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We investigate the existence of multivortex states in a superconducting mesoscopic sphere with a magnetic dipole placed at the
center. We obtain analytic solutions for the order parameter ¥ (7) inside the sphere through the linearized Ginzburg-Landau (GL)
model, coupled with mixed boundary conditions, and under regularity conditions and decoupling coordinates approximation. The
solutions of the linear GL equation are obtained in terms of Heun double confluent functions, in dipole coordinates symmetry.
The analyticity of the solutions and the associated eigenproblem are discussed thoroughly. We minimize the free energy for the
fully nonlinear GL system by using linear combinations of linear analytic solutions, and we provide the conditions of occurring
multivortex states. The results are not restricted to the particular spherical geometry, since the present formalism can be extended

for large samples, up to infinite superconducting space plus magnetic dipole.

1. Introduction

The rapidly growing field of quantum computation requires
nanoscale miniaturization of electronic circuits, way beyond
the silicon era type of devices [1]. Therefore, the mesoscopic
superconductors, having the size comparable to the coher-
ence length or the magnetic penetration depth [2], are the
prime candidates for construction of nanodevices among all
other superconducting systems. Mesoscopic physics revealed
a number of open fundamental problems like quantum con-
finement, quantum vortices and loops, spintronics, quantum
dots, etc. [3] whose solutions can bring significant knowledge
in fields like nanotechnology, synthesis of new materials,
novel sensors, modern lithography, or molecular biology [4-
6].

The most important feature of a mesoscopic supercon-
ductor is that its shape and size have an important effect
on the interplay of the magnetic field and superconducting
condensate. The properties of mesoscopic superconductors
are very different compared to those of bulk superconductors.
While in bulk superconductors penetrating vortices form
a lattice due to the vortex-vortex repulsion, in mesoscopic
superconductors there is a competition between the vortex
lattice and the boundary which tries to impose its geometry

on the vortex lattice. It is observed experimentally that flux
quantum configurations have the same symmetry as the
symmetry of the shape of the sample in a homogeneous
magnetic field [7]. Such systems are studied via the Ginzburg-
Landau (GL) model. The GL equations arise from the Euler-
Lagrange equations for the free Gibbs energy for a meso-
scopic superconductor sample in magnetic field. These equa-
tions must be solved under specific boundary conditions:
the normal component of the superconducting current is
equal to zero [8]. Near and below the transition temperature,
theoretical calculations show that anti-vortex and giant-
vortex can appear in order to maintain the symmetric vortex
configuration.

The response of mesoscopic superconductor samples
of different shapes (thin discs, spheres, cones, and rings)
to an external magnetic field, as well as the effect of the
geometry, has been theoretically [9-18] and experimentally
[7] studied. In all these cases a constant external magnetic
field is applied along the the revolution axis. The small
volume to surface ratio of these mesoscopic structures brings
new features not found in the bulk: there are two kinds of
superconducting states, depending on the strength of the
magnetic field, the sample geometry (external surface), and
its size: giant and multivortex states. The giant vortex state
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has cylindrical symmetry and is the only kind stable in small
size superconductors due to the confinement effect [13, 14]. If
the size of the sample increases, such giant vortex states can
break up into multivortices through saddle-point transitions
[17, 18]. For three-dimensional objects (sphere or cone) the
vortex lines need to intersect the surface perpendicularly in
order to cancel the outward supercurrent component [9-12].
Consequently, the shape of the lines is strongly affected by
the sample surface. For example, in the case of a mesoscopic
sphere placed in uniform external magnetic field, the vortex
lines are curved inside, packing denser in the equatorial
plane, and spreading out towards the poles [10, 11].

In this paper we consider a different situation where
the magnetic field is not anymore externally generated but
is generated from inside the sample, e.g., an infinitesimal
magnetic dipole placed at the center of a mesoscopic sphere.
Such a configuration can generate confined vortex loops. The
topological transition between open and closed vortex loops
is controlled by the geometry, i.e., R, and the central magnetic
dipole strength.

The goal of this paper is to demonstrate the occurrence
of multivortex structures in the superconducting sphere plus
magnetic dipole configuration, especially below and around
the transition temperature. Our approach is based on the
GL model of free energy for a finite volume V. Outside of
this volume the Cooper pair density W(7) describing the
superconducting phase, called the order parameter, is zero
[5, 6, 9-18]. The free energy functional is given in the GL
model by [10, 11]

2

P (¥
—lj 7+a|\P|2+E|‘I’|4+— dv, (1)
V iy 2m 2 8

.
where m is the Cooper pairs mass, P is the quantum momen-

tum operator in the presence of magnetic field, and i is the
intensity of the magnetic field. The temperature dependent
coefficient function «(T) < 0 and the nonlinear term
coupling constant § > 0 are typical Landau second-order
phase transition parameters [9-12]. For mesoscopic samples,
one can neglect the term responsible of the expulsion of
magnetic flux from the superconductor, that is last term in
Eq. (1) [9-12].

The traditional procedure for finding ¥ by minimizing
the free energy functional Eq. (1) for constant volume V'
consists in expanding the order parameter ¥ in a basis of
eigenfunctions of the corresponding linearized GL problem
[10, 11, 16-18] and numerically evaluating the expansion
coeflicients which minimize the full nonlinear functional Eq.
(D).

In this paper we solve the GL linear problem analytically
and investigate the properties of the eigenfunctions and
spectrum. The contribution of the infinitesimal magnetic
dipole will be approached in the dipole system of coordi-
nates. The linearized GL equation factorizes in two ordinary
differential equations, for the two orthogonal dipole coor-
dinates, respectively. From the physical point of view such
a factorization seems natural because far enough from the
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sphere surface, the abstract surfaces containing vortex lines
follow the magnetic field stream lines, but these are exactly
the dipole magnetic field lines. Along these surfaces the
order parameter has slow variation or is practically constant.
This gives sufficient physical reason for neglecting higher
order terms in the dipole variable going along the magnetic
field lines. This approximation allows integrating the two
ordinary differential equations. The linear solution consists
in a product of angular momentum eigenfunctions in the
azymuthal coordinate, exponential function for one of the
dipole coordinates, and a double confluent Heun function in
the third coordinate. The final step is to come back to the fully
nonlinear GL problem, and write ¥ as a linear combination
of eigenfunctions of the linear GL problem, with arbitrary
coefficients, and then minimize the free energy with respect
to these coeflicients.

We dedicate a large part of the present calculations to
solve exactly the linearized GL equation and to ensure the
completeness and orthogonality of the linear basis because
near and below the transition temperature, even the linear
GL equation is sufficient to describe multivortex states. The
order parameter ¥ is very small in this range, and higher
order terms of ¥ can be neglected. Nevertheless, at lower
temperatures, the vortex configuration does not have to
match the symmetry of the system, and higher order terms of
GL equation cannot be negligible [19]. It is the contribution of
these nonlinear terms which generates the multivortex states
at lower temperatures.

The paper is organized as follows. In Section 2 we
formulate the nonlinear and auxiliary linear GL problem
and write the partial differential equation associated with
the GL problem. In Section 3 we discuss the importance of
the infinitesimal central magnetic dipole from a potential
aspect, introduce the dipole coordinates, and obtain general
form of the dipole equation in azimuthal symmetry plus
dipole coordinates. In Section 4 we reduce the general dipole
equation to a double confluent Heun equation (DCHE) by
the help of a geometric approximation and a decoupling of
the dipole orthogonal modes. We obtain analytic solutions for
the DCHE as Heun series around the point at infinity, and
we present some examples. In Section 5 we show how the
dipole equation plus the physical boundary conditions can
be brought to a Sturm-Liouville problem, and we solve the
associated GL linear eigenproblem and find the eigenvalues
spectrum. Examples of spectra for different configurations
are presented. In Section 6 we describe how one can use
the exact solutions and spectra of the linear GL problem to
build approximate solutions for full nonlinear GL problem,
by minimizing the free energy. We describe the procedure
to identify multivortex states, give the sufficient criteria, and
provide an example of equipotential surfaces with vortex
structure inside the sphere.

