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ABSTRACT 

We have initiated a project to classify stellar spectra automatically from high-dispersion 
objective prism plates. The automated technique presented here is a simple back- 
propagation neural network, and is based on the visual classification work of Houk. The 
plate material (Houk’s) is currently being digitized, and contains « 105 stars down to 
K æ 11 at æ 2-Â resolution from « 3850 to 5150 Â. For this first paper in the series 
we report on the results of 575 stars digitized from 6 plates. We find that even with the 
limited data set now in hand we can determine the temperature classification to better 
than 1.7 spectral subtypes from B3 to M4. Our current sample size provides insufficient 
training set material to generate luminosity and metallicity classifications. Our eventual 
aims in this project are (1) to create a large and homogeneous digital stellar spectral 
library; (2) to create a well-understood and robust automatic classification algorithm 
which can determine temperatures, luminosities and metallicities for a wide variety of 
spectral types; (3) to use these data, supplemented by deeper plate material, for the study 
of Galactic structure and chemical evolution; and (4) to find unusual or new classes of 
objects. 

Key words: methods: data analysis - methods: numerical - stars: fundamental param- 
eters - Galaxy: stellar content. 

1 INTRODUCTION 

The classification of stellar spectra (e.g. Cannon & Picker- 
ing 1918-24; Morgan, Keenan & Kellman 1943; Johnson & 
Morgan 1953) has long been a fundamental tool for determin- 
ing the physical parameters of bright stars. While early work 
concentrated on stellar temperatures and then luminosities, it 
wasn’t long before a significant number of stars were found 
with unusually low abundances, abundance anomalies, and 
unusual combinations of stellar types. The distribution of stel- 
lar temperatures and luminosities led Hertzsprung (1911) and 
later Russell (1914) to plot stars in the now-famous HR dia- 
gram. The distribution of combinations of stellar types aided 
early explorations of binary creation scenarios (e.g. Aitken 
1935) and enhanced the early work on the determination of 
stellar masses from spectroscopic binaries (e.g. Russell 1912). 
The realization that many of the low-abundance stars had 
high relative velocities (Roman 1954) led to the separation of 
Galactic stars into Populations I and II, and to the formation 
scenario for the Galaxy of Eggen, Lynden-Bell & Sandage 
(1962). Spectral classification has continued to play an active 
role in the identification of both normal and unusual stellar 
types. The distribution of normal stars, corrected for the vol- 

ume element sampled, leads to the present-day mass function, 
and thereby to the initial mass function, providing a major clue 
to the outcome of local star formation. The local stellar density 
yields the mass of a major component of the Galaxy, while the 
decrease in the density with distance from the Galactic plane 
indicates the diffusion with age of a given sub-population. 

Over the last 20 years, Houk and co-workers (Houk & 
Cowley 1975; Houk 1978, 1982; Houk & Smith-Moore 1988) 
have been creating one of the greatest modern stellar classifica- 
tion libraries by determining the two-dimensional (and often 
three-dimensional) spectral types of all stars in the Henry 
Draper Catalogue (Cannon & Pickering 1918-24, hereafter 
HD). The four catalogues published to date by Houk include 
over 120000 stars covering the full range of temperatures and 
luminosities, and a wide range of metallicities down to the HD 
magnitude limit of « 11. Errors in human classification are 
hard to quantify, but Houk reclassifies « 10 per cent of her 
stars without knowledge of her earlier classification, and finds 
an rms error of « 0.6 spectral subtypes, corresponding to an 
uncertainty of « 2000 K for a 20000-K star (« B3) or « 100 
K for a 5000-K star (« K0, Mihalas & Binney 1981). In the 
luminosity class domain, Houk’s rms error is « 0.25 luminosity 
types. Given the importance and the time-consuming nature 
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of human visual classification of stellar spectra, considerable 
effort has been made towards automating the process (see 
Kurtz 1983, and references therein). Some successes have been 
achieved, though no readily usable and robust techniques have 
emerged to date. Besides a hoped for increase in classifica- 
tion speed, automation should also make it easier to quantify 
random and systematic errors, and to study the effects of 
lower resolution and lower signal-to-noise ratio on classifica- 
tion errors. Automated techniques may not do as well as a 
well-trained human classifier, especially for the most difficult 
or unusual types, and it is expected that a human classifier will 
have to study objects that pose particular difficulties for the 
automated techniques. On the other hand, an automated, ob- 
jective and repeatable technique will provide a basis for more 
detailed insights into the astrophysics underpinning the stellar 
spectral features. 

