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Parameterizing Wave‐Driven Vertical Constituent
Transport in the Upper Atmosphere
Chester S. Gardner1 , Yafang Guo2 , and Alan Z. Liu3

1Department of Electrical and Computer Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, USA,
2Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA, 3Center for Space and
Atmospheric Research, Department of Physical Sciences, Embry‐Riddle Aeronautical University, Daytona Beach, FL,
USA

Abstract Dissipating waves contribute to vertical mixing of the atmosphere, alter molecular and eddy
diffusion, and induce chemical transport of reactive species. These processes induce strong vertical
transport of atmospheric constituents in regions where wave dissipation is significant. The effective wave
diffusivity is proportional to the Stokes drift velocity imparted by the spectrum of vertically propagating
waves, which is related to the vertical heat and wave energy fluxes. Because the heat flux cannot be derived
from wave parameterization schemes employed in most atmospheric models, wave‐driven constituent
transport has not been fully incorporated. However, we show in this paper that wave diffusivity can also be
expressed in terms of the eddy diffusivity and variances of the temperature and lapse rate fluctuations,
quantities that are readily derived frommany wave parameterizations. The theory is in good agreement with
lidar measurements of heat fluxes in the mesopause region. Total dynamical diffusivity associated with
dissipating waves and turbulence can exceed 300 m2/s near the mesopause.

1. Introduction

Gravity waves play important roles in the vertical transport of heat and atmospheric constituents, especially
in the upper atmosphere where wave amplitudes are large and dissipation is significant (Gardner & Liu,
2010; Liu & Gardner, 2004; Walterscheid, 1981; Walterscheid & Schubert, 1989; Xu et al., 2003; Zhu et al.,
2010). For example, waves help transport atomic oxygen, the meteoric metals, and nitric oxide from the
upper atmosphere through the mesopause region into the lower atmosphere where these species, and the
compounds they form, impact atmospheric chemistry and cloud formation (e.g., Crutzen, 1970; Lary,
1997; Plane, 2012; Plane et al., 2015; Shepherd et al., 2004; Smith et al., 2010; Ward, 1999). Most global
atmospheric models cannot resolve the important smaller‐scale waves, so wave transport processes are
usually incorporated simply by considering the eddy diffusion generated when waves break (Garcia et al.,
2014; Garcia & Solomon, 1985, 1994; Marsh et al., 2007). However, wave‐induced dynamical and chemical
transport processes also play important roles so that this simplified approach is not entirely adequate, as
has been shown when modeling the mesospheric Na and Fe layers (Carrillo‐Sánchez et al., 2016; Feng
et al., 2013; Gardner et al., 2016; Marsh et al., 2013).

Dissipating waves induce strong vertical mixing, alter molecular and eddy diffusion, and induce chemical
transport of reactive species. Several early attempts to account for enhanced wave transport in global models
employed the concept of an effective wave diffusivity that is proportional to the eddy diffusivity
(Grygalashvyly et al., 2012; Nakamura, 2001; Winters & D'Asaro, 1996). In this formulation, the dissipating
waves enhance the down gradient eddy mixing. Recently, it was shown that the wave diffusivity is related to
the vertical heat flux and is much larger than predicted by earlier studies (Gardner, 2018). Because waves
induce pressure fluctuations, the diffusivity can also be expressed in terms of the vertical fluxes of wave
energy and potential temperature. Unfortunately, existing wave parameterization schemes that are
employed in most atmospheric models cannot be used to compute the heat and potential temperature fluxes.
Therefore, it has not been possible to adapt this theory to the models.

Here, we extend our previous analyses by showing that the effective wave diffusivity is proportional to the
Stokes drift velocity imparted by the vertically propagating waves, which can be expressed in terms of the
eddy diffusivity and the variances of the wave‐driven temperature and lapse rate fluctuations. These three
parameters can be readily derived from most gravity wave parameterization schemes, and so it should
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now be possible to fully account for wave‐induced constituent transport (including chemical transport) in
the global models. The theory is shown to be in sensible agreement with extensive mesopause region obser-
vations of winds and temperatures at the Starfire Optical Range (SOR), NM, and Cerro Pachón (CP), Chile,
where the vertical heat fluxes were also measured (Gardner & Liu, 2007; Guo et al., 2017).

2. Generalized Constituent Transport

The effective vertical transport velocity of a species is defined as its vertical flux divided by its mean density.
When the chemical production of a species C is slow compared to the periods of the dominant gravity waves,
its total vertical transport velocity (wTrans), induced by molecular diffusion, eddy mixing and wave effects, is
given by (Gardner, 2018; Gardner & Liu, 2016)

wTrans ¼ w′ M½ �′
M
� � −

M
� �
C
� � ∂

∂z
C
� �
M
� � !

