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Abstract: Highly diverse agroecosystems are increasingly of interest as the realization of farms’ 
invaluable ecosystem services grows. Simultaneously there has been an increased use of uncrewed 
aerial systems (UAS) in remote sensing as drones offer a finer spatial resolution and faster revisit 
rate than traditional satellites. With the combined utility of UAS and the attention on 
agroecosystems, there exists an opportunity to assess UAS practicality in highly biodiverse settings. 
In this study, we utilized UAS to collect fine-resolution 10-band multispectral imagery of coffee 
agroecosystems in Puerto Rico. We created land cover maps through a pixel-based supervised 
classification of each farm and assembled accuracy assessments for each classification. To bolster 
our understanding of the classifications, we interviewed farmers to understand their thoughts on 
how these maps may be best used to support their land management. The average overall accuracy 
(53.9%), though relatively low, was expected for such a diverse landscape with fine-resolution data. 
After sharing imagery and land cover classifications with farmers, we found that while the prints 
were often a point of pride or curiosity for farmers, integrating the maps into farm management 
was perceived as impractical. These findings highlight that while remote sensing of diverse 
agroecosystems may provide a detailed way of estimating land cover classes and ecosystem services 
for researchers and government agencies for example these maps may be of limited use to land 
managers without additional interpretation. 

Keywords: agroecosystem; drones; farm management 
 

1. Introduction 

Unlike the highly input-dependent monocultures that make up a large portion of the food 
production system [1,2], diversified agroecosystems are increasingly touted as invaluable systems 
against climate change. Agroecosystems, in the context of this study, have the capacity to maintain 
ecosystem services, biodiversity, and farmer livelihoods indicating that the highly diverse farms of 
this paper are part of more sustainable practices [3–5]. Coffee agroecosystems are ecologically, 
economically, and politically significant to the neotropics [6]. Ecologically, coffee is significant 
because of the species richness it has the potential to promote. While there exists a gradient from 
which coffee is grown, ranging from unshaded monocultures to shaded polycultures and 
agroforestry systems, many coffee farms in the neotropics promote biodiversity by planting coffee in 
the shade of overstory vegetation. This overstory vegetation and other cultivated plants intercropped 
with coffee can provide habitat for wild flora and fauna and regulate ecosystem services necessary 
for other plant life [7–9]. Economically, roughly a third of the world’s coffee production takes place 
in Latin America [10,11]. Because of the significant economic impact that coffee exports have on the 
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neotropics, government policy has frequently encouraged high-intensity production at the expense 
of more ecologically sound agroecosystems [12]. 

Foundational to understanding land change post-climatic disaster is having accurate land cover 
classifications maps before and after such events. The advent of uncrewed aircrafts (UA), or drones, 
means that remote sensing imagery can be captured with a much finer spatial resolution, on the order 
of tens of centimeters [13], than satellites like Sentinel-2A MSI and Landsat 8 OLI, which have 
resolutions of 10-20 meters and 30 meters per pixel respectively [14]. In addition to the increased 
spatial resolution, drones do not have defined return times and can be employed whenever desired, 
and around terrain obstacles. The flexibility and increased spatial resolution of drones mean that UAs 
have the potential to create vastly more accurate land cover classifications.  

While the use of auxiliary data and finer-resolution data may aid in improving classification 
accuracies, in some cases these classifications only benefit researchers and other outside actors, who 
hold implicit biases about the land that they are studying [15]. In order to derive practical tools and 
analyses from classifications, it is necessary that farmers be included in the mapping and 
classification of their land. This becomes especially important in such diversified systems, as more 
nuance can exist in what does and does not constitute a “crop”. In mapping with farmers, researchers 
also affirm that our work is done in collaboration with the land stewards of what we map [15]. 
Working in partnership with farmers does lend itself to the potential of misestimating the amount of 
a certain land cover class in favor of another due to different actors placing significance on certain 
land cover types. However, to a large extent, this is considered to be outweighed in terms of the 
benefits of including farmers in the mapping process [15].  