Given the tremendous amount of high-quality spectral 
classifications done by Houk and her extensive and homoge- 
nous plate material, we seek to build an artificial expert sys- 
tem for stellar spectral classification based on Houk as our 
expert. Ideally, one might want the astrophysical parameters 
of temperature, surface gravity and abundances to come from 
automated techniques, rather than classifications. While we 
agree in principle, we note that at the present time automa- 
tion based on classifications should be superior, since (1) not 
enough stars have their astrophysical parameters precisely de- 
fined to build the type of bulk classification system we envi- 
sion; (2) classifications can be mapped into the astrophysical 
parameters with well-studied relations (e.g. Popper 1980, and 
references therein) ; (3) this mapping can be repeated whenever 
more up-to-date and accurate relations are determined; and 
(4) classifications are considered inviolate, since they are based 
on a series of standards, and therefore should not change with 
time. We note that recent advances in plate measuring (e.g. 
the Automatic Plate Measuring Facility in Cambridge, Kib- 
blewhite et al. 1984, hereafter APM) and the steady advances 
in computer speed are also key ingredients in our automation 
efforts. 

In this paper, the first in a series, we examine an expert 
system based on a back-propagation artificial neural network 
(hereafter ANN). Other techniques can be readily envisioned, 
for example classical template matching in the form of line 
fitting (Jones 1966), cross-correlation and minimum vector 
distance (Kurtz 1983), to name a few. Line fitting techniques 
suffer from the disadvantage that one has first to know the 
approximate stellar type before determining which lines to 
fit, otherwise very different features will be found at the same 
wavelengths. Cross-correlation in its simplest form also weights 
comparisons towards the strongest lines, which are not nec- 
essarily the features with the highest weight in classification 
determination. Cross-correlation also requires a well-populated 
library of homogenous quality, but this is something which we 
could eventually create. Minimum vector distance techniques 
(Kurtz 1983) have had some successes, and also require good 
libraries. All these classical techniques are based on linear 
operations. Since we might expect to find rather subtle non- 
linear relationships between the temperature, surface gravity 
and metallicity line indicators, a classification scheme that 
copes with non-linear relationships between parameters ought 
to offer significant advantages. Supervised ANNs can not only 
solve non-linear optimization problems, but also have obvious 
similarities to a human classifier. Furthermore, with a super- 

Table 1. Plates scanned. 

date plate 
27/ 5/68 2280 
28/ 5/68 2303 
16/12/68 3316 
12/ 1/69 3504 
15/ 7/69 4825 
9/ 8/74 16506 

RA Dec 
4:13.2 -1:46 
3:28.6 1:23 

20:26.9 -0:44 
5:29.7 4:43 

23:14.6 -4:45 
4:35.6 2:58 

l b num 
194 -35 76 
182 -43 99 
44 -21 96 

199 -16 136 
73 -58 73 

193 -28 95 

vised ANN the designers of the expert system do not have 
to be classification experts themselves, but rather can let the 
answers of the original expert train the ANN. Such ANNs also 
seem to be robust to stellar libraries of heterogenous quality, 
and they can be designed (Richard & Lippmann 1991) to 
provide not only classification answers, but also uncertainties 
associated with their answers. 

2 DATA REDUCTION AND PRE-PROCESSING 

The data reduction for this project is essentially the conver- 
sion of Houk’s objective prism plates and her catalogue into 
one-dimensional digital spectra tagged with her spectral types 
and luminosity classes. The raw data are « 1000 IlaO high- 
dispersion (108 À mm-1 at Hy) objective prism plates taken 
with the Michigan Curtis Schmidt telescope at Cerro Tololo, 
Chile. Each plate is 20 x 20 cm2 in size, and at a plate scale of 
96.6 arcsec mm-1 subtends an area of 5° x 5° on the sky. We 
report here the results from the scanning of 6 plates containing 
575 HD stars which Houk classified and assigned a quality of 
1 or 2 (on a 1 to 4 system). Of these 575 stars, 371 are quality 
1 (65 per cent) and 204 are quality 2 (35 per cent). There are 
138 quality 3 stars and 11 quality 4 stars on these 6 plates. 
Details of the plate material can be found in Table 1, where 
we list the date the plate was taken, Houk’s plate code, the 
J2000.0 equatorial coordinates and Galactic coordinates of the 
plate centres, and the number of non-overlapped quality 1 and 
2 spectra extracted from each plate. 