KTot þ wChem (1)

where

0≤
w′ M½ �′
M
� � ¼ w′p′

p
−
w′T ′

T
; (2)

KTot ¼ 1þ ∂T ′=∂z
� �2

Γad þ ∂T=∂z
� �2

24 35 KMole þ Kzzð Þ þ KWave ; (3)

and

wChem ¼ N2

g
ωCαC−ωμC
� �þ ∂QC= C

� �
∂z

−
μC
C
� �2 ∂ C

� �
∂z

 !" #
T ′
� �2

Γad þ ∂T=∂z
� �2 : (4)

where [C] is the density of C, [M] is the density of the background atmosphere, w is the vertical velocity, T is
the temperature, p is the pressure, w′ M½ �′= M

� �
is the Stokes drift velocity of the atmosphere associated with

vertically propagating waves (e.g., Coy et al., 1986), w′T′ is the wave‐induced heat flux, w′p′ is the wave
energy flux, Γad = g/Cp is the adiabatic lapse rate, g = 9.5 m/s is the gravitational acceleration,
Cp = 1,003 m2·K−1·s−2 is the specific heat at constant pressure, N is the buoyancy frequency and KTot,
KMole, Kzz, and KWave are respectively, the total, molecular, eddy, and wave diffusivities. The over bar
denotes the mean quantity and prime denotes the wave‐perturbed quantity. The remaining parameters in
(4) are related to species chemistry and are defined in Gardner (2018).

Because the wave energy flux is positive and the heat flux is generally negative for dissipating, upwardly pro-
pagating waves, Stokes drift induced by the waves transports the background atmosphere upward as shown
by (2). Of course, to maintain continuity, theremust be descent elsewhere (Coy et al., 1986). The wave‐driven
constituent perturbations enhance the molecular and eddy diffusivities by a factor that is proportional to the
temperature lapse rate variance as shown in (3), while the random vertical displacement fluctuations,
induced by the full spectrum of waves, contribute to vertical mixing of the atmosphere similar to turbulence.
As will be shown below, the effective wave diffusivity is proportional to the vertical Stokes drift velocity.
Finally, chemical transport arises when perturbations of the vertical winds are correlated with the fluctua-
tions in C caused by perturbations in the chemistry of C. Waves perturb chemistry by perturbing the tem-
perature dependent reaction rates and the densities of all the species involved in the reactions. When
wave perturbations are neglected, which is equivalent to assuming that T′, p′, and w′ are 0, (1) reduces to
the classical formula where KTot = KMole + Kzz. In this special case, vertical transport is determined solely
by molecular diffusion and eddy mixing.

The effective wave diffusivity is given by (Gardner, 2018)

KWave ¼ w′ζ (5)

where ζ is related to the vertical displacement induced by the spectrum of waves and is a solution to
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∂ζ
∂t

¼ w′−V ′
•∇ζ : (6)

V ′ is the perturbed velocity field (see below). In previous studies, Liu and Gardner (2004) and Gardner and

Liu (2010, 2016) employed the first‐order perturbation solution to (6) to calculate ζ andw′ζ . Here, we take an
alternative approach by using a modified version of the exact solution to (6) for a monochromatic gravity
wave that was derived by Gardner and Shelton (1985).

3. Deriving KWave

For a monochromatic gravity wave the perturbed velocity fieldV ′ ¼ u′bx þ w′bz is a traveling wave, which is a
function ofφ ωt−k•rð Þ, where u′ and w′ are, respectively, the horizontal and vertical wind perturbations, ω is
the intrinsic frequency of the wave,k ¼ hbx þmbz is the wavenumber vector, h is the horizontal wavenumber,
m is the vertical wavenumber, and r ¼ xbx þ zbz is the position vector. By assuming this same form for ζ,
Gardner and Shelton (1985) derived the following closed‐form solution for ζ, induced by a single gravity
wave:

ζ ¼ g

N2 ln
M½ �
M
� � !

¼ −
g

N2 ln
θ
θ

� �
þ g

N2 1−
R
Cp

� �
ln

p
p

� �
: (7)

Note that the right‐hand side of (7) is derived by expressing [M] in terms of the potential temperature (θ ¼ T

p0=pð ÞR=Cp ) and atmospheric pressure (p), where p0 = 1,000 mb is the standard reference pressure, and
R = 287 m2·K−1·s−2 is the gas constant for dry air. We assume that the gravity wave perturbations of p
and θ are small so that (7) may be linearized:

ζ≃
g

N2

M½ �′
M
� � ¼ −

g

N2

T ′

T
−
p′

p

� �
¼ −

g

N2

θ′

θ
þ g

N2 1−
R
Cp

� �
p′

p
: (8)

If two or more gravity waves are present, then ζ will include the contributions of each individual wave given
by (7), as well as contributions from the nonlinear interactions among the waves. These nonlinear interac-
tions are second‐ and higher‐order effects, which are proportional to the products of the wave amplitudes.
Because we have assumed that the gravity wave perturbations are small enough to neglect the nonlinear
contributions of θ′ and p′ to (7) so that ζ may be approximated by (8), we may also assume that in the pre-
sence of multiple waves, the second‐ and higher‐order nonlinear interaction terms are also negligible.
Therefore, the total vertical displacement associated with the full spectrum of waves is approximately equal
to sum of the displacements associated with each individual wave, which are approximately linearly related
to the sum of the individual temperature, pressure, and potential temperature fluctuations as shown by (8).
Hence, the effective wave diffusivity is given by