2. Ginzburg-Landau Equation for
Dipole inside Sphere

In this section we obtain the governing ODEs for the GL
problem given in Eq. (1) for a mesoscopic superconducting
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sphere in a local magnetic field T = Vx4 produced by a

infinitesimal dipole placed at its center 7 = 0. The Euler-

Lagrange equations for the free energy functional Eq. (1),
2

N
written in the absence of the last term in i as explained
above, are known as the GL equation [9-12]

1 =2 2

—P Y+a(T)Y+B|Y|°Y =0, (2)

2m
-

vxh =21 3)
c

7.4 [\1/*73\1'+(75\11)*\P], (4)

2m

-
where the electromagnetic momentum P is given by

— e R
P =-ihv - 14, (5)
[

where 4 is the vector potential, g is the charge of the Cooper
pair, and 7 is the current density. The main approach for the
nonlinear problem is to minimize the free energy, Eq. (1), with
test functions chosen from a basis of eigenfunctions of the
associated linear problem. The linearized GL equation (LGL)
is obtained by neglecting the last term of Eq. (2)

i (—iﬁ - gZ)z\P - a(T)V. (6)

We rewrite Eq. (6) in the London electromagnetic gauge,

V.4 = 0, and we rescale the variables 7 —

7 —2ma(T) /A, A — Aq/(cx/—Zmoc(T) and ¥ —
WV+/-B/a(T). We follow the GL phenomenological model
from [9-18] and use the temperature dependence

(%)
o=« 1—T— ,
c0

h
=2ma (T)

where T, is the critical temperature in absence of magnetic
field and &(T') is the coherence length. In the new variables
the LGL Eq. (6) can be written in the form of a linear operator
equation

(7)
§(T) =

= favé 2
OF = AY - 2iA- V¥ - A°Y + V¥ = 0. (8

Since the dipole magnetic field has axial symmetry we can
use any axially symmetric orthogonal coordinates in azimuth
angle ¢ in the form 7 — (@,a,b). In this case the ¢
dependence in Eq. (8) can be separated, and © has exp (iLp)
as eigenfunctions labeled by the angular momentum L. This

decomposes the space of solutions W(7’) into subspaces
parameterized by L

7' (R)=Dvi, VL—‘[ EP)—q)(ab)e’Lq’}, 9)

LeN ¥

with @ € Z*(R?) square integrable function. The decomposi-
tion in Eq. (9) reduces Eq. (6) to a two-dimensional PDE. On
each of these L subspaces the operator 6 has a particular form
depending on L denoted by 0, and for each such restricted
operator we can attach an eigenvalue problem

0,®y, = EDp,, (10)

where x is a provisional degeneracy label, which later on
becomes the radial quantum number. Of course, E and @,
carry the L dependence.

The vector potential associated with the infinitesimal
(point-like) magnetic dipole can be expressed in a simple
form in spherical coordinates

— usin@

A= w4 1)

2 9>

r

where _e)q) = (—sing,cos@,0) is the unit vector in the
¢ direction. The boundary conditions associated with this
problem request the order parameter wave function to cancel
at the origin and the flow at the mesoscopic volume surface £
to be zero (the Saint-James-de Gennes conditions) [9-12, 15—
18]

\P|r:0 = 0’
M _, (12)
on > -

where 71 represents the outward normal to the spherical
surface ¥ defined by 7] =

We can make coordinate free general statements concern-
ing the spectrum of the eigenfunction problem in Eq. (10).
Following the Leinfelder-Simader theorem [20] and taking
into account that the integral over R®\ {0} of the forth power
of the magnitude of the dipole vector potential is finite, we
find out that the operator in Eq. (6) is essentially self-adjoint
if applied on analytic functions. Moreover, from the Miller-
Simon theorem [21], we know the eigenvalue problem of such
type of magnetic multipole potential vector operators is given
by a positive, unbounded from above, continuous spectrum.
However, given the two-point boundary conditions, Eqgs. (12),
we expect the reduction of this spectrum to a discrete and
bounded spectrum for energy.

3. The Generalized Dipole Equation

In this section we present analytic solutions for the system
Eqs. (6), (8), and (10) with boundary conditions given
by Eq. (12). The presence of the magnetic dipole renders
the spherical or the cylindrical coordinates unsuitable to
factorize the LGL Egs. (8) and (10) because of the terms
mixing inside the square of the electromagnetic momentum.
Attempts to solve similar equations in spherical coordinates
in the presence of an electric dipole have been made. In [22],
for example, the Schrédinger equation is separable, and the
authors find exact wave functions in terms of Bessel and
Mathieu functions for m = 0 spherical modes in the presence
of a dipolar external electric field. A similar generalized



Coulomb problem for a class of general Natanzon confluent
potentials is exactly solved in [23] by reducing the corre-
sponding system to confluent hypergeometric differential
equations. More recently, in [24], the authors succeeded to
solve the eigenvalue wave equation for an electron in the field
of a molecule with an electric dipole moment by expanding
the solutions of a second-order Fuchsian differential equation
with regular singularities in cos® = 1,-1,0 in a series of
Jacobi polynomials with “dipole polynomial” coefficients.

In all these situations separation and integration of the
Schrodinger equations are possible because in spherical
(cylindrical) coordinates the resulting second-order ordi-
nary linear differential equations are of Fuchsian type, with
maximum three regular singularities. Such equations can
be mapped into several types of hypergeometric differential
equations.

However, the presence of the dipole magnetic field makes
the situation more complicated because the order of singular-
ity growths above the hypergeometric one, and consequently
the dynamics is governed by differential equations of Heun,
Hill, or Riemann type [25-27]. A similar situation occurs in
the case of a charged particle moving on a sphere under a
radial magnetic field and Coulomb force. The corresponding
Schrodinger equation is transformed into a Heun equation
in canonical form, and exact solutions are obtained in terms
of series of hypergeometric functions. The separation of
variables is still possible since the vector potential depends
only on one spherical variable, 0 in this case [28]. Another
example of the same type of difficulty is the two-dimensional
case of interaction of three particles with a perpendicular
magnetic field [29]. Here the Schrodinger equations map
into biconfluent Heuns equations, too, through the higher
order singularities induced by the Coulombian interaction
between particles. Similar problems related to magnetic
field (finite-gap potentials, Fokker-Planck, central two-point
connection, generalized central potentials up to order 1/r°,
Hawking radiation, etc.) were approached in the literature
and usually the resulting leading differential equation for the
wave function reduces to one of Heun’s differential equations
[30-34]. An interesting review and study on the use of the
Heun’s type of differential equations as generalizations of
the hypergeometric ones, in relation to supersymmetry, are
given in [35], where a two-Coulomb-center problem is solved
based on a self-adjoint separation of coordinates in prolate
spheroidal coordinates.

Before moving to the dipole coordinates we perform a
qualitative analysis of Eq. (6) in spherical coordinates. In
spherical coordinates Egs. (6) and (10) reduce to a linear
Schrédinger equation in the form

2 ?sin*0
[A,+%AQ+%<—LXE—%)+E]‘P
r r r 0@ r (13)

= 0,
where we denoted y = 2mqu/(hc), and the first two
terms in the LHS are the radial and angular parts of the

Laplace operator in spherical coordinates, respectively. We
look for solutions of Eq. (13) in the subspaces described by
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F1Gure 1: Equipotential contours of the effective potential V(x, z) at
y =0, as given by Eq. (15). The dipole is along z-axis. Several values
for dipole strength y and L. For L = 0 the potential geometry is
the same for any dipole strength, but for higher magnetic field the
equipotential shapes become complicated and self-intersecting.

