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Abstract 

Three major unresolved problems that remain in oceanography are 
studied in depth, namely (a) unsteady waves, where waves are allowed 
to grow or decay in time and space; (b) sharp-crested waves (also 
known as fully nonlinear Stoke waves), which are note characteristic 
in oceans; and (c) group of waves, which can often become sharp-
crested as they propagate downstream, as demonstrated here 
experimentally in a wave tank. The ultimate aim of such investigation 
is to improve the parameterization of the energy input from wind to 
waves. In this paper, we (i) present results on the simplest 
approximation to wave groups which result to a fully nonlinear Stokes 
waves (those having a sharp-crest); (ii) impose the boundary condition 
at the surface wave, rather than at the mean surface; (iii) assume the 
wave phase velocity is complex which consequently allows the wave 

amplitude to vary according to ( ) ,0
tkcieata =  where 0a  is the initial 
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constant amplitude, k is the wave number, and ic  is the wave complex 

phase speed; and, (iv) include the dominant viscous term in the 
perturbation equations. It is shown that: (i) yields an energy-transfer 
coefficient that is larger than that previously calculated for 
monochromatic waves and agree well with experimental data; (ii) has 
no major effect on the end-results; (iii) shows the variation of 
dimensionless energy-transfer parameter β with the wave age for 
unsteady waves; (iv) the vertical component of perturbation velocity is 
not singular at the critical point. 

1. Introduction 

This paper is concerned with the energy transfer from wind to a group of 
unsteady waves. However, before stating and outlining the problem which 
we shall pose and solve, we feel it is important to begin the introduction with 
an important review of major research and contribution made to the problem 
of wave generation by wind. After this historical review, we describe the 
motivation and need for the research undertaken, which we shall present in 
this paper. 

1.1. A review of wave generation by wind and unresolved issues 

In 1957, two independent theories of wave generation emerged on the 
strength of a review article by Ursell [59] (with its famous opening remarks: 
“Wind blowing over a water surface generates waves in the water by 
physical processes which cannot be regarded as known”). The analysis of 
Phillips [36] predicts that turbulent pressure fluctuations in the air generate 
small surface waves that grow linearly with time. In contrast, the contribution 
by Miles [29] leads to an exponential growth rate for waves. 

Since then much research has been devoted to formulate a more physical 
and hence more realistic mechanism for wind-wave interaction which could 
be incorporated into spectral wave models. These spectral models solve the 
following equation for wind-wave evolution (Janssen [15-17]): 

 ,FF ζ=
∂
∂

t  (1.1) 
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where 

 .
2
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ω
ζ ∗

rc
U  (1.2) 

Here, ( )ωF  is the wave spectrum, ω is the angular frequency, ζ is the growth 

rate, σ is the ratio of air density aρ  to water density wρ  with a typical value 

of ,10275.1 3−×  β is the non-dimensional energy transfer parameter, rc  is 

the real part of the wave speed†, and ∗U  is the friction velocity. Many of 

these formulations solve ωζ  directly, while others compute β then solve 

equation (1.2).‡ The majority of previous research for the energy transfer 
parameter, β, is assumed to be a function of wave age ,∗Ucr  roughness 

length ,0y  and wave steepness ak (often taken to be ),1  where a is the 

wave amplitude (usually taken to be constant) and k the corresponding wave 
number. The wave steepness, being often taken to be very small, is 
commonly used in deriving expressions for β. Moreover, it often assumed 
that the wind and waves propagate unidirectionally, but this is not too severe 
a restriction since the effect of oblique wave propagation can easily be 
included by simply replacing ∗U  with ,cos θ∗U  where θ is the angle between 

wind direction and wave direction, in the final expression for β. The effect of 
large θ values and opposing wind/wave directions on equation (1.2) has been 
discussed in detail by Burgers and Makin [4] and Tolman and Chalikov [51]. 

Formulations for equation (1.2) have essentially emerged from three 
sources: analytical expressions; empirical fits to limited observation studies; 
and empirical fits to turbulent boundary layer models. Early analytical 
derivations for equation (1.2) were primarily confined to the work of Stewart 
[49], who conceived an expression for ωζ  by combining theory with basic 

                                                           
†In spectral wave modes, c is assumed to be real and hence waves cannot grow and this is 
contrary to observation made in the sea. 
‡The literature contains vastly confusing terminology for the energy transfer parameter, 
including often substituting ζ/ω with β and other variations. In this paper, we adopt the 
notation of Janssen [17]. 
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experimental data of turbulent flow over rough surface, and most notably, 
Miles [29]. In Miles’ quasi-inviscid theory, the criterion for the transfer of 
energy from a parallel shear flow to a traveling wave disturbance states that: 
“if a velocity profile has an inviscid neutral disturbance with non-vanishing 
wave number and phase velocity (equal to the velocity of the mean flow at 
some point in the profile), the disturbance with the same wave number is 
unstable when the Reynolds number is sufficiently large.” The mechanism for 
this energy transfer is a Reynolds stress produced by a shift in phase between 
the two components of the perturbation velocity. In a nearly inviscid (high 
Reynolds number) flow such a phase shift may occur in the inner viscous 
layer, where the mean velocity relative to an observer moving with the wave 
reverses, or in the outer viscous layer in the neighbourhood of the wave 
surface. 

Furthermore, Miles’ [29] theory assumes the role of the Reynolds 
stresses is confined to the determination of the unperturbed mean velocity 
profile. For air owing concurrently with the waves, there is a height, the 
critical height, where the unperturbed wind speed equals the wave phase 
speed. (In the present study, where the effects of the turbulent stresses on the 
mean motion are considered, following Phillips [37] we use the term matched 
height.) The upward motion of the airflow over the wave induces a sinusoidal 
pressure variation which leads to a vortex sheet of periodically varying 
strength forming at the critical height. Then the vortex force (Lighthill [23]) 
on the wave leads to a transfer of energy from the wind to the waves. Note 
that according to this mechanism, the amplitude grows only if the wave is 
moving, i.e., for a fixed undulation (where the critical layer is at the wave 
surface) there is no asymmetric pressure and hence no wave growth. 

Under these assumptions, the problem posed by Miles’ model is a typical 
stability problem and is governed by the Rayleigh equation. By assuming the 
mean velocity profile is logarithmic, Miles analytically obtained an 
approximate solution to Rayleigh equation which he used to obtain an 
analytical expression for the energy transfer parameter β. This expression is a 
benchmark for other formulations of equation (1.2). 
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An alternative technique is due to Janssen [17] who solved the Rayleigh 
equation numerically. Surprisingly, his results solution differed with that of 
Miles.’ Therefore, Janssen [17] derived his own expression for β through an 
empirical fit to his numerical solution, which has subsequently been used in 
spectral wave models such as WAM (Makin et al. [27]). Komen et al. [21] 
provide a similar derivation of the Rayleigh equation which includes the 
effect of atmospheric stratification based on the work of Janssen [17] and 
Janssen et al. [18] for more analysis of the numerical solutions to Miles’ 
model. 

A major inadequacy in Miles’ theory is the neglect of any interaction 
between the waves and small-scale air turbulence, although turbulence is 
included in the model implicitly by prescribing a logarithmic velocity profile 
for the wind. Other contributions to wave growth not accounted for in Miles’ 
theory include: the effect of wind gusts and large-scale turbulence (Komen et 
al. [21]), nonlinear interactions (Croft and Sajjadi [9]), interactions with 
sharp-crest waves (Croft and Sajjadi [9]), and the impact of additional 
vertical momentum fluxes where extremely fast wind regimes ,5( <∗Ucr  

i.e., tropical cyclone conditions) result in saturated β values (Sajjadi [43]). 

Turbulent interaction will alter the wind profile as well as its feedback to 
the waves thereby intensifying the growth rate for “slow moving” waves 
(young sea with small values of ),∗Ucr  and increased damping of waves in 

the “fast moving” sea (swell regime with large values of ).∗Ucr  However, 

the wave growth rates measured from field experiments show much larger 
values than that predicted by the Miles’ mechanism (Dobson [10], Snyder et 
al. [48], Hasselmann [12]). Theoretical studies show the lack of turbulent 
interaction is one contributor to the underestimation (Sajjadi [41]) and Miles 
himself addresses this issue in subsequent studies (Miles [31-33], Ierley and 
Miles [13]). Jacobs [14] and van Duin and Janssen [60] construct analytical 
solutions to equation (1.2) through matched asymptotic expansions to eddy 
viscosity models which are surprisingly similar to the solution of Stewart 
[49]. However, Belcher and Hunt [1], based on rapid distortion theory, 
conclude that these growth rates in the young wave regime derived from 
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mixing length modeling were too large. Belcher and Hunt argue that the 
mixing lengths are being overestimated, since turbulence away from the 
water surface is slow with respect to the waves, and therefore large eddies do 
not have sufficient time to transport momentum to the waves. 

Recently, in an award winning work, Sajjadi et al. [44] (SHD therein) 
showed that the non-separated sheltering (ignored by all above cited papers, 
except that of Belcher and Hunt) plays a major role in the energy transfer. 
Only in inviscid flows Miles’ mechanism yields finite growth rate, due to the 
critical layer where at the critical point ( ) .rcyU =  Around the critical layer 

cats-eye pattern is formed which contributes to energy transfer from wind to 
water waves. However, Miles considered only the limiting case where the 
complex part of wave celerity tends to zero and consequently the critical 
layer is confined well within the inner layer close to the surface, see below. 
But SHD showed in the presence of finite eddy viscosity the flow field no 
longer exhibits singularity at the critical point. We remark that, in the non-
separating sheltering theory the action of the Reynolds stresses close to the 
surface, in the inner region, cause a thickening of the boundary layer on the 
leeside of wave and thence to mean flow separation when the slope is large 
enough. The thickness of the inner region is therefore asymmetric and so, 
largely inviscid, outer region flow is asymmetrically displaced about the 
wave, leading to an out-of-phase component to the pressure perturbation. 
This mechanism is related to Jeffreys’ [20] sheltering hypothesis, where the 
wave amplitude is of the order of the wavelength, which was developed for 
separated flows over moving waves of large slope to account for their 
growth. 