KWave≃
g

N2

w′ M½ �′
M
� � ¼ KH þ Cp

R
−1

� �
KE ; (9)

where

KH ¼ −
g

N2

w′θ′

θ
; (10)

KE ¼ g

N2

R
Cp

w′p′

p
; (11)

and

KH−KE ¼ −
g

N2

w′T′

T
¼ −w′T ′

Γad þ ∂T=∂z
� � : (12)
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Note that to derive the right‐hand side of (12), we used the definition for the square of the buoyancy fre-

quency, namely,N2 ¼ g Γad þ ∂T=∂z
� �

=T. From (3), (9), and (12), we see that the total dynamical diffusivity

KDyn, associated with waves and turbulence, is given by

KDyn ¼ 1þ ξ instð ÞKzz þ KWave ¼ 1þ ξ instð ÞKzz þ Cp

R
KE−

w′T′

Γad þ ∂T=∂z
� � (13)

where

ξ inst ¼
∂T′=∂z
� �2

Γad þ ∂T=∂z
� �2 ≃ ∂u′=∂zð Þ2

N2 ¼ 1=Ri: (14)

The importance of ξinst will become apparent in the following section. This parameter is a measure of the
instability of the atmosphere through which the waves are propagating. It is approximately equal to the
mean of the inverse Richardson number Ri. In the mesopause region at SOR and CP, ξinst varies between
about 0.1 and 0.6.

4. Parameterizing KWave and KDyn

To incorporate wave transport into a global circulation model, it is necessary to compute the key transport
parameters in equations (1)–(4) from data provided by the gravity wave, turbulence, andmolecular diffusion
modules incorporated within the model. For example, the Whole Atmosphere Community Climate Model
(WACCM) employs a wave parameterization scheme that is based on a spectral model which includes waves
excited in the atmosphere when stably stratified air flows over an irregular boundary and also by internal
heating and shear (Beres et al., 2004, 2005; Garcia et al., 2007; Richter et al., 2010). WACCM computes
the horizontal wind amplitudes, periods, and vertical wavelengths of the generated waves as a function of
altitude, latitude, longitude, time of day, and season. As the waves propagate upward, the intervening wind
and temperature fields, associated with the mean state of the atmosphere, modify the waves. The modifica-
tions include critical layer filtering and wave breaking. Kzz is computed when there is wave dissipation.
Thus, WACCM can provide the wave spectrum and Kzz at each point in the model consistent with its resolu-

tion, as well as the mean atmospheric state (i.e., T and N2). Obviously, the required variances of the wave‐
induced temperature and lapse rate fluctuations can be computed from the wave spectrum as can the wave

energy fluxw′p′ and KE (Gardner, 2018; Liu, 2009). The only parameters that cannot be computed from grav-
ity wave data provided by WACCM and other global circulation models that employ similar wave parame-

terization schemes are the heat flux w′T′ and KH, which is proportional to the vertical flux of potential

temperature w′θ′ .

KH is calculated following H‐L. Liu (2000), who considered the impact of localized turbulence on a single
gravity wave. In our case, we consider the combined effects of both turbulence and the full spectrum of
waves and assume that the resulting diffusivity (KDyn) is uniform. Because potential temperature is a con-
served quantity, its fluctuations induced by gravity waves and turbulence are described by the continuity
equation. Thus, the thermodynamic equation for heat flow in the presence of potential temperature gradi-
ents in an incompressible flow can be expressed as

∂θ
∂t

þ∇• Vθ−KDyn∇θ
� � ¼ 0: (15)

The linearized form of this equation, assuming the divergence of the mean wind field is zero, is given by

∂θ′

∂t
þ u

∂θ′

∂x
þ w′

∂θ
∂z

¼ ∂KDyn

∂z
∂θ′

∂z
þ KDyn

∂2θ′

∂z2
: (16)

Note that (16) is identical to equation (1) in H‐L. Liu (2000) for the special case of uniform KDyn. By multi-
plying both sides of (16) by θ′, taking the average and rearranging terms, we obtain
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KH ¼ −
g

N2

w′θ′

θ
¼ KDyn

g2

N4

∂θ′=∂z
� �2

θ
2 ≃ξ instKDyn: (17)

The right‐hand side of (17) is obtained by neglecting the small contribution of the pressure fluctuations to

∂θ′=∂z
� �2

. By combining (12), (13), and (17), we obtain these final results:

KH≃
ξ inst

1−ξ instð Þ 1þ ξ instð ÞKzz þ Cp=R−1
� �

KE
� �

(18)

KDyn≃
1

1−ξ instð Þ 1þ ξ instð ÞKzz þ Cp=R−1
� �

KE
� �

(19)

and

KH−KE≃
1

1−ξ instð Þ ξ inst 1þ ξ instð ÞKzz þ ξ instCp=R−1
� �

KE
� �

: (20)

The total dynamical diffusivity associated with waves and turbulence, KDyn given by (19), can be computed
from any gravity wave parameterization scheme that provides Kzz and the wave spectrum (or wave‐driven T′
and lapse rate variances), which are used to compute ξinst given by (14),KE given by (11) and (21) (see below),
and the chemical transport given by (4). KDyn is largest in regions where the atmospheric instability para-
meter ξinst is largest, which is expected to generally coincide with regions where Kzz is also largest.