Eq. (9), meaning that the wave functions have good quantum
numbers for the angular momentum L. We can write these
wave functions in the form

¥ (r,6,9) = @ (r,0) ™, (14)

with L being an arbitrary positive integer. Eq. (13) reduces
to a 2-dimensional Schrodinger equation with an effective
potential in the form

I? 2¢L  x*sin’0
o A

V(r,0) = - (15)

sin’g ~ r? r
In Figures 1 and 2 we present some equipotential contours
of the effective potential V(x,z) at y = 0 and y =
0.5. This potential has a repulsive tail that drops to zero
towards infinity like 7*. Depending on 6 the potential
generates a finite barrier in a neighborhood of the origin. The
resulting effective potential valley produces a finite spectrum
of energies for the linearized equation, hence a finite space of
eigenfunctions available for the nonlinear GL equation. The
parameter y controls the barrier height. For 6 ~ /4 the
barrier reduces to zero, and actually the potential is almost
everywhere attractive. This is normal, since without magnetic
dipole the spectrum is continuous, and the only possible state
is spherical isotropic without any vortex. For 6 ~ 0,7 the
barrier height increases and allows the accumulation of more
eigenstates in the linear spectrum. This denser spectrum
generates a higher probability of formation of open vortices
that spring towards the sphere surface around the poles of
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F1GUrE 2: Equipotential contours of the effective potential V(x, z)
at y = 0.5, as given by Eq. (15). Dipole along z-axis. Far from center
the isopotential surfaces are deformed spheres.

the z-axis. Next to the origin » = 0 the potential has an
(attractive) infinite depth valley. For small dipole strength
values the potential becomes pure repulsive, and for large
values of the dipole strength the potential becomes almost
attractive everywhere.

The Schrodinger equation with the potential in Eq. (15)
cannot be resolved by traditional expansion in spherical
harmonics with coefficients given by the monomials . Since
this equation contains nonhomogenous terms as powers
of r, even if we use Laurent polynomials instead of these
monomials, the coefficients of Y;; will always contain irre-
trievable powers in r. This situation enforces the coeflicients
of spherical harmonics to include all powers of r. However,
even if we use arbitrary (linear independent) functions f;(r)
instead of constant coefficients for each Yj;, the differential
equations resulting for each f; will contain infinite many
terms. This happens because the term sin®0 multiplied with
spherical harmonics of different orders decomposes (through
the Wigner 3 j-symbols) in a sum of spherical harmonics of
orders smaller than /. Consequently, spherical coordinates do
not map Eq. (6) into an integrable system.

Given the symmetry of the magnetic dipole we introduce
a suitable type of orthogonal curvilinear coordinates, namely,
dipole coordinates denoted by (a, b, ). These dipole coordi-
nates are related to the spherical ones by the relations

g T
sin’0
_ (16)
cos6’
¢=9.

Dipole coordinates can be introduced in a variety of ways
[36], and they are useful in a couple of physical systems
controlled by magnetic dipolar terms. That is where the lines
of force have strong anisotropy, like terrestrial ionosphere,
solar corona, magnetostars, toroidal magnetic moments in
atomic physics, etc. [37, 38]. In the following, we use the
dipole coordinates in order to provide exact analytic solutions
for the order parameter ¥(7') in the configuration magnetic
dipole plus superconducting sphere. The dipole coordinates
were used in [39] to solve the LGL equation for a magnetic

dipole placed in a superconducting space. In that study we
demonstrate that analytic solutions of the LGL equation in
dipole coordinates can be obtained by transforming it in a
double confluent Heun’s differential equation. Combination
of such linear solutions can numerically minimize the non-
linear GL free energy functional for multivortex states as
confined vortex loops.

In the present paper we develop this method even
further and, in addition, we apply Dirichlet type of boundary
conditions on the surface of a finite superconducting sphere.
This procedure maps the dipole equation plus boundary
conditions into a regular Sturm-Liouville problem, for which
we obtain and discuss in detail the resulting spectra and
eigenfunctions. This analytic method was previously used
and tested in comparison with numerical calculations and
experimental results for the simpler geometry of a finite
superconducting cylinder in exterior magnetic field [40, 41].

The dipole coordinates, their coordinate surfaces, and
other properties are described in more detail in Appendix A.
From there we notice that the field lines of the magnetic
infinitesimal dipole,

(7‘?)?_7‘) (17)

are given by the family of curves a constant. Surfaces defined
by constant a follow the field lines of the magnetic dipole and
are orthogonal to the surfaces of constant b. Consequently,
the order parameter has a stronger dependence on a than
on b, such that the surfaces |¥| =const. are very close to
the dipole coordinates surfaces a =constant. Along this
reasonable approximation we can neglect the b dependence
of the order parameter solutions.

In the dipole coordinates the electromagnetic momentum
has a simpler expression

v, - (18)

By introducing Egs. (16) and (18) in Eq. (6), under the
hypothesis Eq. (14), we obtain the following partial differen-
tial equation in dipole variables (a, b) for O(r,0) — ®(a,b):

a\? ™\ [ do 4 1do
(2) (13 (5 e o
r b )\ da®> 1+ (3r*/b?)a da

P\ d (,,d0\ a X\ . (19)
1435 )22 (22 —-(L—-)cp
+< i b2>r6db< db) P\ a

+ED =0,

where L €N, E are free parameters. We notice that it is
not possible to fully eliminate the coordinate r from Eq.
(19), because the inverse transformation (a,b) — (r,0)
involves an algebraic equation of order 4 whose solutions
would introduce prohibitive long expressions in Eq. (19); see
Eq. (A.3) in the Appendix A.

In order to obtain a separation of the dipole variables
(a,b) in Eq. (19) we investigate solutions in the approximation
a ~ r (r being the radial spherical coordinate), which implies



r*/b << 1 from Eq. (A.3). This approximation describes the
order parameter in neighborhoods of 6 = 0, and 0 = m, that is
around the poles of the bispherical surfaces a =constant; see
Figure 11. Actually, this approximation is valid within a very
large part of the superconducting sphere. If we perform the
inverse transformation from dipole to spherical coordinates
we can express r as the product between a and a power
series in the parameter ¢ = a*/b, according to Eq. (A.7)
in Appendix A. For example, if we just choose € = 0.2 we
have a relative error of only 4% or less for a ~ r within
a range of the azimuth angle 6 € [0,80°] U [100°,180°],
which represents that 79% of the total volume of the sphere
provides very good agreement with this approximation. From
the geometrical perspective, this approximation limits our
calculations to surfaces a =const. that are very close to the
spherical surface r =const, Figure 11.
In the approximation a ~ r Eq. (19) reduces to the form

O 400 V>0 [,,00 1 X\

72,200, 2 9 (1,z9® ——<L——>CD

Ba2+a8a+a68b< Bb) a? a (20)
+ED =0,

and we can factorize further the b-dependence from the a-
dependence by the substitution

@ (a,b) = Q(a) (e_c/b + Coec/b) , (21)

where ¢,C; are arbitrary coupling constants between the
equations in a and b. Consequently, we can obtain an
equation for Q(a) in the same way it was obtained in Eq. 910)
in [39]

2

a® d—Q +4a° d—Q

da? da (22)

+ (c2 - X2a2 + ZLXa3 - L’a* + Eas) Q=0,

This equation is associated with the boundary conditions Eq.

(12)
limOQ (a) =0,
(23)

dQ
da

>

aOO

namely, the order parameter needs to cancel at the center of
the mesoscopic volume, and the normal component of the
superconducting current has to cancel at the external bound-
ary of this volume. In agreement with the approximation
r ~ a the external boundary condition can be written as
a = a,, = R. Atthis point we describe the mesoscopic volume
taken for the present study. The equation » = Rsin’0 is a
special case of the so-called rose curve, firstly described by the
seventeenth century Italian mathematician, Guido Grandi.
Therefore the mesoscopic volume has an “apple” shape, such
that at the north (0 = 0°) and south (6 = 180°) poles the
volume is depleted (r = 0) but not at the equator region
(r = R). This choice of volume is key to achieve separation
of variables in these coordinates. However this choice does
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not compromise our major results, namely, to prove the
existence of confined loops in any mesoscopic volume. The
boundary conditions Eq. (23) are called “separated” since
each involves only one of the ends of the domain of definition.
Eq. (22) is an ordinary differential equation of order two with
meromorphic coeflicients. It has two irregular singularities
of rank 2 at a = 0, 00, [42], and consequently there are no
convergent solutions in terms of Frobenius series. We need to
solve this equation in the interval a € (0, a,], where a,, = R
is the radius of the superconducting volume.