The APM facility in Cambridge was used to measure the 
plates. General details of this facility are given in Kibblewhite 
et al. (1984), whilst the paper by Hewett et al. (1985) de- 
scribes the general use of this system for measuring objective 
prism plates. The scanning procedure uses the HST Guide 
Star Catalog as a position driver for the scanner, then extracts 
digitized scans 18 x 2 mm2 in area around each widened 
spectrum at 22.8 /¿m pixel“1 resolution (corresponding to a 
768 x 80 array). After finding and subtracting the general 
sky background level, the digitized scans are summed orthog- 
onally to the dispersion axis to create one-dimensional, pixel 
versus density spectra. Following this, the extracted spectra 
are matched against the Houk catalogues, and for the moment 
only those for which Houk has determined a spectral type are 
kept. In future work we plan to keep all spectra with sufficient 
signal-to-noise ratio for classification, but at present we are 
just building the expert system, and not classifying previously 
unclassified stars. 

The next data reduction step was differential wavelength 
calibration of all the spectra within each plate. An objective 
prism introduces a quadratic distortion of the position of 
a spectrum on the prism plate compared to a direct plate 
(in this case the HST Guide Star Catalog), thereby causing 
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the spectrum to shift slightly (up to several pixels) from its 
expected position. This distortion was mapped as a function 
of the standard coordinates of the objects by cross-correlating 
each high-quality spectrum with a high-S/N template star 
of approximately the same type. A quadratic transformation 
relating direct and prism coordinates was then derived and the 
solution applied to all stars regardless of S/N. This places all 
the stars on the same (arbitrary) wavelength system. 

The final stage in the pre-processing was to define a 
stellar continuum so that the information in the spectra could 
be partitioned into line and continuum features. We did this 
because we wanted to examine classification schemes based 
on (1) the complete spectra, (2) line information alone, and 
(3) continuum information alone. The line-only case is the 
generic method employed by human classifiers, whereas the 
continuum-only method is equivalent to classification based 
on photometric colours. The advantages and problems of each 
of these three cases will be discussed in greater detail below 
(see Section 4). The continuum estimation was accomplished 
by first running a 51-pixel median filter (Tukey 1971) over each 
spectrum, followed by a 25-pixel boxcar filter. All absorption 
(or emission) features with scale length less than « 25 pixels 
are removed by this processing. This is sufficient to track over 
all the main absorption lines, though it underestimates the 
continuum in areas where the spectral shape changes rapidly, 
especially through the major molecular features. This will have 
no effect on our analysis of the line-only and continuum- 
only cases, as long as the continuum fits are consistent for a 
given spectral type and no residual continuum slope remains. 
A greater quantity of data, including significantly reddened 
stars, will be required to test the continuum fits fully. The 
line-only cases were created by dividing the spectra by their 
continua. 

As samples of the spectra used in this work, Fig. 1 presents 
spectra of 6 stars of various spectral types, along with their 
continuum fits. From top to bottom the stars are classified as 
B9 V, A2 V, F3 V, G3 V, K5 III and M2 III, respectively. 
The horizontal axis is wavelength in Â, and the vertical axis 
is emulsion density in arbitrary units. The spectra have S/N 
>100 and an effective resolution of « 2 - 3 Â, resulting in 
382 resolution elements over the useful range of 3843 - 5150 
À. Note that for the later spectral types the more limited flux 
in the blue increases the noise markedly shortward of 4000 Â. 

3 CLASSIFICATION ALGORITHM 

3.1 Background 

For this study we have utilized an artificial intelligence tech- 
nique known as artificial neural networks (ANNs) for stellar 
classification. Originally derived from simplified models of hu- 
man central nervous system activity (McCullogh & Pitts 1943; 
Hopfield 1986), ANNs have found utility in signal processing 
(Widrow & Winter 1988), adaptive optics (Merkle 1988; San- 
dler et al. 1991; Wizinowich et al. 1991), star/galaxy distinc- 
tion (Odewahn et al. 1991), and galaxy classification (Storrie- 
Lombardi et al. 1992). 