 

 

 

 

 



Energy Transfer from Wind to Wave Groups: Theory and Experiment 27 

 

Figure 1. A photograph from the ocean showing group of waves forming a 
sharp-crested, or fully nonlinear Stokes waves. 

Thus, the cats-eye formation is also due to the shear sheltering and 
diffusion in an inner viscous layer whose thickness  is given by 

( ) ,2ln 2κ=cyk  

where cy  is the height of the critical layer, and κ in the von Kármán’s 

constant. It is to be noted that in the inner layer as the surface is approached, 
the turbulence tends to a local equilibrium so that it adjusts to the local 
velocity gradient. The asymmetry of the mean flow, and hence the mean flow 
gradients, in the perturbed boundary layer therefore lead to asymmetrical 
perturbations in both the normal and shear Reynolds stresses. These 
asymmetrical perturbations to the Reynolds stresses at the surface also lead 
to an amplification of the wave (Townsend [55, 57]). Stewart [49] and 
Longuet-Higgins [25] have discussed this mechanism for the transfer of 
energy into the wave motion, but they did not study the effect as part of a 
systematic analysis. 
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SHD also showed that as wave steepness assumes the physical 
oceanographic situation where wave speed ,ir iccc +=  the critical height 

rises and for very steep waves .klkyc >  Furthermore, these steep waves 

exhibit a sharp-crest (see Figure 1), consequently they are referred to as fully 
nonlinear Stokes waves which are often result from interactions of several 
harmonic waves, namely group of waves. 

To study energy transfer from wind to fully nonlinear Stokes waves, 
Sajjadi [41] combined an eddy viscosity formulation (Sajjadi et al. [40]) 
close to the wave surface with a rapid distortion formulation above the waves 
and derived an analytical expression for β from an inhomogenous Rayleigh 
equation for each harmonic of waves. His derivation, valid for ,5>∗Uc  

included perturbation equations for Reynolds stresses thereby the effect of 
turbulence was included explicitly in his model. Moreover, this equation 
contained two terms which quantified the individual contributions of the 
Miles’ mechanism and the effect of turbulence. Most significantly, this 
equation matched the expected profile of β, showing growth of slow moving 
waves ( ),205 << ∗Ucr  maximum growth in the intermediate region 

( ),4010 << ∗Ucr  damping of fast moving waves ( ),4020 << ∗Ucr  

and decay ( )0<β  for .40>∗Ucr  However, since this expression had to 

be summed over all harmonics, is not very practical for incorporation into 
spectral wave models. 

Wave growth formulations based on empirical fits to field studies have 
provided valuable insight into wave physics, but the accuracy of these 
algorithms is still questionable. Plant [38] showed β is approximately 
constant with a value of 30 for ,5.123.0 << ∗Ucr  which is roughly double 

that obtained by Townsend [55]. From a field study conducted in the 
Bahamas, Snyder et al. [48] derived an empirical parameterization for wave 
growth which is a function of the 5 m wind speed ( )5U  valid for 51.0 Ucr<  

.3.0<  From scaling arguments, Komen et al. [21] suggested a modified wave 
growth parameterization with ∗≈ UU 285  (making the parameterization valid 
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roughly for ),143 << ∗Ucr  and this Snyder-Komen formulation has been 

used in many studies as well as options in spectral wave models such as 
WAM (WAM [19]) and WAVEWATCH (Tolman and Chalikov [51], 
Tolman [52, 53]). The measurement of energy transfer from wind to waves is 
a difficult task, particularly since in most experiments sensors measure the 
wave-induced pressure fluctuations at a fixed height above the water surface 
as performed in most experiments (Burgers and Makin [4], Janssen [17]). In 
these situations, the measurements are extrapolated to the water surface, 
usually by assuming an exponential decay. However, this methodology is not 
very fruitful since the results are very sensitive to the decay parameters used. 
Furthermore, it is difficult to distinguish the effects of dissipation and wave-
wave interaction from the wind-wave interactions. Applying regression 
models to a limited sample for an incomplete range of ∗Ucr  also suffers 

from over-fitting and other statistical issues, as well as a tendency applying 
these equations outside the original range of their validity. 

As an alternative to using wave data or analytical derivations, several 
researchers have derived empirical expressions from the numerical model 
results of turbulent boundary layer flow over a moving (usually 
monochromatic) gravity surface wave. A team of Russian scientists first used 
this approach, studying the effect of small-scale turbulence on wave growth 
using two-dimensional Reynolds stress equations (Mastenbroek et al. [28], 
Sajjadi and Drullion [47]). This work has culminated in the most complex 
formulations for equation (1.2) to date, with piece wise linear and quadratic 
empirical equations for different intervals of ,λUcr  where λU  is the wind 

speed at the wave height (assumed to be equal to the wavelength). Also, 
wave growth is sensitive to the value of the drag coefficient ,DC  but as an 

example, for ,102 3−×=DC  these formulations yield positive values of β in 

range 8.004.0 ≤< λUcr  which are largest for young waves, but decrease 

approximately linearly in the intermediate range. However, in the range 
6.18.0 << λUcr  as well as the range ,025.1 <<− λUcr  for which the 

wind blows against the waves, negative values of β are obtained. From the 
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relationship ,λ∗ = UCU D  these ranges which correspond to << ∗Ucr8.0  

,3417,17 << ∗Ucr  and ,026 <<− ∗Ucr  respectively. Note incidentally, 

the Burgers and Makin [4] formulation is the default expression for equation 
(1.2) in WAVEWATCH (Tolman and Chalikov [51], Tolman [53]). 

Finally, because waves grow by extracting momentum from the air, the 
treatment of surface stress, which crucially depends on surface roughness 

,0y  is very important in wave growth formulations. In addition to turbulent 

Reynolds stress turbτ  based on mixing length theory, air flow over growing 

waves also lose momentum due to pressure differences upwind and 
downwind of the wave crest, the so-called “wave-induced” stress waveτ  

(Janssen [16, 17]). The result is that the total stress ( ),waveturbtotal τ+τ=τ  

being generated by wind, is larger for young waves ( )15<∗Ucr  than those 

for old waves in the swell regime ( ).20>∗Ucr  Several observational studies 

confirm that 0y  is a function of wind speed and wave age. For example, 

Donelan et al. [11] and Maat et al. [26] have shown that 0y  is inversely 

proportional to wave age. Indeed, several studies (Nordeng [35], Janssen 
[17], Makin et al. [27], Chalikov [5]) have adopted an expression for 0y  that 

have aforementioned wave age dependency. Note that, 0y ’s dependency on 

wind speed and wave age results in an implicit relationship that often 
requires iterative procedures to obtain equation (1.2); this is also impractical 
for use in spectral wave models. The sensitivity of wave growth to these 
different wave age based 0y  formulations has not yet been examined in much 

detail. 

For oceanographic purposes, there are three major unresolved problems 
remaining to be studied in depth: (a) unsteady waves, where waves are 
allowed to grow or decay in time and space; (b) non-monochromatic waves, 
as such waves do not exist in the ocean; and (c) group of waves, which can 
often become sharp-crested as they propagate - they are characteristics of 
waves observed in the ocean. To date, none of the above points (a)-(c) has 
been investigated in depth. But the result of such investigation is required in 
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order to improve the parameterization of the energy input from wind to 
waves. In this paper, as in SHD, and Sajjadi and Drullion [47], we attempt to 
resolve some of these issues and offer alternative expressions for them. 

1.2. The present contribution 

Thus, the aim of this paper is to: (i) present results on the simplest 
approximation to wave groups which results to a fully nonlinear Stokes 
waves (namely sharp-crested waves); (ii) impose the boundary condition at 
the surface wave, rather than at the mean surface; (iii) assume the wave phase 
velocity is complex and consequently the wave amplitude is taken to be 

( ) ,0
tkcieata =  where 0a  is the initial constant amplitude; (iv) include the 

dominant viscous term in the complete Orr-Sommerfeld equation; and (v) 
confirm the earlier conjecture by Croft and Sajjadi [9] that this increased 
energy transfer is due to the steepness of fully nonlinear Stokes waves and 
show how much of this increased energy is transferred to higher harmonics. 
We shall find that: (i) yields an energy-transfer coefficient that is larger than 
that previously calculated for monochromatic waves; (ii) has no real effect on 
the end-results; (iii) shows how β varies for an unsteady waves; (iv) shows 
that the viscous effects in the air just above the surface wave are small 

compared with those in the water, being of relative order ,21
wa RR−σ  where 

 ν= kcR r  (1.3a) 

or for gravity wave, 

 ν= gcR r
3  (1.3b) 

denotes a Reynolds number based on wave speed, wave number, and the 
viscosity of either fluid (suffices a and w denote air and water, respectively); 
and (v) shows order of magnitude agreement with oceanographic 
observations. We will also show the damping ratio is given by 

{ }

{ }
,

2

2
22

1

2
22

1

FFR

FFI

ak

ak
kci

+

+
=ζ=  

where the expressions for ,iF  2,1=i  is given in Section 6, has additional 
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components proportional to 22ak  for wave groups compared with the 
corresponding expression for the monochromatic wave. This indicates that 
the extra energy is transferred to group of waves via the presence of 2F  term 

whose magnitude is less than 1F  but its overall effect is to increase the 

magnitude of ζ and hence yield an additional energy transfer from wind to 
group of waves.† 

Although, we recognize that the turbulent stresses will profoundly affect 
the wave growth (Miles [31], Sajjadi [41]), however, in the present model, 
the role of the Reynolds stresses is confined to the determination of the 
unperturbed mean velocity profile. For air owing concurrently with the 
waves, there is a critical height where the unperturbed wind speed equals the 
wave phase speed. The upward motion of the airflow over the wave induces 
a pressure variation which leads to a vortex sheet of periodically varying 
strength forming at the critical height. Then the ‘vortex force’ on the wave 
leads to a transfer of energy from wind to the waves. We will show that the 
growth rate, for each harmonic of a nonlinear wave, consists of three 
components. The first is a positive energy-transfer from the shear flow, being 
essentially the same as the inviscid mechanism of Miles [29]. The second and 
the third components represent, respectively, additional energy transfer from 
viscous dissipation in the air and the water. We will further demonstrate that 
simple asymptotic expressions, used in the most large-scale wave models, 
lead to growth rate that is a factor of ( ),1 εO  too large, where 

( ) ( ) .ln1
1~

0y
Ucr
λκ

+
ε ∗  

Here, we will offer an alternative expression which agrees better with both 
experimental and numerical data. 