The approach used to solve the homogenous two-point
boundary value problem Egs. (22) and (23) consists in
performing a series of transformations that map Eq. (22) into
a symmetric canonical form of a double confluent Heun’s
equation [27, 43-45].

4. Solutions of the Dipole Equation

4.1. Qualitative Analysis of the Dipole Equation. In order to
perform a qualitative analysis of Eq. (22) we can transform
it into other types of differential equations (e.g., Q(a) —
Q(a) = a?Q(a) for some real values of p) with some known
physical significance. For example, by the substitution Q(a) =
a*Q(a) we have
a’Q ~

~—7 tVu@Q+EQ=0, (24)
which is a 1-dimensional Schroédinger equation with an
effective potential

L>+2
.

2 2
2L
Vld=—c—6+X———X+

(25)
a® a* al a

Here the last term represents the traditional centrifugal term
plus an additional constant 2. This potential is repulsive
for large values of a, and it becomes attractive in a short
range close to the origin because of the coupling with the
exp (—c/b) + C, exp (c/b) part of the wave function, through
c.

Another possible approach is provided by the substitution
A(a) = aA(a), and we obtain the radial part of a Schrédinger
equation in spherical coordinates

_d’Q  2dQ
da* ada
2 4 2Ly I'+2 20
¢ X2y L+ -
+<_F at @ a? _E>Q=0

The effective potential for this case (the first four terms in
the parenthesis of Eq. (26)) is presented in Figure 3. It has
a repulsive asymptotic behavior for V,,,(+00) = 0, and
Vipn(0) — *00 depending on the value of c. In the simpler
case ¢ = 0, for example, if L > 4 this potential has a valley
centered at

L 3L-VIZ-16 )
1= 2(12+2)
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FIGURE 3: The effective potential V,,,(a) in the radial part of the
Schrédinger equation in spherical coordinates, Eq. (26). Solid lines
represent ¢ = 0 potentials, and dotted lines represent ¢ = 5
potentials, for the same L, y.

This valley creates a barrier of height

8(12+2) (<4 + 1%+ LVI*— 16)

Vb = > (28)
v AL(3L+ VIE—16)'
and relative depth with respect to the top of the valley
3/2
L(L*-16
VO = u (29)

16y

From the aspect of this potential it results that for weak a — b
coupling (c ~ 0) the expected spectrum, in the absence of the
boundary conditions, is continuous and positive. This is the
case of very large superconducting volumes. By its richness
of eigenstates, this configuration increases the chances for
vortex creation. Indeed, for large superconducting samples
it is known that more magnetic flux is expelled in the
Meissner phase; hence superconductivity is suppressed at the
boundaries. Consequently, more weak points are created that
facilitate the entry of many vortices [9]. At higher values of
angular quantum number and dipole intensity some resonant
states may occur, like in the potential valley shown in Figure 3
for L =5, y = 10.

For the substitution Q = a*>Q(a) we obtain the radial
part of the Schrédinger equation in cylindrical coordinates

3/2

_4’Q _14Q
da* ada (30)
30
E X 2Ly L*+9/4 -
Nwtad e e F)e0

Eq. (30) is a Fuchsian differential equation with singularities
at the point at infinity, and order six singularity at a =
0, presenting some similarities with the symmetries of the
Bessel equation. Since the existence and uniqueness of this
type of equation will be investigated elsewhere and since later
on we will justify that the value of the decoupling parameter ¢

is very small, we will further reduce this equation to a fourth-
order singularity Fuchsian equation.

As we mentioned in Section 3, Egs. (21), (22), and (30),
we introduce the second hypothesis (in addition to r ~ a) by
considering a weak coupling between the a and the b coordi-
nates in the order parameter dependence. This constraint is
equivalent to ¢ ~ 0, and it arises somehow naturally since the
order parameter ¥(a, b, @) has its dominant dependence on
the a coordinate. This happens because the |¥|* iso-surfaces
are basically laying along the dipole surface coordinates
a =constant. Under this hypothesis, Eq. (22) becomes

d2Q+éd_Q+<_X_2 2Ly I?

aQ XL LE)lo=0 @1
da*  ada P )Q 3)

and we will refer further to Eq. (31) as the dipole equation.
The asymptotic solutions in zero and at infinity for Eq.
(31) are described in [39] in terms of Bessel, Kummer, and
Tricomi special functions, but here we are not interested in
the asymptotical behavior of the solution at zero or infinity.
An interesting limiting case is obtained if we keep only the
even power terms 1/a*, 1/a?, E, in the potential energy. The
resulting equation is mapped into the Mathieu equation for
A(z) through the transformation a = (- XZ /E)l/ 4 exp (iz). It
is interesting that even holding all the terms in the powers of
1/a we still can map the dipole equation into Hill’s differential
equation [46].

The existence of situations when one can map the dipole
equation in traditional equations of mathematical physics
(Bessel, confluent hypergeometric, Mathieu, etc.) by neglect-
ing higher or lower powers in 1/a has a deep meaning.
Although not obvious, Eq. (31) has an intrinsic symmetry that
allows mapping it into a very symmetrical form, called the
symmetrical-canonical double confluent Heun equation [27,
43, 44]. We will discuss in Section 4.2 multiple advantages of
expressing the dipole equation in this form, especially related
to the existence of simple analytic solutions. When we neglect
some of the terms in the dipole equation, certain conditions of
nondegeneracy fail, and mapping the dipole equation into the
symmetrical-canonical DCHE becomes impossible. Hence,
under such approximations, Eq. (31) degenerates into those
classical equations mentioned above.

4.2. Analytic Solutions for the Dipole Equation. In the follow-
ing we construct analytic solutions for the dipole equation, in
the form of Eq. (22), or Eq. (31), in the limit of weak coupling
with the orthogonal b coordinate, that is, for ¢ = 0. Also in
this section we will not take into account yet the boundary
conditions and just obtain the most general solution sets.

The first step is to reduce Eq. (22) to a dimensionless form
by the transformation a — z = a/y. The resulting equation
is a general double confluent Heun equation (gDCHE [27])
in Q(z) of the form

D’Q+p(2)DQ+q(2)Q =0,

1 .
p) =) pz,

i=—1



2
q(2) = ) g,

i=—2
(32)

where the operator D = z(d/dz) and p;,q; are arbitrary
complex coefficients. The properties and solutions of different
confluent types of Heun’s equation have been studied exten-
sively in the last decade [31, 47-52]. There is also an extensive
volume of applications of Heun functions and equations in
physics; see, for example, [28]. In our case for the dipole
equation wehave p_, = p, =9, =0,p, = 3,9, =-1,9_, =
2L,q, = -L* and g, = A, where A = E/x*. By using a
transformation of the dependent variable of the form

Qz) = quefﬂ—ff]/zy (2) (33)

any gDCHE (for example, Eq. (32)) can be transformed into
the so-called (nondegenerate) canonical form of the DCHE
[27, 43]. For the dipole equation there are two possible
transformations that map it into a DCHE canonical form,
namely, & = -3/2,§, = *VA&, = =L It is worth
mentioning that one obtains a nondegenerate (a “good”)
canonical DCHE form if one has the condition

2 2
(%—%)(q_z—%)w (34

fulfilled (see Eq. (32)). This is actually the case for the dipole
equation, but if we neglect some of its terms this condition
fails, and we have a degenerated canonical DCHE that
reduces to the traditional differential equations mentioned in
Section 4.1.

