part 2-235 

4. Both AFNO outputs 𝓋+	and reconstructed U are functions, and their derivatives 236 

𝐷𝓋+ and 𝐷𝑈 can be computed at any query points x and z. The solutions are 237 

constrained by the Navier-Stokes equations that govern GW dynamics. For more 238 

information, refer to the corresponding texts. 239 

The CAMNet architecture is shown in Figure 1. The CAMNet is currently trained on 240 

horizontal wind U , so CAMNet’s input is U (x, z, t). The CAMNet architecture 241 

consists of 7 parts. Below, we present a detailed computational implementation of 242 

each part. Similar to the iterative update strategy of each Fourier layer in FNO (Li 243 

et al., 2020), the improved iterative update strategy of each Fourier layer in CAMNet 244 

can be expressed as follows:  245 

𝓋) = 𝒫⏞,-./	)𝑈(𝑥, 𝑧, 𝑡) (6) 246 

𝓋12) = 𝜎Y 𝒞⏞3-./	4𝓋1 + ℱ()\3-./	5 ℛ⏞3-./	# ℱ⏞3-./	6𝓋1^ , 𝑓𝑜𝑟	𝑙 = 1,2,⋯ , 𝐿 (7) 247 

𝑈(𝑥, 𝑧, 𝑡 + 1) = 𝒬⏞3-./	7𝓋+ (8) 248 
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where 𝒫 and 𝒬 are encoder and decoder that are realized by two neural networks that 249 

projects 𝑈(𝑥, 𝑧, 𝑡) to hidden representation 𝓋1 and projects the representation back to 250 

the solution 𝑈(𝑥, 𝑧, 𝑡 + 1). 𝜎 is a nonlinear activation function. The additional term 𝒞 251 

is a convolutional layer that acts on 𝓋1.  𝓋1 denotes the output of the 𝑙-th Fourier layer 252 

of AFNO. ℱ denotes the Fourier transform that acts on 𝓋1, ℛ is a linear transform 253 

layer that acts on ℱ(𝓋1) to handle its low-frequency modes. ℱ() is an inverse Fourier 254 

transform that acts on ℛ%ℱ(𝓋1)'. The details of each part are provided below:  255 

Part 1: Encoder 𝓟 The encoder is implemented using the token embedding layer in 256 

the Vision Transformer architecture proposed by Dosovitskiy et al. (2020). This layer 257 

applies a linear projection to each patch to obtain a fixed-sized vector, which is then 258 

concatenated with positional embeddings representing the spatial location of the 259 

patch. The resulting sequence of vectors serves as the input to the sequent neural 260 

network layers. 261 

Part 2-4: Fourier Transform 𝓕, Linear Transform 𝓡, and Inverse Fourier Transform 262 

𝓕(𝟏 263 

As stated in Li et al., 2020, since the inputs and outputs of partial differential 264 

equations (PDEs, such as Navier-Stokes equations) are continuous functions, it is 265 

more efficient to represent them in Fourier space and perform global convolution. 266 

This is due to the quasi-linear computational complexity and global properties of 267 

Fourier transform, making it a more efficient approach. The convolution in the spatial 268 

domain is equivalent to the pointwise multiplication in the Fourier domain. To 269 

capture global features in input data, a Fourier transform is first applied to the inputs, 270 

followed by a Linear Transform ℛ that acts on the lower-frequency Fourier modes by 271 

assigning weights to them. These weights will be updated during the training. Finally, 272 

an inverse Fourier transform is performed to obtain the output. 273 

Part 5: High-frequency Information Compensation 𝓒 In each Fourier layer, we utilize 274 

a convolutional layer to extract high-frequency information because it can amplify 275 
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high-frequency components. Therefore, we train a convolutional layer 𝓒  on the 276 

outputs of Part 1 to extract their high-frequency information. As a complement to 277 

Parts 2-4, the convolutional layer enables the forward prediction of high-frequency 278 

information.  279 

Part 6: Decoder 𝓠 Given two future states independently predicted by Parts 2-4 and 280 