5. Comparison With Observations

The efficacy of (18)–(20) can be assessed by comparing the predictions with extensive lidar measurements of
wind, temperature, and heat flux profiles made in the mesopause region at the SOR, NM (34.96°N,
106.46°W; Gardner & Liu, 2007), and CP, Chile (30.25°S, 70.74°W; Guo et al., 2017). We focus on (12) and
(20), which express KH‐KE in terms of the measured heat flux or alternatively, in terms of Kzz, KE, and
ξinst. The data at both sites were acquired throughout the year (370 hr at SOR and 150 hr at CP). This com-
plicates the comparison, because (20) involves a nonlinear combination of terms. However, we evaluate
equation (20) using the mean values of those terms, ostensibly to achieve greater accuracy. Furthermore,
Kzz was only measured at CP so a model Kzz profile was used for the SOR calculations. We do not believe
these limitations are serious, because our goal is to confirm (20) predicts values of KH‐KE that are in reason-
able agreement with the values derived from the measured heat flux using (12).

We follow the approach suggested by Liu (2009) to computeKE using amodel for the joint vertical wavenum-
ber and temporal frequency spectrum of the wave‐induced temperature fluctuations, which yields
(Gardner, 2018)

KE ¼ γ 1−2αdwnð ÞΓad
T

λ*z
τi

T ′
� �2

Γad þ ∂T=∂z
� �2 ≃ 0:426 T ′

� �2
m2⋅s−1⋅K−2at SOR

0:481 T ′
� �2

m2⋅s−1⋅K−2 at CP

8<: : (21)

γ is a dimensionless parameter that depends on the shape of the temperature spectrum and data
acquisition/processing parameters, αdwn is the fraction of wave energy propagating downward (assumed

to be 0.15), and τi is the inertial period. λ*z is the characteristic vertical wavenumber, which is computed from

the ratio of the temperature and lapse rate variances using a suitable model for the vertical wavenumber
spectrum of the temperature fluctuations. Most theories for the gravity wave vertical wavenumber (m) spec-
trum predict a power law dependence proportional toms for 0≤m≤m* andm

−p form*≤m, where s ~ 1 and

p ~ 3 (Gardner, 1996). λ*z was derived using this spectral model with s = 1 and p = 3 along with the measured

temperature and lapse rate variances. Where appropriate, certain parameters values were averaged over
85–100 km at each site and are tabulated in Table 1. Notice that KE given by (21) and wChem given by

(4) are both proportional to T′
� �2

= Γad þ ∂T=∂z
� �2

. This parameter is approximately equal to ζ 2 , the mean

square displacement of the atmosphere induced by the full spectrum of waves. In the mesopause region at
SOR and CP, the displacement parameter varies between about 0.6 and 1 km2.
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The KH‐KE profiles were derived at both sites from the measured heat flux
according to (12) and also calculated using (20). The results for SOR and
CP are plotted in Figures 1a and 1b, respectively. The parameters Kzz,
KE, and ξinst are plotted in Figure 2 for both sites. The Kzz model profile
for SOR is a simple Gaussian distribution with a maximum value of
75 m2/s at 88 km, where the measured heat flux peaks, and a root‐
mean‐square width of 5 km. The uncertainty is conservatively estimated
to be ±20 m2/s. Because of the shorter observation period at CP, to reduce
the uncertainties, the CP data were smoothed using a running average of
3‐km full width.

At both sites the measured and predicted KH‐KE profiles are in reasonable
agreement as the general shapes and values of the profiles are comparable.

The profiles exhibit maximum values between 88 and 90 km of between 100 and 200 m2/s. This corresponds
to the altitude region where the instability parameter ξinst also reaches its maximum value. The KH‐KE pro-
files then decrease with increasing altitude with the smallest values occurring between 97 and 99 km. Here,
the measured profiles at both sites become negative with values varying between −10 and −30 m2/s.
However, only the predicted profile at SOR becomes negative. According to (20), negative values can only
occur in regions of high atmospheric stability where ξinst < R/Cp = 0.286 and KE is large compared to Kzz.
In fact, in regions of very high atmospheric stability (ξinst ~ 0), wave dissipation is negligible so that
KH = 0. In this limiting case both (12) and (20) are equal to −KE.