The last step towards integrating the equation is to apply
one of the similarity transformations in the independent
variable: z = (Vi/AY*)Z, where the multiplicity comes from
the square roots of the imaginary/negative parameters. After
this transformation, the dipole equation has the form of the
symmetric canonical DCHE for the function y(Z)

52y+oc<'z“+%>5y
()2
-0,

where D = Z(d/dZ), and

a = +2iViA'4,

ﬁl =0,
By =7L, (36)
9
=L*+2,
¥ 4

are the singular parameters of the symmetric canonical
DCHE associated with the dipole equation. As one can
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note, there are several (more than two, but less than eight)
representations of the dipole equation into the symmetrical
form Eq. (35).

Using this symmetrical canonical form has several advan-
tages [27]. First, it generates a recursion relation for the series
coeflicients of the analytic solutions in only three terms. This
is a major advantage over all other representations. Second,
it depends on less parameters, just four instead of eight,
like in the case of original gDCHE. These four parameters
control the leading terms of the asymptotical expansion of
the solutions. The singular parameters «, f3,; determine the
leading coefficients of the asymptotical series of the solutions
at 0o and 0, respectively. However, in the case of the dipole
equation we have 3, = 0, and only the reduced energy
(A) controls the asymptotical behavior of the solution at
infinity, through «. This behavior is in agreement with the
fact that the boundary condition at a_, is the only responsible
constraint for energy quantization in prescribed levels. The
singular parameters «, 3_; determine the leading coefficients
of the asymptotic solutions around zero, which means that
in the origin the solution depends on both E and L. The
y “accessory” parameter just influences the monodromy
behavior of the solutions, and it is also responsible for the
eigenvalue problem related to some appropriate boundary
conditions. Last advantage of the symmetric canonical form
is that the central connection problem, i.e., the relations
between asymptotical solutions at different singularities,
becomes trivial. In that, changing the asymptotic series from
the singularity 0 to co just reduces to permuting the f
parameters, modulo some gauge of multiplication with a
constant phase [44].

The symmetrical canonical form of the DCHE emerging
from the dipole equation, Eq. (35), also has two irregular
singularities of rank 1, namely, Z = 0,00. That means
that, according to the general theory of complex ordi-
nary differential equations with meromorphic coefficients,
all solutions can be continued analytically along any path
within C*=C\{0}. Hence,we can obtain fundamental analytic
solutions as series around the singularities with a certain
prescribed asymptotic behavior. This asymptotic behavior
will also provide the Schmidt-Wolf uniqueness of the fun-
damental set. Either set of fundamental solutions can be
continued analytically over C*, though because C* is not
simply connected the Poincaré lemma conditions are not
fulfilled, and these resulting global solutions will not be
single valued. This problem can be fixed by specifying the
asymptotic behavior within special sectors of C*, bounded by
the corresponding Stokes rays, depending on the argument of
oz [45].

Since the physical boundary conditions at a,, Eq. (12),
are important for the eigenvalue problem for energy we will
construct the solutions of Eq. (35) based on the asymptotic
behavior for Z — 0. We choose the specific asymptotic
behavior in such a way that will match the asymptotic behav-
ior of the dipole equation in the large a approximation and
the corresponding Bessel solutions. This asymptotic behavior
secures both uniqueness of the series solution through its
Laplace transform and the application of Watson’s lemma [27]
and the possibility of applying the von Neumann boundary
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condition at a,. Then, this solution can be continued analyt-
ically towards the solution around Z = 0. The continuation is
performed through the central connection relations between
asymptotic solutions, such that the behavior at zero of the
fundamental solution fulfills the boundary condition in zero,
too, Eq. (12).

The symmetric canonical DCHE form for the dipole
equation is also useful because it has a simple group of trans-
formations which maps any solution into another solution.
In this way we can generate from any certain fundamental
solution, constructed a series, another linear independent
solution, however not necessarily linear independent. The
group is infinite and it is generated by the transformations

Ty [y (e 1, Bo1s 3 2)]
= exp (-az) y (iev, B, =Py, y3i2), (37)
T, [y] =exp <g> y (ie, =By, Br, y5 -iz),

and

Ty [y] = exp (—az + g)y<a, Bi> B> vs é) (38)

The two fundamental solutions for DCHE are built by using
the asymptotic construction of solutions of Eq. (35), following
the receipt in [27], through the procedure of expanding
around the point at infinity described in detail in [39]:

y1 @) = Hy(a, B1,132),

v, (2) = ie e H, (", By - By yi€™PZ),  (39b)

(39a)

where Hj is the holomorphic local Heun function as a
solution of the DCHE (35) given by the series

ganpw C
H (o, B,132) = (oa2) P12 Y e

n=0

(40)

in the range on arg(az) € (-7/2,5m/2), with the coefficients
C, = C,(a, f3,B_1,y) uniquely given by the three-term
recursion relation

1[[a? 1\?
CZ:;[(T_V+<n+ﬁI_E) +)C:_1

- o’ (n+ By =By - 1)C:—2] >

(41)

with n €N, C*; = 0,C; = 1. The signs * represent the
choice for one of the two solutions for the reduced parameters
a, 5_; in Eq. (36). We mention that the second solution y,
is generated from the first one by application of the group
operator T} on y,, and it is linear independent from this one.
Finally, one can perform the variable substitutions in reverse
order and obtain the solutions Egs. (39a) and (39b) in terms
of the physical parameters g, x, E, L. The Heun functions in
Egs. (39a) and (39b) represent the fundamental set of exact
solutions of the linearized dipole equation (31).

An interesting feature of these solutions is that in the
range of negative energies E < 0 the solutions y, (%), that is,
Q,(a), are bounded and have no oscillations, yet they can be
truncated to quasipolynomials. Such special truncations, very
useful for analytic and numeric calculation, are possible only
for the series coeflicients that have 3_; = —L and only for odd
values for L. For each such odd L value there is one unique
value of the energy which provides the truncation of the series
into a quasipolynomial (the series reduces to a polynomial,
but the exponential and power in front of the polynomial
do not vanish). This limitation occurs because of the special
structure of the dipole ODE, namely, because of the linear
term 2yL/a’. For Q,, however, the majority of solutions have
E > 0, so they cannot be reduced to quasipolynomials.

In the following, we present two examples of quasitrun-
cated solutions Q,(a) obtained from the abstract solutions
»(2):

2
_ _ X —3a/2x—x/a
L=1l,a)=—e , (42)
Q=10 = 7
with E = -9x*/4, and
Q,(L=3,a)
2 2 43
_ X e—w1“/2X_X/“ 1+ C_L + C_ <i> ( )
Jw,a? Ywa *\wa/ |’

with E = —x*w}/4. In order to have a three-dimensional

visual on the behavior of these solutions we plot in Figure 4
few surfaces of equation |¥(a,¢)| = [¥(r/ sin®6, Q) =
Q,(r/ sin?0)e'?const. The three surfaces presented in Fig-
ure 4 follow the shape of the surfaces of coordinatesa =const.,
proving the hypothesis according to which the b dependence
of the order parameter can be neglected.

5. Eigenvalue Problem for the Dipole Equation

Typical study of the quantization of the energy spectrum of
Heun’s equation involves the y accessory parameter. Such
an analysis is performed, for example, in [45] where the
authors study the eigenvalues of a double confluent Heun
equation with possible applications in gravitational theory.
The boundary conditions used in this paper differ from our
case, since they ask the solution to be bounded in origin, and
to approach either a finite value, or infinity when z — oo,
but not faster than an exponential. Consequently, the [45]
boundary conditions quantize the accessory parameter ¥,
and the recursion relation for the coeflicients of the series
becomes a four-term Poincaré-Perron type, which is more
difficult to handle than our three-term recursion relations.