Discovery of an error minimization algorithm for training 
multiple layers of ANN nodes (Werbos 1974; Parker 1985; 
Rumelhart, Hinton & Williams 1986) has produced consider- 
able interest in a very simple gradient descent, non-linear min- 

Figure 1. Sample spectra plotted with flux in arbitrary units. 

imization ANN technique known as back-propagation. Back- 
propagation ANNs consist of a series of nodes arranged in 
layers and analogous to biological neurons with inputs (den- 
drites), summation nodes (cell bodies), outputs (axons), and 
weighted connections between layers (synapses). The classical 
back-propagation algorithm requires a minimum of three lay- 
ers : an input layer for bringing the data into the ANN, at least 
one hidden layer to effect a non-linear mapping from input 
to output space, and an output layer to provide classification. 
We have used 383 input nodes, one for each of the 382 spec- 
tral resolution elements and one as a bias node which has a 
constant value (see Fig. 2). Weights connecting the bias to the 
hidden layer and output nodes are modified during training 
exactly like all other weights. We term any layer between the 
input and output layers as a hidden layer. We have confined 
ourselves to the case of a single hidden layer and a single 
output node for the purposes of this study to minimize the 
number of free parameters in our system. We have one output 
node to provide the temperature classification. (We note here 
that we use the word classification throughout this paper as it 
is used in the stellar spectroscopy community, i.e. to mean the 
position of a star in the HR diagram.) 

In the standard back-propagation algorithm, the output 
is defined as a vector o in the classification space with an 
individual node assigned for each class. In our case this would 
produce a 59-dimensional output vector if we considered each 
temperature classification as a discrete class. The ANN starts 
with a random initial weight state and guesses the identity 
of an incoming target vector by producing an output vector 
with the value of each output node lying somewhere between 
0 and 1. For each star, it then compares its output to the 
desired classification vector d generated by the human expert. 
For example, we might define d — (1,0,0,0,...) for class B0, 
d — (0,1,0,0,0) for class Bl, etc. 

The comparison is done in terms of a cost function, 
usually of the form 

£ = ¿][>*-4)2 

k 

summed over the vector components. Because during training 
the ANN adjusts its weight space according to the decisions 
of a human expert, we term it a supervised network. This 
cost function is minimized with respect to the free parameters, 
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the weights wi;, connecting each layer. Minimization over the 
weights Wij is done using the chain rule (gradient descent). The 
weights are updated backwards from the output layer through 
the hidden layer(s), and the rate of updating is controlled by 
the learning coefficient, rj. A second coefficient, a (often called 
the momentum), can damp the oscillations in minimization 
sometimes seen as the ANN searches through weight space for 
an optimal solution. Training set size determines the optimal 
values for rj and a (Eaton & Olivier 1992). (Note that although 
r¡ and a are the most commonly used symbols for the learning 
and momentum coefficients, respectively, other symbols do 
appear in the literature. Some authors have even reversed the 
usage of rj and a.) 

At each node at layer s of the ANN, a linear combination 
over the input xt from the previous layer s — 1 is given by / js) = 

The node fires according to a non-linear sigmoid 
threshold function usually of the form f(z) = 1/(1 + exp(—z)) 
(in the interval [0,1]) or /(z) = tanh(z) (in the interval [—1,1]). 
The ANN functions as a non-linear operator transforming the 
representation of objects in the input parameter space to the 
classification space. 

After completion of the learning process (i.e. optimizing 
the weights wi;) according to a given training set, the ANN is 
ready to analyse new data. As we present each input vector the 
ANN produces an output vector containing its classification 
coding. In the one output per class configuration, the output 
of an ANN provides a Bayesian a posteriori probability for 
class membership (e.g. Richard & Lippmann 1991; Storrie- 
Lombardi et al. 1992). 

A single output ANN does not have the ability to attach a 
classification probability to each object, but it provides another 
interesting capability. Back-propagation ANNs given analogue 
inputs can generate an analogue output that replicates any 
continuous, differentiable function (Cardaliaguet & Euvrard 
1992), and even chaotic systems provide excellent signals for 
ANN mapping (Mpitsos & Burton 1992). In such a system, the 
hidden nodes continue to use a non-linear algorithm, but the 
output layer produces a linear output. It can even predict two 
functions at the same time (e.g. temperature and luminosity). 
The single output node back-propagation neural network can 
function as a non-linear least-squares optimization algorithm 
producing a non-linear fit to a continuous classification func- 
tion. In our case it transforms the stellar spectral bins into a 
continuous temperature classification. 