In this paper, we shall develop the equations of motion for the water in 

                                                           
†Note that for monochromatic waves ( )02 ≡F  the expression for ζ reduces to that found by 
Miles [30]. 
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Section 5 on the assumption ,1wS  where [based on ( ) ,]02 −′νρ=ρ ∗ UU wwa  

 ( ) .0 2
ww kcUkcUS νσ=−′= ∗  (1.4a, b) 

This permits the neglect of the shear flow in the water and the derivation of 
our results directly from Lamb [22, Section 349]. 

Having developed the equations of motion in Sections 4 and 5, we shall 
impose the boundary conditions of continuity of velocity and stress in 
Section 6 to obtain an approximation to the complex wave speed. We assume 
that the magnitude of the wave speed is closely approximated by its 

unperturbed, inviscid value ( )2212 1[ akgkcr += −  for gravity waves] and that 

this value may be used in the determination of the perturbation flows. In the 
Appendix, we shall present numerical results, based on revised and extended 
analysis originally offered by Conte and Miles [8]. 

One of the major components of next-generation operational models 
includes coupling interaction between meteorology and wave models. 
However, software tools to facilitate coupling are currently unavailable, 
requiring major computer coding of both models to include interactions 
during time steps and also developing new computer architecture, such as 
code parallelization, to accelerate the solution schemes. 

Most wave models to date are based on non-physical or ad-hoc 
parameterization of source terms, often empirically derived, which often 
yields to an inaccurate solution. For example, underestimation of wave 
growth due to wind-wave interaction is a well-known problem in current 
wave models, and attempts to address this problem are often crude. In recent 
years, Sajjadi et al. [40, 42], Sajjadi [41] and SHD have identified that the 
underestimation in wave models is due to the neglect of turbulent interaction 
between the atmosphere and ocean, and due to a lack of consideration for 
different phase speeds and nonlinearity in surface wave profiles. Nearly all 
parameterizations follow the original critical-layer contribution made by 
Miles [29] which only accounts for wave growth due to inviscid shear-flow 
instability, and assumes the wind speed is low compared to the wave speed. 
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In Section 7, we will compare the result of the present parameterization with 
those of Miles [29], Janssen [17] and experimental data. 

2. The Effects of Grouping on Wave Growth 

When there is a significant mean flow above the interface, inertial forces 
become comparable with the buoyancy forces and the Froude number 

,1~IF  where ( ),2 λ= ∗ GUIF  and ( ) ( ).2 awaw ρ+ρρ−ρ=G  A number 

of mechanisms have been proposed for how such an airflow over a horizontal 
body of liquid produces waves on its surface (Sajjadi et al. [42]). Most of 
those proposed have been linear and therefore can be applied to any spectrum 
of waves. But the mechanisms and models based on them are regularly 
applied when the surface disturbances significantly affect the gas and liquid 
flows, so that the mechanisms are nonlinear, and the waves are not 
monochromatic. Typically the waves move in groups, which affect how the 
wind flows over the waves, how the waves break and thence how droplets 
form. This weakly nonlinear interaction of mechanisms significantly 
influence the average momentum, heat and mass transfer associated with 
waves. Very small unsteady waves are initiated by turbulence and/or growing 
Tollmien-Schlichting instabilities in the sheared airflow over the surface and 
Kelvin-Helmholtz coupled instability of the airflow over the liquid (Tsai et 
al. [58]). When steady waves are generated artificially in an airflow, e.g. in a 
wind-wave tank, the linear mechanisms for the growth of the waves are the 
pressure drag caused by asymmetric slowing of airflow over the downwind 
slopes of the waves and turbulence stresses caused by the disturbed flow, and 
wind-induced variations of surface roughness disturbed surface (Belcher and 
Hunt [1, 2]). Both mechanisms are affected by the relative speed of the wave, 

,rc  to the friction velocity, ,∗U  of the airflow, and the disturbed flow 

changes at the critical height. 

Consider when the waves, with wavelength ,2 kπ  begin to grow at a rate 

.ikc  If this is comparable with the frequency of wave passing, i.e. ,kU∗  then 

the critical layer is above the inner shear layer near the surface. Also, the 
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dynamics across the critical layer are determined by inertial forces as the 
flow accelerates and decelerates over the wave. But only if the wave is 
growing (or decaying), i.e., ,0≠ic  is there a net force on the wave caused 

by critical layer dynamics (Belcher et al. [3]). Their triple deck analysis 
agrees with that of Miles’ [29] different method of analysis for a growing 
wave. Hence they do not agree with him, and many subsequent authors’ (e.g., 
Lighthill [23]), conclusion is that there is a net inviscid force on 
monochromatic non-growing waves (i.e. ).0=ic  

This conclusion of Miles’ has been used to correlate data on the growth 
of wind-generated waves, and became the standard model for ocean 
forecasts, etc. (Janssen [19]). Subsequently this was contested by several 
authors, both on mathematical and physical grounds, (e.g. Mastenbroek et al. 
[28]). They showed that similar predictions for the magnitude of average 
wave growth correlations could be derived by the viscous/turbulence 
sheltering mechanism (Belcher and Hunt [1]). But this perturbation sheltering 
theory which assumes rc  is small, is found experimentally to be an under 

estimate for the force on waves when rc  is comparable with the mean wind 

speed. One interaction of wind with group of waves reason is that it does not 
represent the dynamics of waves which grow and decrease in groups. 

A conceptual model has been developed for the laminar/turbulent shear 
flow over steadily moving wave groups. Weakly nonlinear theory is used to 
analyze the disturbed airflow over the waves in groups, which shows how the 
airflow over the downwind part of the group is lower than over the upwind 
part. This asymmetry causes the critical layer height cy  to be higher and the 

wind shear at cy  to be weaker over the downwind part. Therefore, the 

positive growth of the individual waves on the upwind part of the wave 
group exceeds the negative growth on the downwind part (which would not 
be true if cy  was the same over the whole group). This leads to the critical 

layer group (CLaG) effect producing a net horizontal force on the waves, in 
addition to the sheltering effect. This analysis is supported by numerical 
simulations (e.g. Touboul et al. [54]). 
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Wave shapes also affect the wave growth (e.g. Sajjadi et al. [42]). 
Whether (as in the photographs in Jeffreys [20]) the wave groups are 
capillary waves on a Cambridge duck pond or breaking rollers in the Atlantic 
ocean, the wave shapes as well as their height vary in a group. Since their 
slopes tend to increase downwind, this is likely to amplify the CLaG 
mechanism. By considering the dynamics of typical wave groups, it becomes 
possible to estimate rationally how airflow affects the nonlinear interactions 
between waves, and compare how this relates to the wave-wave 
hydrodynamic interactions, that are assumed to dominate the distribution of 
ocean waves. Thus variations of wave shapes within a group could also affect 
the net wave growth, while violent erratic winds can prevent the formation of 
wave groups, so that wave growth may be reduced (but spray from waves is 
increased) as is observed near the centre of hurricanes. 

At higher wave speeds, another mechanism is also significant, namely 
the displacement of the critical layer outside the surface shear layer (i.e. 

).∗> Ucr  This acts to reduce the sheltering mechanism, by contrast with 

Belcher and Hunt [1] analysis (when )∗<Ucr  which showed how the critical 

layer within the shear layer increases the sheltering mechanism (see Cohen 
and Belcher [7]). Thus the decrease of the growth rate as ∗Ucr  increases is 

compensated by the increase in growth rate as waves form into groups at 
higher wind speeds (which also needs to be modeled). The decrease in the 
local sheltering mechanism as cy  increases over the downwind part of a 

wave group further affects the dynamical effect of the critical layer. (We note 
that the existence of a critical layer over a monochromatic with a significant 
role on the boundary layer dynamics still does not mean that the Miles 
inviscid mechanism is operative (cf. Sullivan et al. [50]).) 

3. Group of Waves on Deep Water 

We have to consider the transmission of disturbances in a medium for 
which the velocity of propagation of homogeneous simple harmonic wave-
trains is a definite function of the wavelength. The kinematically simplest 
group of waves is composed of only two simple trains, of wavelengths λ and 
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1λ  differing by an infinitesimal amount dλ: then with the usual 

approximation we have for the combined effect 

( )[ ] ( )[ ]tcxkactxkay 11coscos −+−=  

[ ( )] ( )[ ],coscos2 2 ctxktcxda g −−λπλ= −  (3.1) 

where 

 k
ckccccg ∂
∂+=

λ∂
∂λ−=  (3.2) 

and λπ= 2k  is the wave number. 

The expression (3.1) may be regarded as representing at any instant a 
train of wavelength λ, whose amplitude varies slowly with x according to the 
first cosine factor. Thus it does not represent a form which moves forward 
unchanged; but it has a certain periodic quality, for the form at any given 
instant is repeated after equal intervals of time ( ),gcc −λ  being displaced 

forward through equal distances ( ).gg ccc −λ  The ratio of these quantities, 

namely C, is called the group-velocity. It has also the following significance: 
in the neighbourhood of an observer traveling with velocity gc  the 

disturbance continues to be approximately a train of simple harmonic waves 
of length λ. 