In order to solve our eigenvalue problem for Q(a) and
E from Egs. (22) and (23) we substitute a = a_x, y(x) =
a.,xQ(ay,x), where a is the upper bound of the a variable.
The resulting equation is a regular Sturm-Liouville problem.
The self-adjoint form of the corresponding linearized dipole
equation (22) is

L[y] = Er(x)y, (44)
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FIGURE 4: The linear solutions I‘I'I2 = 0.5, 0.6, 0.75, and 0.9 isoplot
surfaces for y = 0.5, a,, = 10, L = 1, calculated with the quasi-
polynomial solutions Eq. (42) for E = —5.3. The surfaces are tori-
like, as expected from the behavior of a =const. surface coordinates,
Figure 11. Some of the exterior surfaces are plotted only partially, in
order to make visible the torus shape of the inner surface.

with

(45a)
2 2
+ |1+ A _ L—X r ,
2a2 x*  agx 2
a’ x*
r(x) = L’
’ (45b)
x
px) = e

In this y(x) representation we have x € (0,1], and p(x) >
0,7(x) > 0in this range. In this case [21], the general theory of
Sturm-Liouville two-point boundary value problem provides
the following results. All eigenvalues E of Eq. (44) are real
and form an infinite sequence E; < E, < -+ < E, < ...
with lim,,_, E, = 00. According to the physical restriction
E < 1, it results that the spectrum of interest of the linear
dipole boundary problem is also finite. All eigenvalues E,,
are not degenerate, and to every two distinct eigenvalues
there correspond two linear independent eigenfunctions,
orthogonal with respect to the weighted scalar product. That
is, for E; # E, we have

2 1
(Vi V) = %“’ j Xy () y, (x)dx=0.  (46)

0

Normalized with respect to the weight r(x), the eigenfunc-
tions form a complete orthonormal basis of piecewise contin-
uous functions, with piecewise square integrable continuous
derivative ina € [0,a.], b > 0.
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In order to solve explicitly the eigenvalue problem for
E we apply the boundary condition at a,, Eq. (23). Since
the physical range of interest consists in large values for a .
(at least three times, to ten times larger than the coherence
length, in order to identify multivortex structures) we use the
asymptotic solution for the order parameter from [39], as we
mentioned previously. In terms of Bessel functions, we can
write the boundary conditions Eq. (23) in the form

Q™
da

=N, [ach,EI/z (g1 @) = Ty ()

- X' J; (W) (3ag, - ZX)] (47)
+N, [aioEl/z (Y., (w) - Yz, (W))

- XZY]: (w) (3ay, - 2)()] =0,

where we denoted

(48)

The boundary condition Eq. (47) contains two unknowns,
N, ,. One of them will be eliminated from the condition of
smooth match between the Heun analytic solutions with the
Bessel asymptotic approximation. Since this procedure will
provide a proportionality between N, they will be actually
eliminated from the homogenous boundary condition. Con-
sequently the only thing provided by the boundary condition
equation Eq. (47) will be the value of the energy.

On the one hand we use the Bessel asymptotic expansion
[53] which gives

o 1/2
QBessel - 2_X cos E'"a
s X (49)

: [COS‘/’L,E (N, +N,) - sing; g (N, =Ny,
where we denote

af |9 26EY? 1
== |=-+L*+ += . 50
brE > <\j4 P 2 (50)

On the other hand, we calculate the asymptotic behavior
towards infinity of the two linear independent analytic Heun
solutions Q, ,(a) from y, ,(Z), Eqs. (39a) and (39b). It results
in an asymptotic term of the form

1/2 .1/2\ ~1/2
2 cos <E za) (21E2 ) , (51)
X X

to be matched with Eq. (49). The solution of this matching
condition results in

_ cos ¢rptsingrp [y (52a)
b 2 iEV2’

_ cos ¢pp—sing g [ my (52b)
. 2 iEV/2’

where ¢; ; has the same meaning as above, Eq. (50).
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FIGURE 5: Examples of the application of the boundary conditions at a,, = 10, for the dipole equation analytic solution. The positive part
of the spectrum 0 < E < I, for L = 0,3, and y = 0.5,1. In the main window we present the whole wave function, and in the smaller
window we zoom in to the zero derivative point at a = a.,. The number of eigenstates (oscillations) increases with L, and decreases with
X> because for smaller dipole strength the solution is closer to the Bessel solutions. The eigenvalues of energy are E(L, y) = E(0,0.5) =
0.06,0.32,0.78,0.92; E(3,0.5) = 0.02,0.16,0.23,0.41,0.52,0.64,0.77; E(0,1) = 0.085,0.44,0.985, and E(3,1) = 0.32,0.88. Higher energy

states have more oscillations.

With the coefficients N, obtained in Eqs. (52a) and
(52b), with a choice for ay,, L,y as parameters, we solve
the boundary condition relation Eq. (47) and find the
corresponding spectrum for each such set of parameters.
The solution is not unique, and we can write the resulting
spectrum as E = Ey (a1, ), where k is the “radial” quantum
number.

The corresponding eigenfunctions are Q)(a;a,,L, ¥,
E(ay, L, x)). The resulting solutions of the linearized GL
equation are

Wior (4:9) = Qi (850, L o Ex (a0, Lo 1)) €.

We present some examples of such solutions in Figure 5 for
a., = 10 and two values of y. For each situation we obtain
a discrete spectrum for E, as predicted at the beginning of
this section. In the investigated range we obtained between
two and seven positive eigenvalues for E. For higher dipole
strength we have less positive eigenvalues. This is because the
oscillatory character of the free solution (Bessel asymptotic)
is reduced by the real exponential in the solution. Also, the
spectrum has more eigenvalues when L increases.
The final form of this equation is

(53)

9 26EY? | x* (3ag, +2x)
— 2 —_— 0 =
tan 71\]4 + L° + X2 2a§OE1/2 0.

(54)

For any set of values for a.,, y and L the solutions of Eq.
(54) provide the E spectrum. For every L value the spectrum

is discrete and bounded, according to the general Sturm-
Liouville results mentioned in the beginning of this section,
and the physical constraint E < 1. We also mention that
the finiteness of the spectrum is in agreement with the finite
depth of the potential valley noticed in Figure 3.

Examples of energy spectra for different values of the
parameters are given in Figures 6 and 7. In Figure 8 we present
the eigenfunctions and spectra for small values of energy in
the range 0 < E < 1. We note that the spectrum becomes
richer with the increase of the volume radius. Also, for large
enough dipole strength, the energy of a certain level decreases
with the increasing of the angular momentum. The increasing
of the dipole strength also produces a dilation of the spectral
levels. From Eq. (54) we note that the energy spectrum for
the linear problem has three distinct domains. The positive
energy domain is rich in states and is the most important
source of potential multivortex structures. We define it by
0 < E < 1. The maximum number of spectral levels k,,,,..
depends on L and it can be calculated from the condition
[¥|* < 1. The next spectral domain is within the negative
energies

—1(§+L2><E<0, (55)

2
and it also depends on all the parameters. In the normal
range of values (L = 1,...,6, y = 0.2 — 10) this condition
offers a wide range of energies (it can go down to E ~
—75) so this is the main range for negative energies. In this
domain, because the argument of the tan function in Eq. (54)
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FIGURE 6: Energy spectrum E for the linear dipole problem with boundary conditions on the volume from Eq. (47), or Eq. (54), for small
dipole strength, y = 0.6. We present two cases of volume radii, R = a,, = 10, 60. The coupling of energy with angular momentum is reduced,
so we notice a weak dependence of L. For larger volumes the spectrum is richer, note the difference in scale of left and right frames.
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FIGURE 7: Energy spectrum E for the linear dipole problem with boundary conditions on the volume from Eq. (47) for two dipole strength,

X = 1.5,3 and two volume radii, R = a,, = 10, 60.

becomes imaginary, this tangent transforms into hyperbolic
tangent. Consequently, for each value of L the spectrum
contains just one negative energy level. The last domain is
for energy less than the limit written above, which represents
unstable physical situations, and we will ignore it in the
following.