The uncertainty in the predicted KH‐KE profile given by (20) is dominated by uncertainties in ξinst and Kzz at
SOR and by uncertainties in ξinst at CP. The predicted profile at CP does not become negative at these higher
altitudes because the atmosphere is apparently too unstable as characterized by ξinst. This region is at the
edge of the thermosphere and so it is possible that wemay have overestimated the value of ξinst by employing
the mean environmental lapse rate from 85 to 100 km listed in Table 1, which is negative. For example, if the
environmental lapse rate is actually 0 in this region rather than the 85‐ to 100‐kmmean (−0.929 K/km), then
ξinst would decrease by about 20% and the predicted KH‐KE profile would be in better agreement with the
measurements. This could also explain the discrepancy between the measured and predicted KH‐KE profiles

Table 1
Mean Atmospheric Parameters (85–100 km) at SOR and CP

Parameter SOR (34.96°N, 106.46°W) CP (30.25°S, 70.74°W)

γ 4.56 4.87
∂T=∂z −0.488 K/km −0.929 K/km
T 192.7 K 188.4 K
Γad þ ∂T=∂z
� �2

80.7 K2/km2 73.0 K2/km2

λ*z
16.5 km 17.6 km

τi = 12 h/ sin ϕLat 20.9 hr 23.9 hr

Note. SOR = Starfire Optical Range; CP = Cerro Pachón.

Figure 1. Profiles of KH‐KE plotted between 85 and 100 km that were derived from the measured heat flux profile using
equation (12) (solid curve) and that were predicted by equation (20) (dashed curve): (a) Starfire Optical Range, NM
(34.96°N), and (b) Cerro Pachón, Chile (30.25°S).
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at SOR at the lowest altitudes between 85 and 88 km. This region is just below the mesopause where obser-
vations and models predict negative lapse rates as high −1.5 to −2.0 K/km depending on the time of year. If
the mean environmental lapse rate is−1.5 K/km in this region instead of−0.488 K/km that we computed for
the 85‐ to 100‐km mean, then ξinst would increase by about 27% and the predicted KH‐KE profile would also

Figure 2. Profiles of the parameters: (a) eddy diffusivity Kzz, (b) diffusivity associated with wave energy flux KE, and
(c) instability parameter ζinst, all plotted between 85 and 100 km at the Starfire Optical Range (SOR), NM (34.96°N),
(solid curve) and Cerro Pachón (CP), Chile (30.25°S), (dashed curve). The model Kzz profile at SOR is a Gaussian
distribution with a maximum of 75 m2/s at 88 km and a root‐mean‐square width of 5 km. The measured Kzz profile at CP
is adapted from Guo et al. (2017).

Figure 3. Profiles of KDyn plotted between 85 and 100 km that were derived from the measured heat flux profile using
equation (13) (solid curve) and that were predicted by equation (19) (dashed curve): (a) Starfire Optical Range (SOR),
NM (34.96°N) and (b) Cerro Pachón (CP), Chile (30.25°S). The mean and root‐mean‐square differences between the
profiles (measured‐predicted) are, respectfully, 13 and 50 m2/s at SOR and −5.4 and 37 m2/s at CP.

10.1029/2019EA000625Earth and Space Science

GARDNER ET AL. 910

 23335084, 2019, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019E

A
000625 by E

m
bry-R

iddle A
eronautical U

niv, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



be in better agreement with the measurements. To improve accuracy when employing (19) and (20) in global
models to estimate KDyn and KH‐KE, the parameters ξinst, Kzz, and KE, should be derived over short time
intervals of about one month or less, instead using the annual mean values as we have done here.

Finally, the total dynamical diffusivity (KDyn) profiles were calculated using (13) and the measured heat flux
profiles and predicted by (19) using ξinst, Kzz, and KE. The results are plotted for comparison in Figure 3a for
SOR and Figure 3b for CP. The predicted KDyn profiles are in good agreement with the profiles computed
from the measured heat flux, which means that (19) can be used to estimate the total dynamical diffusivity.
Thus, existing global atmospheric models can now be modified to fully account for wave‐induced constitu-
ent transport by replacing Kzz with KDyn calculated according to (19) and including the chemical transport
described by (4). Notice that KDyn at both sites is many times larger than Kzz plotted in Figure 2a. The impact
of the larger KDyn is expected to be significant, at least in the mesopause region, where measurements have
shown that the modeled transport of meteoric Na and Fe is much weaker than observations and insufficient
to accommodate the estimated meteoric influxes of these metals (Carrillo‐Sánchez et al., 2016; Feng et al.,
2013; Gardner et al., 2016; Marsh et al., 2013). Notice also that when there is no wave dissipation KH, Kzz,
and ξinst are 0 so that (9), (13), and (19) reduce to KWave = KDyn = (Cp/R − 1)KE. In this limiting case, the
random vertical displacements imparted by the full spectrum of nondissipating waves, still contribute to
mixing of the atmosphere, which is characterized by a baseline diffusivity that is proportional to the wave
energy flux, although it is small for most Boussinesq waves.

6. Conclusions

We have presented a solution for the effective wave diffusivity KWave, which accounts for the wave‐driven
vertical constituent transport that is currently missing in the gravity wave parameterizations employed in
most general circulation models. The solution depends only on the eddy diffusion coefficient and variances
of the temperature and lapse rate fluctuations, which are readily available from contemporary wave parame-
terization schemes. Therefore, it is now feasible to include a physically consistent representation of consti-
tuent transport effects in global circulation models. However, if implemented, it is likely the altered
model simulations will deviate from their current “correct” state, which will have to be compensated by tun-
ing other parameters. Thus, this improved representation of gravity wave transport will also help constrain
the tuning of key model parameters.