The most general simple, or elementary, group may be defined in the 
following manner. Let the central from be a simple harmonic wave of length 

,2 0kπ  and let the other members be similar waves whose amplitude, 

wavelength, and velocity differ but slightly from the central type; then, with 
similar approximation, we have 

( ){ }θ+−Σ= ctxkay cos  

{ ( ) ( ) }.cos 000 θ+δ−+−Σ= ngn ktcxtcxka  (3.3) 

The range of values of k being infinitesimal, the group as a whole may be 
written, as in the previous case, in the form 
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 ( ) ( ){ },cos 000 ϖ+−−φ= tcxktcxy g  (3.4) 

where φ is a slowly varying function; and the group-velocity 0gc  is given by 

 ( ).00
0

0 ckdk
dcg =  (3.5) 

The group, to an observer traveling with velocity 0gc  appears as 

consisting of approximately simple waves of length .2 0kπ  The simple group 

is, in fact, propagated as an approximately homogeneous simple wave-train; 
the importance of the group-velocity lies in the fact that any slight departure 
from homogeneity on a simple wave-train, due to local variation of 
amplitude or phase, is propagated with the velocity .gc  

3.1. The Fourier integral regarded as a collection of groups 

An arbitrary disturbance can, in general, be analyzed by Fourier’s 
method into a collection of simple wave-trains ranging over all possible 
values of k; thus after a time t the disturbance will be given by an expression 
of the type 

 ( ) ( )[ ]∫
∞

θ+−φ
0

,cos dkctxkk  (3.6) 

where c is a given function of k. 

The method adopted with these integrals is based on Lord Kelvin’s 
treatment of the case, in which the amplitude factor ( )kφ  is a constant, so that 

( )[ ]∫
∞

θ+−
0

.cos dkctxk  

An integral solution of this kind is constructed to represent the 
subsequent effect of an initial disturbance which is infinitely intense, and 
concentrated in a line through the origin; Lord Kelvin’s process gives an 
approximate evaluation suitable for times and places such that ctx −  is large, 
and the argument may be stated in the following manner: 
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In the dispersive medium the wave-trains included in each differential 
element of the varying period are mutually destructive, except when they are 
in a same phase and so cumulative for the time under consideration, this 
being when the argument of the undulation is stationary in value. Thus each 
differential element as regards period, in the Fourier integral, represents a 
disturbance which is very slight except around a certain point which itself 
changes with time. 

Applying the method to the more general integral (3.6), we obtain an 
expression for the total disturbance, attending only to its prominent features 
and neglecting the rest, provided we assume the change of the amplitude 
factor ( )kφ  to be graded. On this hypothesis the resulting expression contains 

the amplitude of the component trains simply as a factor; and in this way the 
trains for which it is a maximum show predominantly in the formal which 
exhibits the main features of the disturbance as they arise from place to place 
through cumulation of synchronous component trains. 

The argument shows that in some respects the integral (3.6) may be more 
conveniently regarded as a collection of traveling groups instead of simple 
wave-trains; when ( )kφ  is a slowly varying function, the groups will be 

simple groups of the type (3.3). The limitations within which this is the case 
will appear from the subsequent analysis; one method of procedure would be 
graphical: to take a graph of the fluctuating factor and see that the other 
factor, which is taken constant, does not vary much within the range that is 
important for the integral. 

In the cases, we shall examine, the effect is due to a limited initial 
disturbance and the salient features are due to the circumstance that ( )kφ  has 

well-defined maxima; thus the prominent part of the effect can be expressed 
in the form of simple groups belonging to the neighbourhood of the maxima. 

Before considering in detail special cases with assigned forms of the 
velocity function c, two illustrations of interest may be mentioned. 

We now consider surface waves on an unlimited sheet of deep water, the 
only bodily forces being those due to gravity. Let the x-axis be in the 
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undisturbed horizontal surface, and the y-axis be drawn vertically upwards. 
Let η be the elevation of surface waves of small amplitude with parallel 
crests and troughs perpendicular to the xy-plane. It can be shown that for an 
initial displacement given by ( ),cos kx=η  without initial velocity, the surface 

form at any subsequent time is given by 

( ) ( ) ( )[ ] ( )[ ]{ },coscos2
1coscos ctxkctxkkxkct ++−==η  

where† 

 .kgc =  (3.7) 

Let ( )xf  be any even function of x which can be analyzed by Fourier’s 

integral theorem. Then, corresponding to an initial surface displacement 
( ),xf  without initial velocity, there is a surface form given at any subsequent 

time by 

( ) ( )[ ] ( ) ( )[ ]∫ ∫
∞ ∞

+φ
π

+−φ
π

=η
0 0

,cos2
1cos2

1 dkctxkkdkctxkk  (3.8) 

where 

 ( ) ( ) ( )∫
∞

∞−
ωωω=φ .cos dkfk  (3.9) 

If we suppose the initial elevation to be limited practically to a line 
through the origin and assume that 

( )∫
∞

∞−
= 1dxxf  

so that ( ) ,1=φ k  we can use, as an illustration of the procedure, the form 

 ( )[ ] ( )[ ]∫ ∫
∞ ∞

+
π

+−
π

=η
0 0

.cos2
1cos2

1 dkctxkdkctxk  (3.10) 

                                                           
†We have assumed ,rcc ≡  but in the subsequent developments we shall consider a more 
general case where .ir iccc +=  
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We select from these integrals the groups which give the chief regular 
features at large distances from the original disturbance. This cumulative 
group from the first integral is given for a given position and time by the 
value of k for which ( )ctxk −  is stationary, where c is given by (3.7), so that 

;2
1 kgct

x
g ==  

and, similarly, from the second integral, we obtain 

.2
1 kgt

x =−  

Thus there are symmetrical groups of waves proceeding in the two 
directions from the origin; for x positive we need only consider the first 
integral in (3.10) and for x negative the second integral. Thus the 
predominant wavelength at a point x at time t is given by 

 .4 22 xgtk =  (3.11) 

Evaluating this predominant group, we obtain the well known result 

 .44cos
2

2

2321

21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−
π

=η x
gt

x
tg  (3.12) 

At a given position, far enough from the source for the train to be taken as 
unlimited, this indicates oscillations succeeding each other with continually 
increasing frequency and amplitude; also if we follow a group of waves with 

given value of k the amplitude varies inversely as ,21t  or inversely as the 
square root of x. 

Accordingly, we shall consider the wave group 

( ) ( )txkatxkay 221111 coscos ω−+ω−=  

( ) ( ),coscos 222112 txKatxKa Ω−+Ω−=  

where ;1 aa ≡  ;2
1 2

2 kaa =  ;1 kk ≡  ( );12 kkkk δδ+≡  ;21 kK ≡  ≡2K  
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( );2 kk δ+  ;21 ω≡Ω  ( ).22 δω+ω≡Ω  Using the addition formula for, we 

obtain 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω+ω−+

⎭⎬
⎫

⎩⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ δω−δ= txkktkxay 21211 2

1
2
1cos2

1cos2  

( ){ } ( ) ( ) .2
1

2
1coscos2 21212 ⎥⎦

⎤
⎢⎣
⎡ Ω+Ω−+δω−δ= txKKtkxa  (3.13) 

The factors in curly brackets are very slowly varying amplitudes (with 

corresponding amplitudes )(2
1

12 kk −  and )).( 12 kk −  Thus the ratio of the 

amplitudes gives 

( )

[ ]
aka

ka

tkxa

tkxa
2
12

1

2
1cos

cos
2

1

2 =
δω−δ

δω−δ
O  

which is of the order of the steepness of the primary wave. Hence, to an 
observer moving with velocity gc  the profile (3.13) appears to be 

approximately a train of unsteady Stokes wave (see Figures 1 and 2)† 

 ( ) ( )kxkakxay 2cos2
1cos 2+=  (3.14) 

with the understanding that in the final analysis the amplitude of (3.14) will 
not be assumed constant. In fact, the amplitude ( ),exp tkca i=  where its 

spatial variation with respect to x is negligible. In what follows we shall refer 
to c as the group velocity instead of the more commonly used symbol 

.2ccg =  

3.2. Wave tank experiment 

The experiment, reported here, in order to support the fact that as waves 

                                                           
†Note that, the ‘unsteady Stokes waves’ therein are to be interpreted as ‘fully nonlinear Stokes 
waves.’ But the second or third order Stokes waves are those that their amplitude is constant. 
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become sharp-crested (namely, nonlinear Stokes waves) they form a group of 
waves was performed in our Nonlinear Wave Laboratory. The detail of the 
experiment is briefly stated below. 

We used the wave tank filled with water of depth m;76.0=h  the width 

of the wave tank is 1.2 m. In this experiment, waves were generated at one 
end of the 12.1 m long wave tank by a vertical piston wave-maker with 
horizontal motion. Also, for the wind, blowing over the water surface, a fan 
rotating at 780 RPM (13.2 Hz rotation) with 46 blades and 900 mm diameter 
is used. The power of this fan is 0.5 HP and thus produces wind at 26 m/s. 
The piston motion was periodic in a rectangular time profile (namely, step 
function oscillations) with period 4.1=T  seconds and linear amplitude of 
0.25 m. Thus, the generated wave traveled along the tank and reflected on the 
other rigid end, almost without any loss. The combination between direct and 
reflected waves created a very random type of water surface. Occasionally 
(for example every 20 seconds or so), some steep waves with angular spike-
like profile occurred. These sharp-crested waves had amplitude between 
0.22-0.34 m, wavelength in the range 0.2-0.4 m and were rather locally 
oscillating, standing oscillations, and not really traveling. Some photographs 
of these waves are depicted in Figures 2(a)-(c). As can be seen from these 
photographs, these waves eventually become sharp-crested which are 
composed of wave groups. Hence, this relatively simple experiment 
demonstrates that initial Stokes waves, travelling far enough become unstable 
and eventually form a group. It should be noted this phenomenon is 
attributed to wave-wave interactions between two harmonics of the wave. 
Thus, this experiment supports our theory of formation of wave groups, as 
outlined in the previous section. 
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(a) 

 
(b) 

 
(c) 

Figure 2. Water tank experimental evidence showing as nonlinear waves 
propagate it becomes unstable and forms a sharp-crested wave. The 
formation of a wave group for sharp-crested wave can easily be seen in the 
downstream of the wave. The water depth ,m76.0=h  the wave tank is 1.2 m 

wide and 12.1 m long. Waves were generated at one end of the tank wave 
tank by a vertical piston wave-maker with horizontal motion. The piston 
motion is periodic in a rectangular time profile with period 4.1=T  seconds 
and amplitude of 0.25 m. These sharp-crested waves have amplitude between 
0.22-0.34 m, wavelength in the range 0.2-0.4 m. 
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4. Airflow over Wave Group 