For weak dipole strength (basis of frames) the spectrum
is rich and represents all the asymptotic oscillations of the
Bessel solutions. There is always a range of the distance to
the centrum after which the spectrum becomes sparser. At
this linear level, it appears that the energy spectrum is not
strongly dependent on the values of the angular momentum.
In Figure 9 we present the action of the boundary condition
on the analytic solutions, for positive energies, for example.
We choose a fixed size of the sample (a,, = 10) and an average
value of the relative dipole strength y = 0.5. The behavior of
the eigenfunctions around the boundary limit is presented in
the left frames, and the general aspect of the wave function all
over its range is presented in the right frames, together within
the spectrum.

For small values of the magnitude of the energy, and also
for large enough y, we can approximate the solutions of the
spectral equation Eq. (54) with the analytical expression

s 9
Ei/2~X—(\/Z+L2+k), (56)

Ao

with integer values of k such that E < 1. The number
of eigenvalues for positive E in this approximation can be
estimated

9

a
max — Neigenvalues (L) = Xz;“;[ - \/4_1 + L%, (57)

k

and we have such bounded states only if the following
criterion is fulfilled:

ac, > XZTE\]Z + L2 (58)

This lower bound for a, (or equivalently, an upper bound for
L) gives a criterium for the critical size, or dipole strength that
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FI1GURE 8: Eigenvalues (0 < E < 1) and eigenfunctions for the linearized dipole equation for y = 0.5 and L = 0 (upper frames) and L = 3

(lower frames) with boundary condition at a ,

= 10. In the left frames we zoom in all the eigenfunctions for a given L around the exterior

boundary. In the right frames, we plot the wave functions for the first two lowest energy values. The little windows inside the right frames

show the whole spectrum of energies for these a, x, L values.

14
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Ao

FIGURE 9: The number of eigenvalues E in the positive spectrum
versus a., for L = 0,...,5. The number increases with L. The upper
band of lines is for y = 1, and the lower one for y = 5. Obviously the
number of eigenvalues increases with the radius of the volume since
larger samples allow more oscillations inside.

can trigger the generation of multivortex structures creation.
For example, if we choose a,, = 20 we have 5 eigenstates for
L = 0,1 and 4 eigenstates for L = 2,3, 4.

For larger radii of the volume the energy spectrum
obtained as solution of Eq. (54) can be approximated with

4 2
B N_X_(kz_Lz_E) , (59)
4 4

aOO
with k integer (“radial” quantum number) labeling the energy
spectrum for fixed L.

The energy spectra presented so far depend only on
two quantum numbers: L,k. Even if this is a full three-
dimensional problem, a third quantum number was elimi-
nated by the supposition that V¥ is mainly directed orthog-
onal to the magnetic dipole field lines. Consequently, the
order parameter is almost constant along these lines, and
the coordinate surfaces a =const. describe the vortices
surfaces. By this hypothesis we can neglect the b coordinate
dependence in the order parameter, which eliminates the
third quantum numbers, basically like taking into account
just ground states with respect to b variable excitations.

6. Nonlinear Vortex Patterns

The goal of this paper is to obtain the nonlinear order param-
eter as the solution W(7’) of the full nonlinear Ghinzburg-
Landau problem Eq. (2), which minimizes the free energy
functional F for the mesoscopic sphere with magnetic dipole,
Eq. (1). This nonlinear solution, denoted WML is constructed
in the following as a linear combination of exact analytic
solutions of the associated linear GL problem, Eq. (6), or
presented in a more rigorous form by Eqs. (8) and (10).
These linear solutions form a complete orthogonal system of
eigenfunctions, Eq. (53), over the space of dipole coordinates
(a,b,9), under boundary conditions, Eq. (12). The corre-
sponding eigenvalues spectrum is described in Section 5.

The spherical surface of our mesoscopic sample is
expressed in dipole coordinates as a volume a,, ~ R.In
the approximation of weak coupling with the b orthogonal
variable (i.e., B(b) =constant) described above we introduce
the following notation for the linear basis:
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F1GURE 10: Isoplot surfaces I‘I’NLI =09for L = 1,2, 3,4 from left upper frame, clockwise. We choose a,, = 100, y = 1,L, = 0,k, = 1 and the

minimal energy was obtained for k, = 3.

Yy g (a,b,9) — Y i (a,9) = Q) (LK a) e, (60)

with the connection between the physical parameter E and
the spectrum label k being provided by Eq. (54).
We search nonlinear solutions of the form

Lmax kmax (L)

whE (a.9) = Z Z Crix¥ix (a.9), (61)

L=0 k=1

with C; ;. parameters that have to be determined. In order to
generate physical solutions for the full nonlinear GL problem,
the expression Eq. (61) is plugged in the Gibbs free energy
expression Eq. (1) and this integral is minimized in the space
of parameters C; ;[7, 9-18]. In order to identify the vortex
structures inside the superconducting sphere, in this model,
one needs to find that it exists at least a value a, € (0,a,,) of
the dipole coordinate such that the equation [N (a, @)l =0
has a number of distinct solutions for ¢ € [0, 27). If we denote
by ¢;, j = 1,2,..., nthese solutions, by analytic prolongation
theorem we can always find a neighborhood of a, on which
[¥NE| is arbitrary small for each of the roots ¢;. The surfaces
described by the values of a in these neighborhoods are
enveloping surfaces of the multivortex states. In this case
the value of L,,,, is called the vorticity of the state. The
center-lines of the vortices are the curves obtained by the
intersections of the a = a, and ¢ = ¢; surfaces.

In literature [15, 16] there are examples of such multivor-
tex states obtained with as little as k,,,,,(L,,,,) = 2 linear
wave functions in Eq. (61). In [39], for example, we obtained
multivortex states from the linear combination of two linear
wavefunctions. We can apply here the same procedure, except
we have to replace the solutions in the full space with the
present solutions bounded by the spherical surface. Thus, we
obtain for the angular positions of the vortices central lines
(Kpax = 2,L € {L,, L,}) the expression

max
2

1+ ’CZQI,Lz,kz/ClQl,Ll,kl'

2 'CZQI,LZ,kz/ClQl,Ll,kJ

(p] = | arccos

(62)
+arg (CIQI,Ll,kl) —arg (CIQI,Lz,kz) +jm |- (L,

-1
- L,)

with j = 1,2,...,|L; — L,| and all functions Q are evaluated
at a,. To visualize an example of multivortex state, we choose
a, = 100, and L, = 0,k; = 0, L, = 0,...,4. We
plot in Figure 10 four isoplot surfaces with [¥™| = 0.9
for different vorticity numbers. Nevertheless, the topology of

the multivortex surfaces is controlled mainly by the linear
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FIGURE 11: Left: coordinate surfaces of constant a = 1, 2, 3 (tori-like); Right: coordinate surfaces of constant b = 1, 2, 3 (double-volumes). The

dipole is directed along z axis.

GL equation. This happens because close to the multivortex
surface the order parameter is very small, so the nonlinear
becomes negligible.

7. Conclusions

We investigate the existence of multivortex superconducting
states in a mesoscopic sphere where the magnetic field
is generated by an infinitesimal magnetic dipole placed
at the center. We use the Ginzburg-Landau model in the
approximation of weak magnetic field. The Euler-Lagrange
equations emerging from the GL free energy functional
reduce to a magnetic Schrodinger equation with mixed
boundary conditions at the center and the surface of the
superconducting sample. The goal of this paper is to obtain
the nonlinear order parameter, i.e., the solution ‘I’(? ) of the
full nonlinear Ghinzburg-Landau problem Eq. (2), which
minimizes the free energy functional F for the mesoscopic
sphere with magnetic dipole, Eq. (1). The nonlinear solution
is constructed as a linear combination of exact analytic
solutions of the associated linear GL problem, Egs. (6), (8),
and (10). These linear solutions form a complete orthogonal
Sturm-Liouville system of eigenfunctions, Eq. (53), over the
space of dipole coordinates (a,b,¢), under the boundary
conditions Eq. (12). As a first step, we use cylindrical sym-
metric coordinates. The linear solution can be separated in
¥ = ®(a,b)e™, Eq. (9), and it maps into the complete
or general dipole equation, Eq. (19). Further on, by using a
justified geometric approximation, we can separate further
the dipole coordinates a and b, and the solution can be
written as ®(a,b) = Q(a)(e™/® + Coec/b), Egs. (20), (21),
(22), and (30). We reduce further the resulting equation by
the mode decoupling condition ¢ = 0, and we obtain the
dipole equation (31) for Q which is a double confluent Heun
equation, Eq. (35). By performing a substitution, Eq. (33), in
the form z = a/x and Q(a) = Zoghzbalz y(z) we can finally
solve the dipole equation and write its analytic solutions, Egs.
(39a) and (39b).