Part 5, we combine them and train a non-linear decoder using a multi-Layer 281 

perceptron layer with a tanh activation function to transform the AFNO outputs back 282 

into U. 283 

Part 7: Physics Informed Loss 𝓛𝒑 284 

As CAMNet is currently trained on horizontal wind U, we utilize only the momentum 285 

flux equation (1) for the physics-informed part, assuming a constant density 𝜌 over 286 

time. Thus, equation (1) can be simplified to 287 

𝜕(𝜌𝑈)𝜕𝑥 + 𝜕(𝜌𝑊)
𝜕𝑧 = 0 (9) 288 

In equation (9), the vertical wind W is obtained from CGCAM simulations at each 289 

prediction time step, and 𝜌 is set to its initial values. The only physics-informed 290 

variable to be calculated in CAMNet is the derivative of U with respect to x. To enable 291 

multi-variable predictions in the future, the physics-informed part will need to 292 

involve the complete Navier-Stokes equations. 293 

The loss function of CAMNet for optimizing equations (6), (7), and (8) is defined as  294 

ℒ = 𝛼ℒ9-/- + 𝛽ℒ3 = 𝛼o𝑈 − 𝑈po + 𝛽	 q𝜕(𝜌𝑈)𝜕𝑥 + 𝜕(𝜌𝑊)𝜕𝑧 q (10) 295 

where 𝛼 and 𝛽 control the weights of data-driven and physics-informed part in loss 296 

functions, respectively. 297 

Table 1: Key model parameters used in CAMNet model and training.  298 
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Hyperparameter Value 

Batch Size 32 

Learning rate 5 × 10(6 
Learning rate schedule Cosine 

Patch size (Case 1/2) 10 × 10/8 × 8 

Number of AFNO layers 8 

Heads number 8 

Heads depth 6 

AFNO embedding dimension 768 

Activation function GeLU 

Dropout 0 

CAMNet is highly optimized so that it can be trained efficiently on massively parallel 299 

GPU resources. The initial application of CAMNet has shown that CAMNet can 300 

achieve order-of-magnitude speedup over numerical model CGCAM. We performed 301 

two cases to evaluate the performance of CAMNet (see “Result” section), and the 302 

relevant model parameters are presented in Table 1. 303 

3. Results 304 

This section describes our initial efforts using CAMNet to accelerate simulations of 305 

GWs arising from two very different sources constrained to a two-dimensional (2-D) 306 

domain. Case 1 describes the generation of initial GWs by large-scale, shear-induced 307 

Kelvin-Helmholtz Instability (KHI) and the successive generation of SGWs at much 308 

larger scales that readily propagate to much higher altitudes. Case 2 describes 309 

mountain waves arising from flow over idealized terrain, their attainment of large 310 

amplitudes, breaking, and generation of SGWs that likewise attain very high 311 

altitudes. CAMNet wind fields and spectra are compared with high-resolution 2-D 312 

CGCAM simulations in both cases.    313 

3.1 Case 1: Gravity Waves emitted from Kelvin–Helmholtz Instability 314 
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We explore here the potential of CAMNet for modeling GWs emitted from Kelvin-315 

Helmholtz Instability (KHI) described by Dong et al.(2023).  We use CGCAM to 316 

generate training and testing data for CAMNet. The initial background winds (see 317 

Figure 2) are specified as  318 

𝑈(𝑧) = 	𝑈:𝑐𝑜𝑠 ;𝜋(𝑧 − 𝑧:)15	𝑘𝑚 @ 𝑡𝑎𝑛ℎ x𝑧 − 𝑧:ℎ y																																										(11) 319 