The solution for KWave derived here is based upon an exact solution to (6) for monochromatic gravity waves
(Gardner & Shelton, 1985). KWave is (Cp/R)KE ~ 100 m2/s larger than the solution derived by Gardner (2018),
who used the first‐order perturbation solution to (6). It is not difficult to show, that if the perturbation solu-
tion is employed in the section 4 analysis, then the predicted KH‐KE profiles are in very poor agreement with
those computed from themeasured heat fluxes at both SOR and CP. Because chemistry is influenced primar-
ily by temperature fluctuations, this new solution to (6) and for KWave has only a minor impact on chemical
transport. In fact, when the production of the species is slow compared to the periods of the dominant gravity
waves, the chemical transport of C is identical to that derived by Gardner (2018) and given by (4).

Although the comparison of theory with observations was focused on the mesopause region, the analysis is
general and can be used to estimate wave transport at any altitude. All that is required is knowledge of the

mean thermal state of the background atmosphere (T), the temperature and lapse rate fluctuation variances

induced by gravity waves ( T ′
� �2

and ∂T ′=∂z
� �2

), and the eddy diffusivity (Kzz). The remaining parameters

required to compute KWave, KDyn, and wChem can be calculated from these four quantities. Thus, the results
derived in this paper can also be used to assess the significance of wave‐driven constituent transport
throughout the atmosphere. For example, in the lower thermosphere, the atmosphere is inherently more
stable because the environmental lapse rate is large and positive, but extensive rocket and lidar measure-
ments have shown that wave amplitudes and wind shears are exceptionally large in the 100‐ to 110‐km alti-
tude range (Larsen, 2002; Yue et al., 2010). So even though turbulence is negligible in this region, the wave
energy flux (and KE) and the instability parameter ξinst can be large so that KDyn could become comparable to
or even greater than themolecular diffusivity. Similarly, in themiddle and lower mesosphere themean lapse
rate is negative so the atmosphere is less stable. When wave amplitudes become large enough to generate
turbulence in this region through wave breaking, ξinst, Kzz, and KE could also be large enough to induce
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significant enhancements in KDyn. Balloon, lidar, and radar observations of temperatures, winds, and turbu-
lence, made throughout the atmosphere, in combination with the expressions derived here, can now be used
to assess the significance of wave transport at all altitudes and to model its effects.

References
Beres, J. H., Alexander, M. J., & Holton, J. R. (2004). A method of specifying the gravity wave spectrum above convection based on latent

heating properties and background wind. Journal of the Atmospheric Sciences, 61, 324–337.
Beres, J. H., Garcia, R. R., Boville, B. A., & Sassi, F. (2005). Implementation of a gravity wave source spectrum parameterization dependent

on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). Journal of Geophysical Research, 110,
D10108. https://doi.org/10.1029/2004JD005504

Carrillo‐Sánchez, J. D., Nesvorn, D., Pokorny, P., Janches, D., & Plane, J. M. C. (2016). Sources of cosmic dust in the Earth's atmosphere.
Geophysical Research Letters, 43, 11,979–11,986. https://doi.org/10.1002/2016GL071697

Coy, L., Fritts, D. C., & Weinstock, J. (1986). The Stokes drift due to vertically propagating internal gravity waves in a compressible
atmosphere. Journal of the Atmospheric Sciences, 43(22), 2636–2643. https://doi.org/10.1175/1520‐0469(1986)043<2636:
TSDDTV>2.0.CO;2

Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological
Society, 96, 320–325.

Feng, W., Marsh, D. R., Chipperfield, M. P., Janches, D., Höffner, J., Yi, F., & Plane, J. M. C. (2013). A global atmospheric model of meteoric
iron. Journal of Geophysical Research: Atmospheres, 118, 9456–9474. https://doi.org/10.1002/jgrd.50708

Garcia, R. R., Lopez‐Puertas, M., Funke, B., Marsh, D. R., Kinnison, D. E., & Smith, A. K. (2014). On the distribution of CO2 and CO in
the mesosphere and thermosphere. Journal of Geophysical Research: Atmospheres, 119, 5700–5718. https://doi.org/10.1002/
2013JD021208

Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., & Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950–
2003. Journal of Geophysical Research, 112, D09301. https://doi.org/10.1029/2006JD007485

Garcia, R. R., & Solomon, S. (1985). The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere
and lower thermosphere. Journal of Geophysical Research, 90, 3850–3868. https://doi.org/10.1029/JD090iD02p03850

Garcia, R. R., & Solomon, S. (1994). A new numerical model of the middle atmosphere. 2. Ozone and related species. Journal of Geophysical
Research, 99(D6), 12,937–12,952. https://doi.org/10.1029/94JD00725