3.2 ANN design 

ANN design depends on finding an optimally efficient network 
architecture for a particular data set. The principal factors in- 
clude size of the training set, number of input parameters, 
number of hidden layer nodes, and number of output nodes. 
We have maximized the size of the training set to approx- 
imately 500 objects and yet utilized all 575 spectra as test 
objects by setting up a revolving train/test cycle. The revolv- 
ing train/test cycle procedure further allows us to test for any 
possible plate-to-plate systematic effects, while still maintain- 
ing for each train/test combination an unseen testing set. The 
entire data base is never shown to a given ANN, but rather 
five plates of stellar spectra are used to train the ANN and 
one plate of spectra to test the ANN. 

For our input layer we use 382 nodes (i.e. the number of 

spectral resolution elements) for all of our ANNs. If we were 
to use the 59 temperature classifications recognized by Houk 
as discrete classes, a complete network with one output node 
per class and three nodes in the hidden layer would require 
a total of 177 weights to connect the hidden and output lay- 
ers fully. While the probabilistic output associated with class 
membership available to us in the one output per class format 
provides numerous advantages for such activities as devel- 
oping reliability estimates for the classifications, the number 
of additional weights involved in creating individual output 
nodes brings considerable overheads (e.g. increased CPU time) 
and complexity to the task of stellar spectral classification. 
The complexity of the ANN depends on the number of in- 
puts, hidden nodes, layers, outputs, and connections. Increased 
complexity can certainly produce an ANN capable of a much 
richer and more precise set of decision boundaries for classifi- 
cation. In fact, as the number of free parameters approaches 
the number of objects in the training set, the ANN can of- 
ten completely memorize the training set and produce a 100 
per cent accurate classification of objects when tested on its 
original training set. At first glance such memorization might 
appear reassuring and seem to imply that the parameters pre- 
sented to the ANN do have an underlying pattern capable 
of predicting class membership. Unfortunately, such an ANN 
usually performs more like a simple look-up table and may 
have increasing difficulty generalizing its classification algo- 
rithm to new test data. Since a neural network is a non-linear 
least-squares optimization algorithm, the convergence proper- 
ties are determined by the ratio of data input points to free 
parameters (i.e. weights). 

A decrease in the total number of weights can be ac- 
complished by only partially connecting nodes. However, the 
problem of optimal connectivity remains a subject of consid- 
erable research effort. For the purpose of the present study 
we have chosen to leave our network fully connected and de- 
crease the total number of weights by decreasing the number 
of nodes in the hidden and output layers. We have constructed 
a very simple, minimalist ANN. Back-propagation networks 
using a single hidden layer train more rapidly and fall into 
inefficient local minima less frequently than ANNs with two 
hidden layers (de Villiers & Barnard 1993). We utilize only a 
single hidden layer containing three nodes. In tests on hidden 
layer size we have investigated three, five, and seven nodes. 
The five- and seven-node cases have the same random errors 
as the three-node case over 1000 training cycles. The five-node 
case has 3 per cent greater systematic errors than the three- 
node case, and the seven-node case has 38 per cent greater 
systematic errors. 

Finally, we have implemented a single output node for 
our classification strategy, since temperature classification is 
a continuous function rather than a discrete set of output 
classes. The different spectral type subclasses were converted to 
floating point numbers from 0 (03) to 1 (M9), following the 59 
subclasses recognized by Houk. This simple linearization of the 
Houk spectral types mimics the human ability to recognize the 
effects of small changes in temperature. We have investigated 
both linear and non-linear outputs and find no difference in 
the output for our particular problem. Since the linear output 
networks train « 3 times more rapidly, we have reported 
results for the linear output case. 

At this time we have confined our classification to the 
temperature domain, since we do not have a significant number 
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of stars of different luminosity class at a given temperature 
class. The spectra described in this series of experiments do 
not all reside in one luminosity class, but predominantly come 
from dwarfs at the earlier types and giants at the later types. 
At this point we have no stars at the classification extremes, 
either earlier than B3 or later than M4. 

Fig. 2 depicts our fully connected (each node connects to 
every node in the next layer) back-propagation network. We 
use 382; 3,1 as the descriptor for the ANNs with 382 inputs 
(one input node for every spectral resolution element), three 
hidden nodes and one output node. 

3.3 Training 

Once the basic ANN architecture has been implemented, val- 
ues for the learning (rj) and momentum (a) coefficients must 
be fixed. Once again these will probably vary as a function 
of data set size. Future work will deal more exhaustively with 
the optimum values of momentum, learning, number of passes 
through the training data and number of hidden nodes. We 
have found that for our current data set a = 0.9 and rj =0.01 
produce stable temperature classifications. 