CGCAM simulations are performed for a computational domain having dimensions 320 

180	km	 × 180	km	(𝑥, 𝑧) with resolutions of 50	m	at the shear center, with exponential 321 

mesh stretching approaching the upper and lower boundaries to reduce 322 

computational demands. Periodic boundary conditions are used at the lateral 323 

boundaries. An isothermal no-stress wall condition is used at the lower boundary, 324 

and a characteristic radiation condition is used at the upper boundary. The vertical 325 

boundary conditions are supplemented with sponge layers having 20-km depths to 326 

further ensure no reflected GWs. After excluding irrelevant data in the sponge layers, 327 

the variable U are stored on a grid of dimension of  2000 × 1000. 328 

 329 

Figure 2: Initial conditions for generating training and testing data (left) and an 330 

example of initial U in the simulation domain (right) for the KHI cases. 331 
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Given the initial conditions, CAMNet is required to simulate the future states of 332 

variable U at 𝑡 ∈ {1,2,3,⋯ ,50} min for a suite of initial conditions. A total of 200 cases 333 

are generated by varying 𝑈: and h in Equation 11, and the corresponding outputs of 334 

CGCAM serves as the true reference solutions for each case. The CGCAM simulations 335 

for each case were run for 50 minutes at an interval of 1 minute. The 200 CGCAM 336 

cases were then split into a training set of 180 cases and a testing set of 20 cases. The 337 

training set is used to train CAMNet, and the testing set is used to evaluate the 338 

model's performance. Keeping the testing set separate from the training set is crucial 339 

to obtain an unbiased estimate of the model performance.  All samples have a grid of 340 

2000 × 1000. The CAMNet training is implemented in a multi-GPU environment 341 

with 4 V100 GPUs. Convergence is observed after approximately 250 epochs during 342 

the training process.  343 

 344 

Figure 3. KHI and GWs predicted by CGCAM and CAMNet. 345 

Figure 3 displays the variable U employed for both the CAMNet and CGCAM 346 

simulations during the model test, and we observe a high level of consistency between 347 

two models. The ML model CAMNet can capture small- and large-scale structures 348 

qualitatively, with clear evidence of KHI and KHI-radiated GWs seen in both 349 

CGCAM and CAMNet. The initial strong shear produces deep and broad KH billows 350 
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that break down after ~30 min, leading to the emergence of small-amplitude GWs 351 

above the KHI altitude. By 50 min, increasing GWs and apparent SGWs are seen to 352 

propagate with group velocities along the iso-phase lines that extend away from the 353 

KHI shear layer, causing GWs to propagate to higher altitudes and achieve larger 354 

amplitudes. Both models suggest that GWs are continuously emitted from the KHI 355 

and turbulence dynamics, with well-defined spatial structures having orientations 356 

and spatial scales that agree closely between the CGCAM and CAMNet fields.  357 

 358 

Figure 4. Case 1 spectral characteristics predicted by CGCAM (top) and CAMNet 359 

(bottom) at 70-80 km (left) and 90-120 km (right) altitude ranges at 30, 40, and 50 360 

min model simulation times (see time labels at lower right). 361 

The spectral properties of GWs can reveal important details about their sources, such 362 

as the altitude and vertical extent of the source region, and the dominant 363 

wavelengths and frequencies of the GWs generated. This information can be used to 364 

improve parameterizations of GW sources in global climate models, which are critical 365 
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for predicting the response of the atmosphere to changing climate conditions. The 366 

spectral structures of horizontal wind disturbance 𝑢;  are calculated and found to 367 

exhibit high consistency between CGCAM and CAMNet.  The spectra of 𝑢;5 computed 368 

at the KHI region and higher altitudes at t = 30, 40, and 50 min are displayed in 369 

Figure 4. The spectra reflect the characteristics of KHI dynamics. In the KHI region, 370 

the onset of strong KHI and 2-D turbulence yields spectral slopes approaching -5/3 371 

corresponding to wavenumbers of ~1-6 rad/km. Spectral amplitudes fall sharply 372 

beyond wavenumbers of ~20 rad/km and exhibit steeper slopes approaching -7 in the 373 

viscous range. At higher altitudes, the -5/3 slope corresponds to wavenumbers of ~0.8-374 

3 rad/km and -7 slopes correspond to wavenumbers of 3-10 rad/km. These spectra 375 

suggest that small-scale structures discussed above are well resolved at these times. 376 

These results suggest that CAMNet has promising potential as an alternative to 377 

CGCAM for simulating KHI and KHI-radiated GWs. Notably, the time cost of a single 378 