This paper was written with the intention of adding more information to the growing literature 
on the classification of diversified coffee agroecosystems, with an emphasis on the utility of UA and 
farmer participation in this effort. Our goals were to quantify the accuracy of classifications 
performed on fine-resolution multispectral data and to explore how speaking with farmers may 
change the methods or results in which classification occurred initially. It is our hope that should 
similar research continue, farmer involvement will happen at an earlier stage, and more often so that 
a better knowledge exchange can occur.  

2. Materials and Methods 

Our study took place in the coffee-growing mountainous areas of central-Western Puerto Rico. 
More specifically, farms were surveyed in Utuado, Adjuntas, Jayuya, and Yauco (see Figure 1). Farms 
in these regions experienced, between 177-229 cm of annual rainfall [16] and are classified as 
submontane and lower montane wet forests [17]. Soils present in the coffee-growing region include 
ultisols, inceptisols, and oxisols [18]. Farms surveyed were a part of long-withstanding coffee 
agroecosystem research in the region and spanned across a gradient of coffee production 
intensification [8]. Other commonly found crops in these diverse agroecosystems include citrus trees, 
bananas, and plantains. The farms surveyed had an average slope of 15.4 degrees. Farms ranged from 
0.8-56.7 hectares in size. More information can be found in Table 1. 
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Figure 1. Study sites within the central-Western coffee growing region of Puerto Rico. Municipalities 
layer from UN Office for the Coordination of Humanitarian Affairs. The figure is projected to 
“StatePlane Puerto Rico Virgin Isl FIPS 5200 (Meters),” a version of the Lambert conformal conic 
projection, and has a datum of NAD 1983. 

Table 1. Information on farm size, aspect, slope, and classification based on Moguel and Toledo’s 
(1999) coffee growing gradient. 

Farm Size (ha) Aspect Median Slope (°) Classification 
UTUA2 1.64 West-facing 7 Commercial polyculture 

UTUA16 0.96 South-facing 12 Traditional polyculture 
UTUA18 2.13 East-facing 16 Traditional polyculture 
UTUA20 1.63 South-facing 18 Commercial polyculture 
UTUA30 0.82 West-facing 25 Traditional polyculture 
YAUC4 2.47 North-facing 12 Traditional polyculture 

ADJUCP 3.45 North-facing 12 Commercial polyculture 
ADJU8 41.97 East-facing 16 Shaded monoculture 

JAYU2_3 56.05 South-facing 17 Shaded monoculture 

The uncrewed aircraft (UA) flights used in this study were conducted in 2022to collect 10-band 
multispectral imagery. Before 2021, numerous preliminary data-gathering missions occurred with 
the use of fixed-wing and multirotor UA. Ground data collection, which includes the GPS and plant 
characteristic data, occurred in 2021, 2022, and 2023. Interviews with farmers were conducted in May 
of 2023 and were subject to review and exemption approval by the Institutional Review Board (IRB) 
of the University of Michigan. 

2.1. Ground Data Collection 

Ground data collection was conducted in field campaigns in 2021, 2022, and 2023 to create 
control points to train and test land cover classification accuracy. We used the ESRI Collector or ESRI 
Field Maps smartphone app to capture data from a linked external GNSS receiver. In earlier 
campaigns, the Trimble R1 was used, and in later campaigns, a BadElf Flex was used. Both of these 
external GNSS receivers were placed on a 2-meter tall survey pole in order to assist in an appropriate 
satellite connection. Both external receivers increased GPS accuracy (as compared to integrated GPS 
in the smartphones used to capture data), but steep topography meant that strong connections to 
satellites were not always met, resulting in decreased GPS accuracy. The Trimble R1 Receiver 
typically receives submeter accuracy [19], whereas the Bad Elf Flex receives 30-60cm accuracy on 
average [20]. Because of the steep topography, typically accuracies of below 1 meter were accepted. 
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On very few occasions, accuracies were accepted at around 1.5 meters if a given surveyor had waited 
five minutes with no increase in accuracy.  

At a given crop or plant of interest, the survey pole with attached external GPS was placed as 
close to the base of the plant as possible. Using a smartphone and either ESRI’s Field Maps or 
Collector, a GPS point was recorded. The data capture software recorded various information for 
each GPS point. If the plant of interest was coffee, information on the coffee leaf rust (CLR) and leaf 
miner level was recorded. Other information collected included the plant type, specific plant species 
if relevant, farm code, percent of plant covered by vines, notes about the surrounding canopy, date 
and time of point collection, and a photo of the plant or surroundings if desired.  