Gardner, C. S. (1996). Testing theories of atmospheric gravity wave saturation and dissipation. Journal of Atmospheric and Terrestrial
Physics, 58(14), 1575–1589. https://doi.org/10.1016/0021‐9169(96)00027‐X

Gardner, C. S. (2018). Role of wave‐induced diffusion and energy flux in the vertical transport of atmospheric constituents in themesopause
region. Journal of Geophysical Research: Atmospheres, 123, 6581–6604. https://doi.org/10.1029/2018JD028359

Gardner, C. S., & Liu, A. Z. (2007). Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at
Starfire Optical Range, New Mexico. Journal of Geophysical Research, 112, D09113. https://doi.org/10.1029/2005JD006179

Gardner, C. S., & Liu, A. Z. (2010). Wave‐induced transport of atmospheric constituents and its effect on the mesospheric Na layer. Journal
of Geophysical Research, 115, D20302. https://doi.org/10.1029/2010JD014140

Gardner, C. S., & Liu, A. Z. (2016). Chemical transport of neutral atmospheric constituents by waves and turbulence: Theory and obser-
vations. Journal of Geophysical Research: Atmospheres, 121, 494–520. https://doi.org/10.1002/2015JD023145

Gardner, C. S., Liu, A. Z., & Guo, Y. (2016). Vertical and horizontal transport of mesospheric Na: Implications for the mass influx of cosmic
dust. Journal of Atmospheric and Solar ‐ Terrestrial Physics. https://doi.org/10.1016/j.jastp.2016.07.013

Gardner, C. S., & Shelton, J. D. (1985). Density response of neutral atmospheric layers to gravity wave perturbations. Journal of Geophysical
Research, 90(A2), 1745–1754. https://doi.org/10.1029/JA090iA02p01745

Grygalashvyly, M., Becker, E., & Sonnemann, G. R. (2012). Gravity wave mixing and effective diffusivity for minor chemical constituents in
the mesosphere/lower thermosphere. Space Science Reviews, 168, 333–362. https://doi.org/10.1007/s11214‐011‐9857‐x

Guo, Y., Liu, A. Z., & Gardner, C. S. (2017). First Na lidar measurements of turbulence heat flux, thermal diffusivity and energy dissipation
rate in the mesopause region. Geophysical Research Letters, 44, 5782–5790. https://doi.org/10.1002/2017GL073807

Larsen, M. F. (2002). Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind
measurements. Journal of Geophysical Research, 107(A8), 1215. https://doi.org/10.1029/2001JA000218

Lary, D. J. (1997). Catalytic destruction of stratospheric ozone. Journal of Geophysical Research, 102, 21,515–21,526. https://doi.org/
10.1029/97JD00912

Liu, A. Z. (2009). Estimate eddy diffusion coefficients from gravity wave vertical momentum and heat fluxes. Geophysical Research Letters,
36, L08806. https://doi.org/10.1029/2009GL037495

Liu, A. Z., & Gardner, C. S. (2004). Vertical dynamical transport of mesospheric constituents by dissipating gravity waves. Journal of
Atmospheric and Solar ‐ Terrestrial Physics, 66(3‐4), 267–275. https://doi.org/10.1016/j.jastp.2003.1011.1002

Liu, H.‐L. (2000). Temperature changes due to gravity wave saturation. Journal of Geophysical Research, 105(D10), 12,329–12,336. https://
doi.org/10.1029/2000JD900054

Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere
response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112, D23306. https://doi.org/
10.1029/2006JD008306

Marsh, D. R., Janches, D., Feng, W., & Plane, J. M. C. (2013). A global model of meteoric sodium. Journal of Geophysical Research:
Atmospheres, 118, 11,442–11,452. https://doi.org/10.1002/jgrd.50870

Nakamura, N. (2001). A new look at eddy diffusivity as a mixing diagnostic. Journal of the Atmospheric Sciences, 58(24), 3685–3701. https://
doi.org/10.1175/1520-0469(2001)

Plane, J. M. C. (2012). Cosmic dust in the Earth's atmosphere. Chemical Society Reviews, 41(19), 6507–6518. https://doi.org/10.1039/
C2CS35132C

Plane, J. M. C., Feng, W., & Dawkins, E. C. M. (2015). The mesosphere and metals: Chemistry and changes. Chemical Reviews, 115(10),
4497–4541. https://doi.org/10.1021/cr50051m

Richter, J. H., Sassi, F., & Garcia, R. R. (2010). Towards a physically based gravity wave source parameterization in a general circulation
model. Journal of the Atmospheric Sciences, 67, 136–156.

10.1029/2019EA000625Earth and Space Science

GARDNER ET AL. 912

Acknowledgments
The data used in this work are tabulated
in the supporting information to this
paper. This work was supported in part
by National Science Foundation grants
OPP 12‐46431, AGS‐1734553, and AGS‐
1759471.