With reference to Figures 1 and 2, we choose, as independent variables, 
the coordinates s and n measured along and normal to the streamlines (see 
Figure 3) in a frame of reference moving with the wave speed rc  and, as 

dependent variables ( )nsq ,  and ( ),, nsθ  the velocity along a streamline and 

the inclination of the streamline, respectively. We begin with the intrinsic 
equations of motion (Milne-Thomson [34, Section 21.39]) 

,1
2

2

n
q

s
p

s
qq

∂

∂ν=
∂
∂

ρ
+

∂
∂  (4.1a) 

,012 =
∂
∂

ρ
+

∂
θ∂

n
p

sq  (4.1b) 

,0=
∂
θ∂+

∂
∂

nqs
q  (4.1c) 

where ρ denotes density, p hydrodynamic pressure, ν kinematic viscosity (all 
parameters in this section referring to the air), and the right-hand side of 
(4.1a) represents the dominant shear term in a boundary-layer-type 
approximation. We shall seek the perturbation flow coupled with the 
unsteady Stokes wave 

 ( ) ( ) ( ) 21
22

2
1 η+η≡+=η iksiks ketaetas  (4.2) 

on 0=n  in a uniform, parallel shear flow ( ) ( ) rcnUq −=0  (with 

understanding that the imaginary parts of complex quantities are proportional 
to )exp(iks  and ).)2exp( iks  The final motion will be unstable if { } ,0>cI  

exhibiting the time-growth factor { }( ).exp tck rI  

We first note that the unperturbed solution to (4.1a, b, c) implied by our 
assumption of a strictly parallel shear flow is 

 ( )( ) ( )( ) .0,, 00 ≡θ== sppnqq  (4.3a, b, c) 
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In fact, we shall use (4.1a, b, c) to describe perturbations with respect to 
a turbulent flow for which ( )nU  is the mean flow and in which the viscous 

stress U ′ρν  is actually balanced by a Reynolds stress; the model provided by 

(4.1a, b, c) then neglects perturbation Reynolds stresses. 

 
Figure 3. The coordinates for the intrinsic equations of motions (2.1a, b, c). 

We may linearize (4.1a, b, c) in the independent variable ( )ns,θ  by 

differentiating (4.1a) with respect to both s and n and (4.1b) twice with 
respect to s, taking the difference between the results to eliminate p, and 
eliminating sq  through (4.1c) to obtain 

 .3

3
22 ⎟

⎠
⎞⎜

⎝
⎛

∂
θ∂

∂

∂ν=⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛

∂
θ∂

∂
∂+⎟

⎠
⎞⎜

⎝
⎛

∂
θ∂

∂
∂

∂
∂

nq
nsqsnqns  (4.4) 

Now, to first order in θ, we may approximate q by its undisturbed value 
( ) cnU −  and assume θ to exhibit the harmonic s-dependent of the form 

 ( ) ( ) ( )nakenens iksiks
2

2
1, Θ+Θ=θ  (4.5) 

to obtain 

 ( ) ( ) ( )13

3
1

22
1

2 Θ′
∂

∂ν=Θ−Θ′
∂
∂ q

nikqkqn  (4.6) 

and 

 ( ) ( ) ( )23

3
2

2
2

2 82 Θ′
∂

∂ν=Θ−Θ′
∂
∂ q

nikqkqnk  (4.7) 

as the linearized equation of motion for ( )aO  and ( ),2aO  respectively. We 
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remark that (4.6) differs from a boundary-layer approximation to the Orr-
Sommerfeld equation (governing the perturbation stream function in 
Cartesian coordinates) in that it has a singularity at ;cU =  this implies that 

the linearized approximation to θ cannot be uniformly valid in the 
neighbourhood of .cU = † We shall find that this singularity introduces no 
essential difficulty (in so far as we require only the perturbation stresses at 
the interface ),0=n  but it should be distinguished from the singularity that 

occurs at cU =  for the inviscid Orr-Sommerfeld equation of (4.11a) below; 
the latter singularity is a consequence of neglecting the viscous forces in a 
neighbourhood where the inertial forces tend to zero (cf. SHD). 

We shall present the full boundary condition in Section 6 below, but we 
note that 

 ( ) ( )ss η′=θ ,0  and 0→θ  as .∞→n  (4.8a, b) 

Note that these boundary conditions are imposed at the displaced, rather than 
the mean, position of the interface, thereby avoiding the assumption that the 
surface-wave displacement η must be small compared with a characteristic 
length (say )Uc ′  for the shear profile; thus, we have only to assume ηk  

,1  rather than ( ) [ ] .10 η=η+′ kScU a  It is for this reason that we 

choose a formulation in terms of ( ),, nsθ  the streamline inclination in non-

Cartesian coordinates, rather than the more conventional formulation in terms 
of a stream function in Cartesian coordinates. 

We shall seek asymptotic solution to (4.6) and (4.7) in the limit as =R  
.∞→νkc  The formal procedure is essentially the same as that for the Orr-

Sommerfeld equation (see Lin [24, Sections 3.4 and 3.6]) and yields two 
solutions for both equations (4.6) and (4.7) which satisfy the boundary 
condition (4.8b). The first of these, the inviscid solution, may be obtained by 
setting 0=ν  in (4.6) and (4.7); the second or viscous solution, may be 

                                                           
†In our earlier calculations, Croft and Sajjadi [9], formulation in orthogonal curvilinear 
coordinates avoided this difficulty. However, that formulation led to an inhomogeneous form 
of the Orr-Sommerfeld equation unless terms in U iv and U ′′′ were neglected. 
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obtained by neglecting the second term on the left-hand side of (4.6) and 
(4.7) or equivalently, omitting the pressure gradient in (4.1a) and disregarding 
(4.1b). We find it convenient to solve for ( )θ− cU  and ( ) ncU θ−  (which 

are proportional to vertical velocity and perturbation shearing stress) in these 
two cases and to separate the s-dependence by introducing the factor ( );sη′  

defining the dimensionless variables 

 ( ) ( )[ ] ccnUfkn −=ξ=ξ ,  (4.9a, b) 

we then express ( )niΘ  as an inviscid plus viscous contributions in the form 

 ( ) ( ) ,2,1,~ˆ =Θ+Θ=Θ inn iii  (4.10a) 

where 

( ) ( ) ( ) ( ) ( ) ( ),~,ˆ 212 ξχ−=Θ′ξξφ−=Θξ Riknfiknf iii  (4.10b, c) 

( ) ( )
( )

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξ

ξξχ
+

ξ
ξφ

−=Θ ∫
ξ

∞ f
dR

fikan ii
i

21
 (4.10d) 

and 

( ) ,0=φ+′′−φ ′′ ii fff  (4.11a) 

02

2
=χ−

ξ

χ
i

i iRf
d
d  or 0=χ−χ ′′ ii iRf  (4.11b, c) 

as may be confirmed either by substituting (4.10d) in (4.6) and (4.7) and 
allowing R to tend to infinity or through the approximation described in the 
proceeding sentence. 

The inviscid equation (4.11a) is identical with the inviscid Orr-
Sommerfeld equation, which shows that our introduction of intrinsic 
coordinates and the imposition of the boundary condition (4.8a) at the 
displaced position of the interface have not altered the inviscid problem. The 
viscous equation (4.11b), on the other hand, differs from its counterpart in 
the asymptotic solution of the Orr-Sommerfeld equation in consequence of 
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our choice of variables. However, the methods of asymptotic solution remain 
the same and, we may use the WKB approximation (Sajjadi [39]) to obtain 

[ ( )],1exp~ 2141
1

−χ

ξ
− +

⎭
⎬
⎫

⎩
⎨
⎧ ξ−χ ∫ ROdiRff

c
 (4.12a) 

[ ( )],12exp~ 2141
2

−χ

ξ
− +

⎭
⎬
⎫

⎩
⎨
⎧ ξ−χ ∫ ROdiRff

c
 (4.12b) 

where ( ) 0=ξcf  and the phase of the radical in (4.12a) or (4.12b) is π± 4
1  

as ,cξξ ≷  the path of integration being indented under the branch point at 

cξ=ξ  (Lin [24, Section 3.4]). Note also that the error factor in (4.12a) and 

(4.12b) is referred to the exact solution of (4.6) and (4.7), respectively, and 
not to (4.11a). 

Furthermore, it should be noted that neither (4.12a) nor (4.12b) are 
uniformly valid near ,cξ=ξ  but they suffice for the present purpose in so 

far as 21RS  (the condition that the inner and outer viscous layers be well 

separated), a condition that will be satisfied for those combinations of 
parameters for which viscous dissipation in the air is most significant (albeit 
still small). 