To train, an ANN must evaluate each input vector hun- 
dreds or even thousands of times. The major portion of the 
error minimization occurs in the first few dozen iterations, 
followed by an exponential decrease in the rate of learning. 
Reasonable criteria for stopping learning include (1) the rate of 
learning has effectively approached zero, and (2) a comparison 
of ANN performance against its training set versus the test set 
indicates good generalization to the test data without mem- 
orization of the training set. Interestingly, back-propagation 
ANNs using a non-linear hidden layer and linear output layer 
generally reach maximal performance considerably faster than 
the classical multi-node, non-linear output system. We have 
found that our networks reach a stable state and show good 
generalization after 1000 passes through our training samples. 
Fig. 3 depicts the learning curve for one of our ANNs with its 
independent training and testing sets. 

Increasing discrepancy between training and testing errors 

Training Iterations 

Figure 3. Learning curve for a typical ANN. The horizontal axis is the 
number of training iterations and the vertical axis is the root-mean- 
square differences of Houk — ANN. 

indicates that this ANN has started to reach the limits of its 
generalization capability. The fact that the testing errors have 
not passed a minimum means that the ANN was not over- 
trained, entering into a memorization state. 

4 RESULTS 

In the following discussion we build three separate ANNs, one 
for complete spectra (continuum plus line information), one 
for line information only and one for continuum information 
only. All three ANNs have the same architecture. 

In order to maximize the number of stars used to train 
the ANNs, we trained a given ANN on the spectra from 
five plates and tested on the spectra from the remaining one 
plate. We repeated this procedure six times for each possible 
grouping of plates, thereby cycling through the entire data base 
for training and testing. Each network begins training from 
scratch with the same random weights. At present, with 575 
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spectra containing 382 independent data points (resolution 
elements) and an ANN architecture with 383 (= 382 input 
nodes + 1 bias node) x 3 (hidden layer nodes) + 4 (= 3 
hidden layer nodes + 1 bias node) weights (free parameters), 
the final ANN weights are overdetermined by a factor of « 100 
(the number of degrees of freedom is reduced by « 2 by the 
cycling training/testing procedure). This training and testing 
procedure offered us the advantage of using nearly all 575 stars 
to train a given ANN, and it allowed us to test whether all 
plates would give the same results. Plates may not all give the 
same results, as they vary due to emulsion differences and due 
to astronomical differences, such as reddening. While it will be 
shown that the differences between these six plates are small, 
future work will take a more detailed look at plate emulsion 
differences, reddening, and other effects. We also see differences 
in the continuum shapes of stars of the same spectral type 
on the same plate as a function of magnitude, which is the 
expected result of the non-linear behaviour of photographic 
emulsions. While these differences are not important at the 
present level of precision, they will be calibrated out in future 
work. 

Another persistent problem at present is the large num- 
ber of objects that are contaminated by overlapping spectra. 
For the present these objects are found and removed by eye. 
Undoubtedly some spectra remain that are affected by overlap- 
ping objects, and this may degrade the quality of the resulting 
temperature classifications. 

4.1 Complete case 

For the case where the complete spectra are treated, we nor- 
malized the spectra by setting the maximum intensity value to 
1, and the minimum to 0. Fig. 4 shows the result of a typical 
training and testing session for the complete spectra ANNs. 
Panel (a) is the training case and panel (b) the testing case. The 
horizontal axis for both panels is the catalogue classification 
of Houk and the vertical axis is the ANN classification. A 
line of slope unity is plotted in each panel to allow the eye 
to asses the quality of the ANN determinations. The self-test 
plots are created by passing the training set back through 
the ANN, essentially showing how well the ANN reached the 
global minimum of the solution space during training. The 
testing plots are created by passing the previously unseen data 
through the trained ANN. The testing data will generally have 
a larger scatter than the self-test data due to the imperfect 
ability of the ANN to generalize. None the less, in all cases 
with these data, the test data have only slightly more scatter 
than the training data, and it can be seen that good quality 
classifications result. 