 23335084, 2019, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019E

A
000625 by E

m
bry-R

iddle A
eronautical U

niv, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2004JD005504
https://doi.org/10.1002/2016GL071697
https://doi.org/10.1175/1520-0469(1986)043%3c2636:TSDDTV%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3c2636:TSDDTV%3e2.0.CO;2
https://doi.org/10.1002/jgrd.50708
https://doi.org/10.1002/2013JD021208
https://doi.org/10.1002/2013JD021208
https://doi.org/10.1029/2006JD007485
https://doi.org/10.1029/JD090iD02p03850
https://doi.org/10.1029/94JD00725
https://doi.org/10.1016/0021-9169(96)00027-X
https://doi.org/10.1029/2018JD028359
https://doi.org/10.1029/2005JD006179
https://doi.org/10.1029/2010JD014140
https://doi.org/10.1002/2015JD023145
https://doi.org/10.1016/j.jastp.2016.07.013
https://doi.org/10.1029/JA090iA02p01745
https://doi.org/10.1007/s11214-011-9857-x
https://doi.org/10.1002/2017GL073807
https://doi.org/10.1029/2001JA000218
https://doi.org/10.1029/97JD00912
https://doi.org/10.1029/97JD00912
https://doi.org/10.1029/2009GL037495
https://doi.org/10.1016/j.jastp.2003.1011.1002
https://doi.org/10.1029/2000JD900054
https://doi.org/10.1029/2000JD900054
https://doi.org/10.1029/2006JD008306
https://doi.org/10.1029/2006JD008306
https://doi.org/10.1002/jgrd.50870
https://doi.org/10.1175/1520-0469(2001)
https://doi.org/10.1175/1520-0469(2001)
https://doi.org/10.1039/C2CS35132C
https://doi.org/10.1039/C2CS35132C
https://doi.org/10.1021/cr50051m


Shepherd, G. G., Liu, G., & Roble, R. G. (2004). Remote sensing of the large‐scale circulation of atomic oxygen. In K. Schafer, A. Comeron,
M. R. Carleer, R. H. Picard, & N. I. Sifakis (Eds.), Remote Sensing of Clouds and the Atmosphere IX, Proceedings of SPIE (Vol. 5571,
pp. 173–181). Maspalomas, Canary Islands, Spain. Retrieved from www.spiedigitallibrary.org/conference-proceedingsof-SPIE/5571

Smith, A. K., Marsh, D. R., Mlynczak, M. G., & Mast, J. C. (2010). Temporal variations of atomic oxygen in the upper atmosphere from
SABER. Journal of Geophysical Research, 115, D18309. https://doi.org/10.1029/2009JD013434

Walterscheid, R. L. (1981). Dynamical cooling induced by dissipating internal gravity waves.Geophysical Research Letters, 8(11), 1235–1238.
https://doi.org/10.1029/GL008i012p01235

Walterscheid, R. L., & Schubert, G. (1989). Gravity‐wave fluxes of O3 and OH at the nightside mesopause. Geophysical Research Letters,
16(7), 719–722.

Ward, W. E. (1999). A simple model of diurnal variations in the mesospheric oxygen nightglow. Geophysical Research Letters, 26(23),
3565–3568. https://doi.org/10.1029/1999GL003661

Winters, K. B., & D'Asaro, E. A. (1996). Diascalar flux and the rate of fluidmixing. Journal of Fluid Mechanics, 317, 179–193. https://doi.org/
10.1017/S0022112096000717

Xu, J., Smith, A. K., & Ma, R. (2003). A numerical study of the effect of gravity wave propagation on minor species distributions in the
mesopause region. Journal of Geophysical Research, 108(D3), 4119. https://doi.org/10.1029/2001JD001570

Yue, J., She, C.‐Y., & Liu, H.‐L. (2010). Large wind shears and stabilities in the mesopause region observed by Na wind‐temperature lidar at
midlatitude. Journal of Geophysical Research, 115, A10307. https://doi.org/10.1029/2009JA014864

Zhu, X., Yee, J. H., Swartz, W. H., & Talaat, E. R. (2010). A spectral parameterization of drag, eddy diffusion, and wave heating for a three‐
dimensional flow induced by breaking gravity waves. Journal of the Atmospheric Sciences, 67, 2520–2536. https://doi.org/10.1175/
2010JAS3302.1

10.1029/2019EA000625Earth and Space Science

GARDNER ET AL. 913

 23335084, 2019, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019E

A
000625 by E

m
bry-R

iddle A
eronautical U

niv, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.spiedigitallibrary.org/conference-proceedingsof-SPIE/5571
https://doi.org/10.1029/2009JD013434
https://doi.org/10.1029/GL008i012p01235
https://doi.org/10.1029/1999GL003661
https://doi.org/10.1017/S0022112096000717
https://doi.org/10.1017/S0022112096000717
https://doi.org/10.1029/2001JD001570
https://doi.org/10.1029/2009JA014864
https://doi.org/10.1175/2010JAS3302.1
https://doi.org/10.1175/2010JAS3302.1

	Parameterizing Wave‐Driven Vertical Constituent Transport in the Upper Atmosphere
	Scholarly Commons Citation

	/var/tmp/StampPDF/e0K9snUVOw/tmp.1689876101.pdf.0G52l