It now remains to express the perturbation stresses on the interface in 

terms of iφ  and .iχ  Neglecting terms ( ),1−RO  in keeping with the present 

boundary-layer approximation, we may calculate the normal stress from 
(4.1a), (4.3a, b), (4.10) and (4.11b) according to 

( ) ( ( ) ) ( ( ) )0
22

20
11 PPakePPep iksiksnn −−−−=  (4.13a) 

( ) [ ( ) ( ) ] iks
nn eqikqik 1

2
1

1 Θ′ν−Θ′ρ−= −  

( ) [ ( ) ( ) ] iks
nn akeqikqik 2

2
2

2
1 22 Θ′ν−Θ′ρ− −  (4.13b) 

( ) ( )[ ] ( ) ( )[ ]{ }.0000 222111
2 ηφ′−φ′+ηφ′−φ′ρ= ffffkc  (4.13c) 
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Evaluating (2.13c) at ,0=n  where 1−=f  and Sf =′  since 

( ) ( ) ,0 22 cURkcUkcUS aaa ∗∗ =ν=+′=  

we may write 

 ( ( ) ) ( ) ( )[ ],00 222111
2

0 φηϖ+φηϖρ−=+= kcp n
nn  (4.14) 

where 

 
( )
( ) ( ) 2,1,0
0 2

1 =⎟
⎠
⎞

⎜
⎝
⎛β+α=+

φ
φ′

=ϖ jc
UiS jj

j

j
j  (4.15a, b) 

the parameter jα  and jβ  are related to the resulting pressure which acts on 

the boundary (where ( ) )10 =φ j  

 ( )∑
∞

=
ηβ+αρ=

1

2
1

n
nnn ikUp  (4.15c) 

and the argument zero implies evaluation at .0+=ξ  Note that the results 

given (4.14) and (4.15a, b) for second-order Stokes wave can be generalized 
for higher-order Stokes wave in much the same way without difficulty. For 
example, for third-order Stokes wave 

,8
3

2
1

321
32322 η+η+η≡++=η iksiksiks ekakeaae  

(4.13) and (4.14) become 

( ) ( ) [ ( ) ( ) ] iks
nn

nn eqikqikp 1
2

1
1 Θ′ν−Θ′ρ−= −  

( ) [ ( ) ( ) ] iks
nn akeqikqik 2

2
2

2
1 22 Θ′ν−Θ′ρ− −  

( ) [ ( ) ( ) ] iks
nn ekaqikqik 322

3
2

3
1 33 Θ′ν−Θ′ρ− −  (4.16a) 

{ ( ) ( )[ ] 111
2 00 ηφ′−φ′ρ= ffkc  

( ) ( )[ ] ( ) ( )[ ] }333222 0000 ηφ′−φ′+ηφ′−φ′+ ffff  (4.16b) 
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and where (4.16b) is evaluated at ,0=n  we obtain 

 ( ( ) ) ( ) ( ) ( )[ ].000 333222111
2

0 φηϖ+φηϖ+φηϖρ−=+= kcp n
nn  (4.17) 

Thus for higher-order Stokes wave (4.14) and (4.15) generalize to 

( ( ) )
( )
( )∑

∞

=
+= η⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

φ
φ′

ρ−=
1

22
0 0

0

j
j

j

j
n

nn Sckp  

( )∑
∞

=
ηβ+α⎟

⎠
⎞

⎜
⎝
⎛ρ−=

1

2
12 .

j
jjj ic

Ukc  (4.18a, b) 

The expressions (4.18) are in full agreement with earlier works of Sajjadi and 
co-workers. 

The tangential stress is given by (within the boundary-layer 
approximation) 

( ) ( )Uqp n
sn ′−ρν=  (4.19a) 

( ) ( )[ ]′ηΘ′+ηΘ′ρν−= −
2211

1 qik  (4.19b) 

[ ( ) ( ) ].2
21

21
21

1
212 ηξχ′+ηξχ′ρ= − kRkRRc  (4.19c) 

Substituting iχ  from (4.12) and setting ,0+=ξ  we obtain 

 ( ( ) ) [ ( ) ( ) ].020 2211
2124

0 ηχ+ηχρ−= −π
+= kkRcep i

n
sn  (4.20) 

Note that the viscous solution enters the calculation of the normal stress 
and the inviscid solution that of the tangential stress only through the 
boundary conditions, which relate ( )0iφ  and ( ).0iχ  

5. Equations of Motion for Group of Waves 

We shall now proceed on the assumption that the shear flow in the water 
(which is induced by the traction of the shear flow in the air) may be 
neglected. As was stated in Section 1, this will be a good approximation if 
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,1wS  where wS  is defined by (1.4). We must stress at this point that this 

assumption does not preclude the existence of a surface current, since our 
velocities are defined relative to such a current; all that 1wS  implies is 

that the water moves approximately uniformly with the surface current to a 
depth of the order ( ).21 πλ=k  In addition to this, the small shear flow that 

is present must be oppositely directed to the airflow, for example 0<wU  if 

;0>aU  it follows that rcU −  could not vanish in 0<n  for wave traveling 

downwind, whence the shear flow in the water could not transfer energy to 
the surface wave through the critical layer mechanism. Note that such an 
energy transfer would be predicted for a wave traveling upwind, but it 
generally would be much smaller than the energy absorbed by viscous 
dissipation, primarily because 1wU  at the depth where .0=− rw cU  

Assuming small perturbations with respect to a uniform flow –c (relative 
to the moving frame of reference), we follow Lamb [22, Section 349] and 
construct a solution for a surface wave of the form (4.2) moving over a 

viscous liquid. If we omit the hydrodynamic static pressure from ( )nnP  and 
note that ,θ−= cv  we may pose the streamline inclination and perturbation 
stresses in the forms 

( ) ( ) ,222111 η++η+=θ κξξκξξ ikebeaikebea  (5.1) 

( ) [( ) ] 11
1

1
12 221 ηκ++ρ−= κξ−ξ− kebRieaiRcp nn  

[( ) ] ,221 22
1

2
12 ηκ++ρ− κξ−ξ− kebRieaiRc  (5.2) 

( ) [ ( ) ] 11
1

1
12 22 η−+ρ= κξ−ξ− kebiReaRcp sn  

[ ( ) ] ,22 22
1

2
12 η−+ρ− κξ−ξ− kebiReaRc  (5.3) 

( ) { } ,0,1 21 >κ−=κ RiR  (5.4a, b) 

where ia  and ib  are constants to be determined by the boundary conditions 

at the interface, and ρ, ν, and R are to be evaluated for the water. Note that 
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the boundary-layer approximation is not applicable to the water (since the 
interface is approximately free for the heavy fluid below the interface) and 
that (5.1)-(5.4) are based on the full, linearized equations of viscous flow; 
subsequently, we shall assume ,1wR  but this approximation has yet to be 

invoked. 

6. Energy Transfer to Group of Waves 

In order to evaluate the energy transfer from shear flow to Stokes wave 
we must first proceed with determination of wave speed. Thus, we may infer 
the boundary conditions at the interface from the considerations that both aθ  

and wθ  must be equal to the slope of the surface wave, that the velocity (or 

)nθ  be continuous, that the shear stress be continuous, and that the 

discontinuity in normal stress be prescribed. Accordingly 

,0,, =θΔη=θη=θ nwa ikik  (6.1a, b, c) 

( ) ( ) ,,0 η=Δ=Δ Lpp nnsn  (6.1d, e) 

where 

 ( ) ( ) ( ) −=+= −=Δ 00 nn  (6.2) 

and Lη the (static) restoring viscous stress of the interface. We may relate the 
operator L to the inviscid wave speed in the absence of the upper-fluid 
according to 

 ηρ=η kcL ww
2  (6.3) 

which for second-order Stokes gravity waves is given by 

 ( ) .1 2
1

2
0

2212
www ccakgkc +=+= −  (6.4) 

We note that for group of waves ( ) .2wgw cc =  Moreover, we need not pose 

the boundary conditions at infinity, assuming them to be satisfied implicitly. 

Substituting (4.10d), (4.14), (4.20), (5.1)-(5.3) and (6.3) in (6.1a-e), 
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setting ( ) 10 −=f  and ( ) ,0 aSf =′  and canceling common factors, we may 

place the results in the form 

( ) ( ) ,100 1
214

1 =χ−φ −π
aRe  (6.5a) 

( ) ( ) ,2
100 2

214
2 =χ−φ −π

aRe  (6.5b) 

,111 =+ ba  (6.5c) 

,122 =+ ba  (6.5d) 

( ) ( ) ( ) ,000 11111 baSa κ+=χ+φ+φ′  (6.5e) 

( ) ( ) ( ) ( ),2
1000 22222 baSa κ+=χ+φ+φ′  (6.5f) 

( ) ( ) ,20 111
1

1
214 ibbaRRe wa

i −+=χσ− −−π−  (6.5g) 

( ) ( ) ,
2

20 222
1

2
214 ibbaRRe wa

i −+=χσ− −−π−  (6.5h) 

[( ) ( )],0221 111
1

1
12

0
2

0 φσϖ−κ++= −− bRiaiRcc www  (6.5i) 

[( ) ( )],0221 222
1

2
12

1
2

1 φσϖ−κ++= −− bRiaiRcc www  (6.5j) 

where 0c  and 1c  are complex. Solving (6.5a-j) for ( ) ( ) iii a,0,0 χφ  and ,ib  

,2,1=i  and substituting in (6.5i) and (6.5j), we obtain 

2
1

2
0

2 ccc +=  

[ ] [ ],,,, 21212123
2

22
1

2
0 σσσ++= −−−−

aawaww RSRRROakc FF  (6.6) 

where 

( ) 2142
11

1
1 141 −π− ϖ−σ−σϖ+−= a

i
w ReiRF  

and 

( ) ( ) .1221 2142
22

1
2

−π− ϖ−σ−σϖ++−= a
i

w ReiRF  
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Substituting iϕ  from (4.15b) and wR  and aR  from (1.3b) in (6.6) and 

neglecting higher-order terms, we obtain the damping ratio for unsteady 
Stokes wave 

{ }
{ }

( ) ( )ii

3

i

2
1

1
42

r

w
r

i
c
g

c
U

c
ckc ν

−⎟
⎠
⎞

⎜
⎝
⎛σβ===ζ

R
I  

( ) ( )

( )iii

4
12

111
2
1

2
1

11

21

3 221
2 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛β−βα+α+⎟

⎠
⎞

⎜
⎝
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⎟
⎠

⎞
⎜
⎜
⎝

⎛ ν
σ−

rrr

a
c
U

c
U

c
g  

( )

( )

( )v

3

iv

2
1

2
22

r

w
r c

g
c
U ν+

−⎟
⎠
⎞

⎜
⎝
⎛σβ+  

( ) ( )

( )

,221
2

vi

4
12

222
2
2

2
1

22
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3 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛β−βα+α+⎟

⎠
⎞

⎜
⎝
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⎟
⎠

⎞
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⎜
⎝

⎛ ν
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rrr

a
c
U

c
U

c
g  

 (6.7) 

where the terms (i)-(iii) on the right-hand side represent, respectively, the 
positive energy transfer from the shear flow, the viscous dissipation in the 
water, and the viscous dissipation in the air for the fundamental harmonic 
(being exactly the same as that for a monochromatic wave provided rc  is 

replaced with ,)kg  whereas terms (iv)-(vi) represent the same for the 

second harmonic. 