KHI case simulation using CAMNet was approximately 0.8 seconds on a single A100 379 

(80GB). This represents a significant acceleration (by > 2000) compared with the 30 380 

minutes needed by CGCAM when using 36 CPU cores. 381 

3.2 Case 2: Mountain Waves Generation, Propagation, and Breaking 382 

 383 

Figure 5. Initial mean winds U (left) and temperature T (right) as the inputs of 384 

CGCAM for generating training and testing data for MW cases. 385 
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Our intent in Case 2 was to explore CAMNet capabilities for modeling MW generation, 386 

propagation, breaking, and their radiation of SGWs. MW breaking is one of the 387 

strongest sources of SGWs (Lund et al., 2020). As in Case 1, CAMNet training 388 

employs CGCAM simulation data. The CGCAM simulations cover a computational 389 

domain extending 700 × 220	km	(𝑥	and	𝑧) at a resolution of 1 and 0.5 km in x and z. 390 

As in Case 1, the lateral boundary is periodic. At the lower boundary, a Gaussian 391 

terrain of peak height 4 km and half-width of 30 km is used, and a characteristic 392 

radiation condition is used at the upper boundary. Sponge layers of 20 km and 50 km 393 

are added to the vertical and lateral boundaries, respectively, to ensure absorption of 394 

outgoing GWs. The variable U  are stored on a grid having dimensions of  600 × 400 395 

after irrelevant values in the sponge layers are excluded. 396 

 397 
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Figure 6. MW evolutions predicted by CGCAM (left) and CAMNet (right). The 398 

initial condition is a horizontal wind of 25 m/s at the surface flowing over a 399 

Gaussian Mountain with a height of 4 km and a half width of 30 km (see Figure 4). 400 

Given the samples of initial conditions, CAMNet is trained to reproduce the future 401 

states of variable U at 𝑡 ∈ {140,145,150,⋯ ,220} min. Note that we start from t = 140 402 

mins to avoid CAMNet being trained with non-physical data produced by CGCAM at 403 

early simulation times. A total of 200 cases are generated by varying the initial wind 404 

field, with a random wind field randomly extracted from the HWM14 at 30°𝑆, 70°𝑊 405 

(Andes Lidar Observatory) at 00:00 on 200 days among 365 days. The initial 406 

temperature field is simplified as used in Dong et al. (2020).  Winds at lower altitudes 407 

from HWM14 are consistently lower than actual observations, and thus a correction 408 

is needed to enable simulation of MW generation. To account for this discrepancy, we 409 

randomly assign wind values ranging from 0-30 m/s at these lower altitudes to 410 

facilitate the occurrence of MWs. The initial fields were assumed to be uniform over 411 

the domain. The initial wind and temperature fields are shown in Figure 5. The 412 

corresponding output of CGCAM serves as the true reference solution for each case. 413 

CGCAM simulations for each case were run for 220 minutes at an interval of 5 414 

minutes. The CGCAM simulations were then split into a training set of 180 cases and 415 

a testing set of 20 cases. All samples have a grid of 600 × 400. The training of CAMNet 416 

is implemented in a multi-GPU environment with 4 V100. Convergence is observed 417 

after approximately 320 epochs during training process. 418 

The CAMNet model achieves excellent skill in modeling MW generation, propagation, 419 

breaking, and SGW generation. As an illustrative example, we choose a case with a 420 

uniform initial background wind of 25 m/s. We begin with an overview of the major 421 

features of the MW and SGW evolution from t = 150-220 min. Figure 6 shows U at 422 

𝑡 = 150, 180, 200, 220		min  generated by CAMNet and the corresponding CGCAM 423 

results at these times.  Considering CAMNet results first, the earliest responses at 424 

𝑡 =150 min reveal MW generation at lower altitudes and their extension into the 425 

MLT. At 𝑡 =180 min, initial SA dynamics and instabilities are seen at lower altitudes. 426 
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At 𝑡 = 200 min, there is evidence for strong SGW excitation in the MW breaking 427 

regions. The MW field and its associated instabilities and SGWs continue to intensify 428 

to 𝑡 = 200 min. The CAMNet results approximate the CGCAM ground truth 429 

remarkably well over 220 min.  Additionally, high consistency is found between 430 