The two approximations introduced here are possible
because we confine our calculations in the neighborhoods

of the poles of the sphere. Since the gradient of ¥ is mainly
directed radial and orthogonal to the magnetic dipole field
lines, it results that ¥ is almost constant along these lines, and
the dipole coordinates surfaces can describe the multivortex
isosurfaces.

We build the nonlinear solution for the GL problem as
linear combinations of the exact solutions of the linearized
dipole equation and tune the combination’s coefficients that
minimize the free energy functional. Further on, we demon-
strate that multivortex states are possible in this sphere plus
dipole configuration, even without the presence of an external
magnetic field. Our results are in very good agreement with
the numerical calculation of the same model [10, 11].

Appendix
A. Dipole Coordinate System

The dipole coordinates defined in Eq. (16) have as domain of
definition a € [0, 00),b € (—00,00),b # 0 for r € (0,00),0 €
(0,71),0 # m/2. The Jacobian of the transformation from
spherical coordinates and the element of volume are given by

,4 + tan’6
r——
sin”0

J=
(A1)

4

a
dv = ﬁdadbd(p

The dipole coordinates are actually different from other
apparently similar coordinates like bipolar, bispherical, or
toroidal coordinates [54-56]. In the notation used above
(x') = (x,y,2) — (a,b,¢), these traditional orthogonal
curvilinear systems of coordinates have symmetrical forms
for the three Euclidean coordinates of the general form

G @O fi(9)
Ja(@) - f5(b) ’

where the functions f are trigonometric or hyperbolic func-
tions.

=12, (A.2)
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Consequently, the two parameters a,b are in general
an angle and a distance. In the case of dipole coordinates,
the parameters a, b have different dimensions, but both are
related to distances, [a] = m,[b] = m>. The symmetry
mentioned above for these traditional coordinates induces a
certain symmetry in their coordinates curves and surfaces.
All these curves represent circles either secant or not inter-
secting. On the contrary, in the case of dipole coordinates the
coordinate curves are not circles, but either glued deformed
circles (for a = const.) or tangent closed curves with a
common singular point (for b = const.). The coordinate
surfaces, Figure 11, are orthogonal curvilinear coordinates. In
order to obtain the inverse transformation, back to spherical
coordinates, we have to solve the equation

(A.3)

This equation is a particular case of a depressed quartic
equation and it can be solved by the Ferrari method, hence
reducing it to a depressed cubic equation, and then use
Cardano’s formulas. Since all coeflicients of Eq. (A.3) are
positive, this equation always has two complex conjugate
solutions, a real negative solution and a nonnegative solution
which represents the correct geometric one, as being the value
of the magnitude of the position vector r. This solution reads

_ W 83" 2f(e)
by ‘J‘ f@ e
(A.4)
833 21/3f(e) 12
+ - +
f(e) € \/—8 . 31/3€2/f (e) + 21/3f(€)
where we define
1/3
fle)= (9.52 + \/M) (A.5)
and
2
e=2. (A.6)

b

We expand the above expression r(e, b) in Taylor series with
respect to € around zero, and we obtain

r=Vbe(1-€ +4e' —22¢° + 1406 + O (")), (A7)

where obviously the dominant term is r ~ Vbe = a. This
approximation is valid around the North and South poles
of the glued, vertically aligned, deformed circles of equation
a = const., Figure 11. The solutions of a similar type of quartic
equation in 6,

2 4 2 2 2
a“cos @—2a"cos"@—-bcosO+a” =0,

(A.8)
can provide the inverse 8 = 6(a, b).

A more compact expression can be obtained if we solve
the inverse transformation Eq. (A.3) in cartesian coordinates,
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namely, x = rsin¢,z = rcos ¢ as functions of (a, b), where
¢ = /2 — 0. Beginning with relation Eq. (A.3) and the above
definitions for x, z, with > = x* + z* we obtain

SCON
R ORECE

After some elementary algebra we obtain the inverse in the
form

(A9)

a? [ 4+ 1/a*Pb 1

3/4
2611/3191/2 ] ?

T pn 2
/ (A.10)
3/2
_a [V4+1/a*Pb 1
e
which can be compressed even more into
w 3/2
=(3) .
(A1)
W\
z= <b11/12) f (W) >
where
W =a'"p'". (A12)

The equations above prove the fact that dipole coordi-
nates have the dimension unbalance between coordinates,
as opposed to the other bipolar, bispherical, or toroidal
coordinates.

The Lamme coefficients of the dipole coordinate system
are

3/2 1
ho=(2) ——mmM—,
‘ <a> (1+3(rt/p2))""?

3

7 1
hy=—— (A.13)
P14 3(rAR))
3/2
]’lc = rl—
all?

Consequently, the Laplacian in (a,b) coordinates has the
form

A _1+3 cos’0 8_2 4 i
abg sin®@  0a®  rsin*@da
2 (1 + 3c0529) b}
_ Al4
" cos>0 ob (A414)
r (1 +3 cos29) 9? 1 9?
cos*6 o2 ' 12 sin%0 0g?*
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B. Solutions of the Dipole
Equation as Expansion in Confluent
Hypergeometric Functions

The Heun functions solutions represented as series are
analytic in the complex plane within some sectors, which
brings some constraints on the solutions. Also, being power
series they are not efficiently fast convergent. An alternative to
this problem is to expand these solutions in terms of confluent
hypergeometric functions [27]. The advantage is that the new
series provide a full analytic behavior. They are convergent
absolutely and locally uniformly all over the complex plane.
Also, the solutions built with these hypergeometric functions
are of Floquet type; that is, they represent a series expansion
around any point in the complex plane, not only about the
singularities at 0 and co. We can write these series in the form

. 32
Q(a)]’u =-2n <1>

a

)
- exp [(—1)l+l IEXZ a

+ (_1)T+1 l] % Z ’7;;,1

a UEV+Z
, , . (B.1)
e(]—l)(rr/2)+(]—2)rrp¢ [(_1)l+1 (iEl/Za/XZ)]

(1—e™ )T (1/2 - p)
1 | iEY%q
.q><‘u+§;1+2‘u;(—1) X2 R

where ®(a; b; z) is the Kummer function, the indices j, 17T e
{1,2} independently (which generates 8 solutions), and y is
the summation label which is an integer plus an arbitrary
complex parameter v called the Floquet exponent of the
DCHE. This exponent (is unique modulo Z) should be
conveniently chosen according to the point about which the

series expands. Finally, the series coefficients ’7,]4’1 are obtained
from the three-term recursion relation

an (U 12- 1 B) (ur 172+ )
“v'(3) G ) (e )

. 5 a\? 2B1B-
e [0+ (3) gy

e (5)

.(.“_1/2+(_1)j:81)(.“_1/2_ﬁ—1) il _ g
(u=1/2)(u—1) e

where v, 3, and y are the reduced parameters Eq. (36) for the
DCHE associated with the linearized dipole equation (35),
and j, € {1, 1} independently.

(B.2)

Data Availability

The analytic and numerical calculations and plots data used
to support the findings of this study are available from the
corresponding author upon request.
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