This can be seen quantitatively in Tables 2 and 3. Table 2 
presents the systematic classification offsets and uncertainties 
for the training and testing data. The first column identifies 
the testing plate of the ANN. The second and fifth columns 
list the systematic classification offsets for the training and 
testing cases, in the sense of Houk value — ANN value, in 
units of integral spectral subtypes (e.g. 1.0 is the difference 
between an F6 and an F7 star). The third and sixth columns 
list the classification uncertainties, which are the root-mean- 
square differences of Houk — ANN. The fourth and seventh 
columns list the distance from the mean that contains 68 
per cent of the classification differences. If the distribution of 
classification differences were normally distributed, then a and 

Figure 4. ANN results in the complete spectra case for typical training 
(a) and testing (b) sessions. The horizontal axes are the Houk classi- 
fications and the vertical axes are the ANN classifications. Unit-slope 
lines are overplotted. 

(768 would be equal, but in general the distributions are not 
normal and have an excess of values very far from the mean. 
This statistic is added to aid in the discussion of those cases. 
While Table 2 gives the detailed results for each plate, Table 3 
presents the summary statistics for each of the three cases. The 
first column in Table 3 identifies the cases (c+1 = continuum 
plus line, c = continuum only, 1 = line only). The second to 
seventh columns are the same as those of Table 2 except that 
the mean of the absolute values of the systematic offsets and 
the mean of the classification uncertainties are reported. 

Table 2 demonstrates that there is little difference between 
the plates, in terms of either the systematics or the rms un- 
certainties. The plate offsets vary from —0.7 to +1.1 spectral 
subtypes, while the uncertainties vary from 1.0 to 2.2 spectral 
subtypes. The mean systematic classification offset is « 0.6 
spectral subtypes and the mean rms uncertainty is « 1.7 spec- 
tral subtypes, while 68 per cent of the objects are classified 
within « 1.4 spectral subtypes. 

Fig. 4 (and the statistics of Tables 2 and 3) also shows 
that no stars are grossly misclassified. Approximately 5 per 
cent of the spectra are still contaminated with overlapping 
stars, however, and this probably degrades the quality of the 
ANN results. We see systematic errors of « 2 spectral subtypes 
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Table 2. Full spectra classification statistics. 

plate 
2280 
2303 
3316 
3504 
4825 

16506 

offset 
-0.63 
0.35 

-0.74 
-0.54 
1.08 

-0.18 

train 
<7 

1.42 
1.40 
1.33 
1.42 
1.39 
1.34 

<768 
1.21 
1.22 
1.11 
1.24 
1.26 
1.14 

offset 
-0.56 
0.78 

-0.64 
-0.74 
0.91 

-0.18 

test 
<7 

1.00 
1.67 
2.23 
1.83 
1.98 
1.59 

<768 
0.95 
1.27 
1.66 
1.72 
1.36 
1.57 

Table 3. Summary statistics. 

plate 
c+1 

c 
1 

offset 
0.59 
1.29 
0.19 

tram 
<7 

1.38 
2.74 
1.39 

<768 
1.20 
2.33 
1.18 

offset 
0.64 
1.46 
0.24 

test 
<7 

1.72 
2.82 
2.15 

<768 
1.42 
2.18 
1.72 

at the blue and/or red ends for some of the training and 
testing sets. The systematics for the bluest stars (B3-B5) are 
the result of the subtle features which cause the early B stars 
to differ from the later B stars, and the lack of examples in this 
temperature region. The systematics for the reddest stars (M3- 
M4) are the result of the diminishing amount of distinguishing 
spectral information available in blue spectra of very late-type 
stars, as well as the limited number of examples of these 
objects. 

4.2 Line-only case 

The line-only case was studied because human classifiers gener- 
ally claim that they only pay attention to the line information. 
Additionally, while the complete spectra case provided better 
results, the line-only case has the potential to be less sensi- 
tive to reddening, plate emulsion sensitivity non-linearities and 
inter-plate differences. 

Table 3 summarizes the results for the line-only ANNs. 
Here it can be seen that the line-only case has a smaller 
overall systematic offset but a slightly higher classification un- 
certainty (<t = 2.2 instead of 1.7, seen in the complete case). 
The lower overall systematic offset for the line-only case is 
most likely due to the sensitivity of the stellar continua shapes 
to reddening and systematic plate emulsion differences. Com- 
parison of the complete-case classifications with the line-only 
classifications may eventually give reddening values for each 
star, once the plate emulsion differences are calibrated. The 
cause of the higher classification uncertainty in this case when 
compared to the complete spectra case is due to the « 5 
per cent of the classifications that are very far removed from 
their nominal catalogue values, again leading to <7 > <768- 
All stars that deviated grossly in the line-only case (we did 
not observe this effect in the other cases) displayed a large 
amount of noise somewhere in their spectra, generally in the 
blue. A further « 10 per cent of the stars had considerable 
noise in the blue and were still properly classified. This high- 
lights the degree to which the ANNs were generally robust to 
noise. 