CGCAM and CAMNet in the 𝑢; spectra, which are shown in the first and second rows 431 

of Figure 8, respectively.     432 

 433 

Figure 7. Same as Figure 6, but for a tidal wind background. 434 
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 435 

Figure 8. Case 2 spectral characteristics predicted by CGCAM (first and third rows) 436 

and CAMNet (second and fourth rows) at 70-80 km (left), 100-120 km (middle) and 437 

90-120 km (right) at 150,180,200, and 220 min (see time labels at lower right). 438 
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As a further test of the generalization ability of the trained CAMNet model, we chose 439 

an initial wind field that includes a tidal wind field (represented by grey lines in 440 

Figure 7) that was not part of the 200 cases used for training and testing. CAMNet 441 

results were compared to those of CGCAM, and also showed high consistency in 442 

capturing the MW dynamics (see Figures 7 and 8), including the following: 443 

1. Major MW responses, including MW generation, propagation, breaking, local 444 

instabilities and dissipation, and SGW generation;  445 

2. strong MW breaking, instabilities, and 2-D turbulence dynamics; 446 

3. SGWs modulated by tidal winds and having large scales and large influences 447 

extending into the thermosphere. Responses include refraction by tidal winds, 448 

and reduced SGW responses at higher altitudes relative to the case of no tidal 449 

wind (as shown in Figures 5 and 6); and 450 

4. CAMNet exhibits highly consistent MW spectral characteristics with CGCAM 451 

(see the third and fourth rows in Figure 7). 452 

This case demonstrates that CAMNet exhibits good generalization abilities. 453 

CAMNet demonstrates promising potential as a competitive alternative to CGCAM 454 

for simulating MW generation, propagation, and breaking. A single MW case 455 

simulation using CAMNet takes approximately 0.5 seconds on a single A100 (80GB), 456 

in this case ~4000 times faster than the corresponding CGCAM simulation using 36 457 

CPU cores, which took around 40 minutes. 458 

4. Discussion 459 

GWs play significant roles in the transport of energy and pseudo-momentum through 460 

Earth’s atmosphere. However, current numerical weather prediction and climate 461 

models lack the resolution needed to describe the smaller-scale GWs and SGWs 462 

accounting for the large majority of GW energy and pseudo-momentum fluxes to 463 

higher altitudes. Thus, parameterizations are employed to represent unresolved GW 464 

influences in most global atmospheric models. These typically have three primary 465 
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components: (1) specification of GWs at source levels, (2) GWs propagation with 466 

altitude, and (3) GW dissipation and further parameterized body forcing and mixing.  467 

The primary function of GW parameterizations as currently applied in global models 468 

is to compute the wave-driven force on the mean flow, where the mean flow refers to 469 

the grid-box mean, and the waves are intended to represent sub-grid unresolved GW 470 

anomalies. These parameterizations treat GWs as linear, hydrostatic, vertically 471 

propagating waves in a steady ambient environment with Boussinesq governing 472 

equations. However, these assumptions and simplifications limit the representation 473 

of many observed GW characteristics, which are physically well understood (e.g., 474 

Erying et al., 2006, Hertzog et al., 2012; Eckermann et al., 2015; Stephan et al., 2016). 475 

Some ML-based GW parameterization schemes have been proposed to enhance the 476 

accuracy of GW parameterization (e.g., Chantry et al., 2021; Espinosa et al., 2022). 477 

These ML-based GW parameterization schemes rely on traditional GW 478 

parameterizations and hence are limited by the assumptions and simplifications 479 

inherent in them. CAMNet offers several advantages over traditional and previous 480 