7. Application of the Theory to Spectral Wave Models 

Spectral wave models, such as WAM, describe the evolution of a two-
dimensional ocean wave variance spectrum through integration of the 
transport equation 
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( ) ( ) ( ) ,SFFF
F =ϑ

ϑ∂
∂+μ

μ∂
∂+ϕ

ϕ∂
∂+Dt

D  

where F represents the spectral density with respect to directions ϑ, latitudes 
ϕ and longitudes μ (the dot over symbols denotes the rate of change of the 
position and propagation of a wave packet). 

The source function S is represented as a superposition of the wind input 
,inS  white capping dissipation ,disS  and nonlinear transfer ,nlS  i.e., 

.nldisin SSSS ++=  

Here, we shall only be concerned with inS  and offer an alternative 

formulation of it. 

The wind input is usually given by 

,in FS ζ=  

where ζ represents the growth rate of the waves. According to Miles [29] 
mechanism, the growth rate, when normalized with frequency ω, is given by 
(1.2). In the third generation model of WAM, the energy transfer parameter 
appearing in (1.2), taken from the asymptotic expression derived by Janssen 
[16, 17], is given by 

 ( ) ,1,ln4
2asym <

κ

β
=β ccc

m kykyky  (7.1) 

where now κ is the von Kármán’s constant, 2.1=βm  a constant and 

( ( ) )011.0
0,1min +κ ∗= rcU

c ekyky  

is the dimensionless critical height. 
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Figure 4. The plot of β against .∗Uc  Dotted line (…) is the result obtained 

by the present model for the first three harmonics of Stokes wave, pluses (+) 
are numerical results of Sajjadi [43], crosses (×) are the numerical results 
obtained by Sajjadi [43] for slow moving waves, solid line (–) is the result 
obtained by the present model for a third-order Stokes wave, and the dashed 
line (---) is Janssen’s [17] asymptotic result. 

We shall now apply the foregoing theory to the growth of water waves 
(Stokes and group of sharp-crested) by wind on the hypothesis that the air 
mean velocity in the turbulent boundary layer may be regarded as parallel 
shear flow. We shall assume that the mean velocity profile in the vicinity of 
the air-water interface is asymptotically logarithmic according to 

 ( ) ( ),log 0nnUnU
κ

= ∗  (7.2) 

where ∗U  is the wind friction velocity and κ is Kármán’s constant. We 

perform calculations for waves with wavelength ,m64.0=λ  and initial wave 

steepness ,01.00 =ka  where 0a  is the initial wave amplitude. We choose the 

value of 410−=ckn  for the non-dimensional roughness length and evaluate 

the energy transfer parameter over a range of .∗Ucr  For growing waves we 

fix the value of waves complex speed to .1.0=ic  
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In Figure 4, we have plotted the expression for ,asymβ  given by (7.1), as 

a function of ∗Ucr  (the dashed line). As can be seen from this figure the 

peak value of asymβ  is approximately 34 which occurs at .16=∗Ucr  Also in 

Figure 4 we have plotted β calculated with the present numerical integration 
of the Orr-Sommerfeld equation for the first 3 harmonics of Stokes wave, 
namely ,iβ  3,1=i  (the dotted lines). Note incidentally that 1β  corresponds 

to the monochromatic wave and the results obtained by Janssen [16, 17] (also 
for monochromatic waves) leads to growth rate that is a factor of 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

λκ

∗

−

Uc
nO

r1
ln 0

1
 

too large compared to the growth rate obtained from .1β  As can be seen from 

this figure 1β  agrees very well with numβ  (pluses), obtained from the 

numerical integration of full Reynolds stress transport equations over water 
waves using the two-component limit of turbulence (TCL) (Sajjadi and 
Drullion [47]), over the range .187 ≤≤ ∗Ucr  However, in the range ≤2  

5≤∗Ucr  both the present model and the asymptotic theory of Janssen [16, 

17] fails to capture the saturated trend of β. This is not surprising since 
neither of these models take into account the implicit nature of turbulence 
other than in prescribing the logarithmic mean wind velocity profile over the 
surface wave. It can be seen that β tends to an approximately constant value 
of 15 in the range ,72 ≤≤ ∗Ucr  being the range in which ∗U  is large 

(normally referred to as the slow moving wave regime). We observe that the 
numerical simulation, using the TCL model, captures the behavior of β in 
this range and hence qualitatively agrees with the asymptotic result of 
Belcher and Hunt [1]. 
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Figure 5. Variation of the energy-transfer parameter, β, with the wave age 

∗Ucr  for sharp-crested group of wave. 

Recently by invoking a closure model, based on Townsend [56], Sajjadi 
[46] constructed a model for the specification of turbulent Reynolds stresses 
over water waves where the resulting equation together with its 
corresponding boundary conditions was solved numerically. The energy 
transfer parameter was then calculated from the derived expressions for the 
momentum flux for slow wind-wave regime ( )5≤∗Ucr  which agreed well 

with that of Sajjadi [45]. The results of these calculations are also shown in 
Figure 4 (crosses), namely slowβ  for comparison. 

Figure 4 also shows the plot of ,sβ  given by 

 ( )∑
=

− β=β
N

n
n

n
s ak

1

1  (7.3) 

for 3=N  which corresponds to energy transfer from wind to a third-order 
Stokes wave. From (7.3) it is evident that for ,10ka  321 β>β>β  and 
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thus the increased energy transfer to nonlinear waves is due to the presence 
of the additional terms, namely ,2, ≥β ii  compared to the monochromatic 

counterpart. Note that in the present calculations, the magnitude of 14β  

and therefore its inclusion to series (7.3) will have an insignificant effect to 
the overall magnitude of sβ  (if N was taken to be 4 in series (7.3)). 

 
Figure 6. Variation of the energy-transfer parameter, β, with the wave age 

∗Ucr  for sharp-crested group of wave and Stokes waves with experimental 

data of Snyder et al. [48]. Thin solid line presents prediction numerically for 
sharp-crested group of wave; +, presents prediction analytically (small to 
moderate values of )∗Ucr  for sharp-crested group of wave; , presents 

prediction analytically (large values of )∗Ucr  for sharp-crested group of 

waves; -, steady monochromatic waves; •-•, steady second-order Stokes 
wave; -, asymptotic prediction for unsteady Stokes wave for small to 
moderate values of ;∗Ucr  -, asymptotic prediction for unsteady Stokes 

wave for large values of .∗Ucr  Other symbols are Snyder’s data. 



Energy Transfer from Wind to Wave Groups: Theory and Experiment 61 

Figure 6 shows the variation of β with the wave age ∗Ucr  for several 

models and their comparison with experimental data of Snyder’s [48] data. 
Two important factors can immediately be observed: (i) the numerical 
solution of β through integration of the Orr-Sommerfeld equation (see the 
Appendix) agree very well with the numerical solution of TCL model shown 
in Figure 5. It is important to note the numerical values of β (the thin solid 
line) qualitatively and quantitatively agree with the results shown in Figure 
5; (ii) in both cases the maximum value of 58≈β  and this maxima occur at 

.11≈∗Ucr  However, for 1∗Ucr  the numerical value of β, shown in 

Figure 6, does not become negative. Hence, the solution obtained using the 
Orr-Sommerfeld equation does not seem to capture wave decay for large 
values of .∗Ucr  Also for comparison asymptotic results obtained for fully 

nonlinear Stokes waves (Sajjadi [41]) is also shown. It can be seen in two 
asymptotic regions, where ∗Ucr  is small or large, there is a good agreement 

with present computation, but Sajjadi’s [41] theory does not agree with the 
present computation. 

We now focus our attention to unsteady group of sharp-crested waves. In 
contrast to steady waves (monochromatic and Stokes), the results obtained 
for group of sharp-crested waves are considerably different. Figure 5 shows 
the variation of β for group of sharp-crested waves with the wave age 

,∗Ucr  with a fixed the value of .1.0=ic  The results depicted in Figure 5 

is obtained using the TCL model (see Sajjadi and Drullion [47]) in the range 
.302 ≤≤ ∗Ucr  As can be seen from this figure the numerical calculations 

of β predicts the same trend as that of slowβ  obtained by Belcher and Hunt 

[1]. However, we also observe that β reaches maximum value of 58 at 

11≈∗Ucr  which is ∗Ucr2
1  obtained by numerical simulation of Reynolds 

stress model obtained by Mastenbroek et al. [28]. But, we emphasize that in 
their study they considered very small steepness steady waves. We remark 
that, for ,1∗Ucr  beyond 30=∗Ucr  (not shown here), β becomes 

negative. This implies that sharp-crested group of waves decay much slower 
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than that of small steepness steady waves, which, from oceanographic view 
point, is not surprising. 

 

Figure 7. The growth rate of the energy density of the wave (twice the 
amplitude growth rate) due to the effect of the asymmetric pressure, made 
non-dimensional on the wave frequency. The thin and dotted lines are the 
theoretical curves, due to Belcher and Hunt [1], are compared with the data 
collated by Plant [38]. The thick line represents the present prediction of β 
for .1.0=ic  The upper group of experimental points is mainly from wave 

tank experiments and the lower group from oceanic experiments. (a) 0yλ  
310=  typical of the wave tank experiments, (b) 5

0 10=λ y  typical of the 

ocean experiments. 

Finally, Figures 7(a) and 7(b) show comparisons of the theoretical 
prediction of the normalized on the frequency of the wave, ,1 T=ω  growth 

rate of the energy transfer parameter, β, together with the laboratory data 
collated by Plant [38]. In Figure 7(a), 0yλ  has the value 103, which is 

representative of the laboratory experiments, and in Figure 7(b), ,0yλ  is 105, 
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representative of ocean waves. The result of the present parameterization of β 
for sharp-crested wave group, with ,1.0=ic  is also plotted. 