For the line-only case the mean systematic classification 
offset is « 0.2 spectral subtypes and the uncertainty is æ 2.2 

spectral subtypes, while 68 per cent of the objects are classified 
within « 1.7 spectral subtypes. 

4.3 Continuum-only case 

The continuum-only case was studied because of its similarity 
to broad-band photometry. It is not our intention here to use 
our continuum-only data to compete with broad-band colours, 
but we wish to demonstrate that complementary information 
is contained in the continuum and in the lines. Broad-band 
colours can give very accurate temperatures (e.g. Böhm-Vitense 
1989) if the luminosity class and the approximate metallicity of 
a star are known, but the broad-band colour distribution at a 
given temperature is generally bimodal for a mix of luminosity 
classes, even at constant metallicity. Thus broad-band colours 
cannot replace good quality spectra. Like the complete spectra 
case, the continuum spectra were normalized by setting the 
maximum intensity value to 1, and the minimum to 0. 

Table 3 summarizes the results for the continuum-only 
ANNs. It can be seen here that the mean systematic classi- 
fication offset is « 1.5 spectral subtypes and the uncertainty 
is « 2.8 spectral subtypes, while 68 per cent of the objects 
are classified within » 2.2 spectral subtypes. The correlation 
between continuum shape and spectral type is not surpris- 
ing given the well-known correlation between stellar colour 
and temperature. The scatter is greater than that of the line 
case, however, indicating the effects of reddening, plate non- 
linearity and plate differences, as well as the small mixture of 
luminosity classes at a given temperature. No grossly deviant 
classifications exist, since noise is no longer significant for any 
of these objects. Systematic curvatures or offsets were present 
in most of the catalogue versus ANN classifications, however, 
and therefore <7 > <768- 

The continuum information and line information are com- 
plementary in the statistical sense, and the quality of classifi- 
cations can be added in quadrature to get the uncertainties in 
the complete case, i.e. 

J expected ' : + Va 2.15-2 + 2.82-2 = 1.71, 

essentially equal to the measured value of 1.72. 

5 CONCLUSIONS 

We have presented initial results in the automated determi- 
nation of stellar spectral types using 575 stars scanned from 
six objective prism plates at the APM facility. Our automated 
techniques are based on a simple back-propagation artificial 
neural network which is trained to duplicate the classifications 
of Houk. We find that even with the limited data set now 
in hand we can determine high-quality temperature classifica- 
tions for spectral subtypes from B3 to M4, though we do not 
yet have the ability to determine the luminosity classifications. 
We classify spectra to within 2.8 spectral subtypes based on 
continuum information alone, to within 2.2 spectral subtypes 
based on line information alone, and to within 1.7 spectral 
subtypes from the complete spectra. 

Future work will be based on more plate scans so that 
we can build expert systems which have more adequate rep- 
resentations of nearly all spectral types and luminosities over 
a range of metallicities. We shall extend the ANN techniques 
to the determination of luminosity classes as well, and then 
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most likely use classical techniques to study stellar abundances. 
We also intend a more rigorous study of the eifects of noise, 
resolution and wavelength calibration errors on ANN output. 

In future papers we shall also explore alternative clas- 
sification techniques, including unsupervised ANNs. The su- 
pervised networks presented here serve as error minimization 
algorithms, replicating the choices and decision patterns of 
their trainer. Unsupervised ANNs, however, are capable of de- 
ciding on an appropriate classification scheme without benefit 
of a trainer. Such unsupervised ANNs can learn to group or 
cluster objects into bins, usually by determining the Euclidean 
(or any other appropriate metric) distance between individual 
vectors. These ANNs operate much like classical vector analy- 
sis strategies, and we are exploring them since they may allow 
us to identify previously unrecognized stellar classifications. 

Finally, we hope to extend the most useful techniques 
to fainter apparent magnitudes with the acquisition of deeper 
plate material and its calibration by Houk. 
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NOTE ADDED IN PROOF 

After submitting this paper we became aware of the work of 
Gulati et al. (1994). They have also classified stellar spectra on 
the MK system with artificial neural networks, using spectral 
libraries (Jacoby et al. 1984; Silva & Cornell 1992) as training 
and testing sets. We refer the interested reader to their work. 

This paper has been produced using the Blackwell Scientific 
Publications DTjnX style file. 
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