ML-based GW parameterization schemes. The training process of CAMNet does not 481 

rely on any existing GW parameterization schemes, thus it is not limited by their 482 

assumptions and simplifications. CAMNet is trained with high-resolution simulation 483 

data from the state-of-the-art atmospheric model CGCAM, which are accurate 484 

numerical solutions of the Navier-Stokes equations. Well-trained CAMNet is capable 485 

of resolving multi-scale and highly nonlinear GW dynamics, such as instability and 486 

turbulence dynamics, self-acceleration, GW breaking, and SGW generations, at much 487 

faster speed. To the best of our knowledge, CAMNet is the first ML-based approach 488 

that can directly simulate highly nonlinear GW dynamics. 489 

To further enhance the application of CAMNet's exceptional GW simulation 490 

capabilities, CAMNet will be optimized and extended 1) from single-variable 491 

simulation to multi-variable simulation to better capture the complex nonlinear 492 

interactions among various GW variables; and 2) from 2D to 3D to more accurately 493 
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model the horizontal evolution characteristics of GWs, which are only fully displayed 494 

in 3D cases. 495 

5. Summary 496 

In this paper, we developed a machine learning model solving the compressible 497 

Navier-Stokes equations in our Complex Geometry Compressible Atmosphere Model 498 

(CGCAM) named CAMNet. CAMNet is a hybrid machine learning model that 499 

combines data-driven and physics-informed approaches. It is based on the Adaptive 500 

Fourier Neural Operator (AFNO) proposed by Guibas et al., 2021, with modifications 501 

tailored to our simulations. The main improvements include: 1) the addition of 502 

convolutional layer branch to compensate for high-frequency components truncated 503 

by the Fourier layers, making the model more robust in resolving multi-scale 504 

dynamics, and 2) the incorporation of physical information from the Navier-Stokes 505 

equation in CGCAM. The CAMNet feedback neural network utilizes a loss function 506 

that combines both the physical information in Navier-Stokes equations and the data 507 

loss from CGCAM simulations. This approach reduces the need for extensive training 508 

data and improves the model generalization ability.  509 

We evaluated the performance of CAMNet with two test cases: the first one described 510 

the KHI and the associated GW radiation as explored in Dong et al., 2023, and the 511 

second one addressed the generation, propagation, and breaking of MWs, which are 512 

one of the most important GW components. Both cases involve small-scale instability 513 

and turbulence dynamics, as well as larger-scale GWs. Our main findings from the 514 

simulations are as follows: 515 

1) CAMNet shows excellent skill on simulating the formation and intensification 516 

of KHI, and KHI-radiated GWs. Those results qualitatively match the ground 517 

truth remarkably well over a period of 50 mins.  518 

2) CAMNet has excellent skill on the simulations of MW generation, propagation, 519 

and breaking. CAMNet captures the major MW responses, including MW 520 
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generation, propagation into MLT, strong MW breaking via vortex ring 521 

formation, strong instability and turbulence dynamics, intense SGW 522 

generation, and strong modulation by tidal wind. 523 

3) CAMNet can be trained on high-resolution CGCAM simulations under various 524 

conditions and has the potential to significantly accelerate GW simulations 525 

while maintaining high accuracy. 526 

Accounting for the GW forcing in global atmospheric models is challenging due to 527 

their limited model resolutions. A well-trained CAMNet can produce the simulations 528 

orders of magnitude faster than CGCAM without any noticeable accuracy loss. This 529 

has two important implications. Firstly, high-resolution GW simulations can be 530 

generated within seconds, thus enabling estimation of well-calibrated and 531 

constrained uncertainties regarding unresolved GW scales with higher confidence 532 

compared to current global models that have severely simplified GW 533 

parameterization schemes due to computational cost. Secondly, CAMNet is suitable 534 

for rapidly testing hypotheses about mechanisms of GW forcing and their 535 

predictability. Moreover, there is potential to develop a software library of well-536 

trained CAMNet models to be applied to a broad range of conditions. The well-trained 537 

models have the potential to become a viable alternative to current GW 538 

parameterizations in global models. 539 

Data availability 540 

Outputs from model simulations used in this study are archived on the ERAU High 541 

Performance Computing System Vega and can be made available upon publication. 542 
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https://github.com/lonestar686/AdaptiveFourierNeuralOperator.  546 
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