8. Conclusions 

The study undertaken in this paper warrants the following conclusions. 
We have investigated three important unresolved problems remaining in 
oceanography in some depth. These include: (a) unsteady waves, where 
waves are allowed to grow or decay rather than assuming their initial 
amplitude during their propagation; (b) non-monochromatic waves, which 
are not characteristic in oceans, and in fact can never be observed; and (c) 
group of waves, which can often become sharp-crested by receiving enough 
energy from the wind shear flow as they propagate. The ultimate aim of this 
investigation was the more in depth understanding the air-sea interactions, 
taking into account non-ideal and group of waves, in order to improve the 
parameterization of the energy input from wind to waves which can be 
incorporated in spectral wave models. In this paper, we have shown the sum 
of two simple harmonic waves can lead to an unsteady fully nonlinear Stokes 
waves which can become sharp-crested. Thus, as a starting point we have (i) 
presented results on the simplest approximation to such wave groups; (ii) 
imposed the boundary condition at the surface wave, rather than at the mean 
surface. The latter will be inappropriate as waves tend to become sharp- 
crested their profile will be well above the mean undisturbed water surface; 
(iii) assumed the wave phase velocity is complex which consequently allows 

the wave amplitude to grow or decay according to ( ) ,0
tkcieata =  where 0a  

is the initial constant amplitude, k is the wave number, and ic  is the wave 

complex phase speed. Thus the rate of growth (or decay) such waves ;ikc=ζ  

and, (iv) include the dominant viscous term in the perturbation equations, 
similar to that adopted by SHD. 

We have found that: (i) yields an energy-transfer coefficient that is larger 
than that previously calculated for monochromatic waves and agree well with 
experimental data Snyder et al. [48] and Plant [38], also with the result 
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obtained by full numerical integration of the Reynolds stress transport 
equations, performed recently by Sajjadi and Drullion [47]; (ii) has no major 
effect on the end-results if appropriate number of harmonics is taken into 
account for nonlinear as well as group of waves; (iii) showed the variation of 
dimensionless energy-transfer parameter β with the wave age for unsteady 
waves is three times greater than that for steady waves; (iv) the vertical 
component of perturbation velocity is not singular at the critical point in 
agreement with earlier finding of SHD. In our final remark, we emphasize 
that since the theoretical and computational results obtained here 
exceptionally agree with experimental data reported by Snyder gives a great 
degree of confidence to the theory of air-sea interactions for non-ideal 
oceanic waves. Also, experiments performed confirm that as bichromatic 
waves become steeper they form group of waves. 
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Appendix A. Numerical Solution 

The energy transfer parameters jα  and jβ  are evaluated by numerical 

integration of the Orr-Sommerfeld equation, derived in Section 4† 

 ( ) ( ) ( ) .122 ′′′Θ′=Θ−′Θ′ − fiRff  (A1) 

Following the notations in Section 4, letting fik ′φ−=Θ  and following Croft 

and Sajjadi [9], we may express the solution of (A1) as a combination of 
inviscid plus viscous solutions ,Fh ≡+φ  where ( )ηφ  satisfies the following 

boundary value problem: 

 ( )∞<ξ≤ξ<=φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ξ
−⎟⎟

⎠

⎞
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⎝

⎛
φ−

ξ

φ
02

2

2

2
00

d
fd

d
df  (A2) 

subject to the boundary conditions 

( ),000 ξ=ξ=φ f  (A2a) 

( ).0 ∞→ξ→φ+
ξ
φ

d
d  (A2b) 

As was shown by Croft and Sajjadi [9], the asymptotic analysis for large 
R indicates that the viscous solution approximately obeys the equation 

                                                           
†For clarity sake, we will describe the procedure for the fundamental harmonic .1=j  
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 ( ) 02

2

4

4
=

ξ
ξγ−

ξ d
hdi

d
hd  (A3) 

subject to the boundary conditions 

,1,0 00 =′′= hh  (A4) 

0=′′′=′ hh  as ,∞→ξ  (A5) 

where 

 ( ) ( ) ( )0log ξ>ξξξ=ξ ccf  (A6) 

and 

 ( ) ( ).ξ=ξγ Rf  (A7) 

To integrate equation (A3) we first reduce it to a pair of second order 
differential equations 

 .
as0and1tosubject,0
as0and0tosubject,

0

0

⎭
⎬
⎫

∞→ξ→χ′=χ=γχ−χ ′′

∞→ξ→′=χ=′′

i
hhh

 (A8) 

The integration of equations (A8) poses no real difficulty, however the 
solution of equation (A2) poses a major difficulty due to the singular 
behaviour of the equation around .cξ=ξ  

Note that ξ is confined to the real axis except in the neighbourhood of 
the regular singular point ,cξ=ξ  where the path of integration must be taken 

under the singularity. The components of this singularity are 0 and 1, and 
there exists only one analytic solution, ( ),1 fO=φ  in this neighbourhood. 

The second linearly independent solution has a logarithmic branch point 
there and may be posed as 

 ,log 312 φ+φ=φ f  (A9) 

where 3φ  is analytic and ( )1O  in the neighbourhood of 0=f  and 1φ  is the 

regular solution of (A2). 
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Substituting (A9) into (A2) we obtain the following inhomogeneous 
equation: 
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where 1φ  is the regular solution of (A2), namely 
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The procedure adopted here is to determine 1φ  and 3φ  successively and then 

to combine 1φ  and 2φ  to satisfy (A2a, b). 

Substituting (A9) into (A2a, b), we obtain the following boundary 
conditions: 

 
( )

,
asand0

atlog1and

2
2

1
1

021

⎪⎭

⎪
⎬
⎫

∞→ξ−=φ=
ξ
φ

=φ+
ξ
φ

ξ=ξ−=φ=φ

Hd
d

d
d

fGG
 (A12) 

where 

21 log φ+φ= fG  evaluated at ,0ξ=ξ  
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We discretize the above system of equation using central differences and 
seek their solutions over an unsteady Stokes wave defined by (4.2) and then 
calculate the resulting pressure acting on the surface, from (4.15c), where the 
energy transfer parameters α and β are calculated according to 

 .
0

0 ⎟
⎠
⎞⎜

⎝
⎛

ξ
−

ξ
=β+α d

df
d
dFfi  (A13) 
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Note that, the energy transfer to the Stokes wave at the surface is 
proportional to β, namely 

 ( ),2
ccc ffF ′′′π−=β  (A14) 

where the subscript c implies evaluation at the singular point ,cξ=ξ  

 ( ) 2
1000

1

2
0 ,log,0 UgfU

cef c
f

c ξ=Ωξξ=−=Ω=ξ −−  (A15) 

and ( )23 1010 −− −=Ω O  is Charnock’s [6] constant. 

The solution of the boundary value problem (A2) posed here is solved in 
the following manner. We first solve (A2) for the regular solution ,1φ  then 

we substitute (A9) in (A2) and solve the resulting equation for .3φ  Having 

done this we combine 1φ  and 2φ  to satisfy the boundary conditions (A2a, b), 

and finally determine β through either (A13) or (A14). 

In carrying out this program numerically for the solution of equation 
(A2) the velocity f provides a more convenient scale than the independent 
variable ξ. Under the change of independent variable (A6), the boundary 
value problem (A2), (A2a, b) becomes 

( ) ( ),01 0
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dfL f

c  (A16) 

,00 f=φ  (A16a) 

( ),0 ∞→→φξ+φ fedf
d f

c  (A16b) 

where (A16) defines the operator L, and the singularity now appears at 
.0=f  

Applying the method of Frobenius we can now obtain series expansions 
valid about the singularity 0=f  for two linearly independent solutions. If 

we let 
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and expand the exponential in (A16) in powers of f, we obtain 
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Equating coefficients of 1−rf  we find that 0=r  or .1=r  Now equating 

coefficients of ...,,, 21 ++ rrr fff  for ,1=r  we obtain kb ’s for 1≥k  in 

terms of .0b  Without loss of generality we set ,10 =b  thus the series for the 

regular solution 1φ  is 
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To obtain the logarithmic solution we substitute (A9) into (A16) and, 
observing that ,01 =φL  we obtain 

 ( ) df
dfL 1

1
1

3 21 φ
−φ+=φ −  (A18) 

as the inhomogeneous differential equation for .3φ  Substituting (A17) into 

(A18) and again expanding, we obtain 

( ) ( ) 3222
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The general solution of (A16) is 

 ,21 φ+φ=φ BA  (A20) 

where A and B are constants to be chosen so as to satisfy the boundary 
conditions (A16a, b). The equations for determining A and B are: 
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where +f  is, for the purpose of numerical integration, infinite; the actual 

value of +f  varies, depending upon the parameters cξ  and Ω. 

The numerical integration for boundary value problems, defined by (A8), 
was performed using a five point central difference approximation. Writing 
any of these equations in the form 

,wu =Φ−Φ ′′  

where { },,,, 31 χφφ≡Φ h  and discretizing them using following 

approximations: 

( ),5624656360
1

2112 −−++ Φ+Φ+Φ+Φ+Φ=Φ iiiii  

Φ⎟
⎠
⎞⎜

⎝
⎛ Δ+Δ=Φ′′ − 422

12
1

ii  

here iΔ  is the central difference operator and  is the uniform step length, 

we obtain quindiagonal matrix equations 

.w=ΦA  

These equations are then solved using the standard Gauss elimination 
technique. 
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The presence of the singularity at 0=f  necessitated the evaluation of 

the series (A17) and (A19) at some point 1f  sufficiently removed from the 

singularity before the numerical solution could be carried out. From these 
series we obtained 1φ  and 3φ  and their derivatives at .1f  The value of 1f  

chosen varied from 410−  to 710−  depending upon the value of .cξ  The 

lower limit of integration was fixed at .0f  The numerical integration for the 

viscous equation (A3) was then performed using the central finite difference 
approximation of the coupled system (A8) and the result was combined with 
the numerical solution of (A2) to yield the solution to the Orr-Sommerfeld 
equation (A1). Having obtained the numerical solution to (A2), β was 
calculated using equation (A14). 
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