2.2. Remote Sensing Flights with Uncrewed Aircraft 

The uncrewed aircraft (UA) flights used in this study were conducted in 2022 to collect 10-band 
multispectral imagery. UAS work and subsequent methods documentation were in accordance with 
Federal Aviation Administration’s (FAA) 14 CFR Part 107 regulations. Highly variable topography 
within the coffee-growing region of Puerto Rico required significant mission and flight planning in 
order to collect quality multispectral and LiDAR data. Mission planning was completed prior to 
arrival in Puerto Rico, and included tasks such as identifying appropriate equipment and sensors for 
the specific terrain and creating standardized procedures. Google Earth Pro was first utilized to 
identify farm boundaries and areas within farms that may be of special interest, in addition to being 
used to identify potential divisions for farms that were too large to be imaged with a single drone 
flight. 

A DJI Inspire 2 multirotor UA was outfitted with a multispectral imaging sensor. Multispectral 
imaging for relevant field campaigns was done using a MicaSense RedEdge-MX Dual Camera 
Imaging System, which included 10 synchronized bands that spectrally overlapped with Sentinel-2A 
MSI and Landsat 8 OLI imagery (detailed in Table 2).  

Table 2. Spectral band information for the MicaSense RedEdge-MX Dual Camera Imaging System as 
compared to Sentinel-2A MSI and Landsat 8 OLI. 

Sentinel-2A MSI Landsat 8 OLI 
MicaSense RedEdge-MX Dual 

Camera Imaging System 

Spectral 
Region 

Wavelength 
range (nm) 

Spectral 
Region 

Wavelength 
range (nm) 

Spectral 
Region 

Wavelength 
range (nm) 

Blue 458–523 Blue 435–451 Blue 430-458 

Green peak 543–578 Blue 452–512 Blue 459-491 

Red 650–680 Green 533–590 Green 524-538 

Red edge 698–713 Red 636–673 Green 546.5-573.5 

Red edge 733–748 NIR 851–879 Red 642-658 

Red edge 773–793 SWIR1 1566–1651 Red 661-675 

NIR 785–899 SWIR2 2107–2294 Red Edge 700-719 

NIR narrow 855–875   Red Edge 711-723 

SWIR 1565–1655   Red Edge 731-749 

SWIR 2100–2280   NIR 814.5-870.5 
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On site, a waypoint-defined flight plan was created in DJI Ground Station Pro on a mobile tablet. 
The size of the farm, data needs, and underlying surface were considered in determining whether a 
single or double grid (cross-hatch) flight pattern was flown (Figure 2). 

  
(a) (b) 

Figure 2. (a) Depiction of a single-grid flight pattern; (b) Depiction of a double-grid flight pattern. 

Prior to farm classifications, basic image processing was done in Agisoft Metashape in order to 
create a georeferenced orthomosaic [21]. The default processing was done utilizing the GPS data 
generated by the UAS and MicaSense dual camera data capturing process, with no additional manual 
ground control point input. Reflectance calibration was performed, but no reflectance normalization 
was performed across flights or farms. 

2.3. Image Processing and Classification 

The 2022 images were pre-processed and classified for interviews with farmers in 2023. In order 
to run comprehensive, farm-level classifications, it was determined that for farms that had multiple 
multispectral images (UA flights), the various images should be mosaiced to create one image per 
farm. Mosaics were done in ERDAS IMAGINE using the MosaicPro tool, with an “overlay” overlap 
function specified, default “optimal seamline” generation option was chosen and color corrections 
were set to “histogram matching”.  

Pixel-based supervised classifications were run in ArcGIS Pro 3.1. After loading in the 
mosaicked farm image, the ground control points (GCPs) from three field campaigns were also 
layered on top. A classification schema was created to encompass the dominant crops and land cover 
types across the farms, based on previous visits. This schema included the following ten classes: 
coffee, citrus, banana, palms, low herbaceous vegetation/grass, bare earth, pavement, buildings, 
water, and overstory vegetation. For each class, training site polygons were drawn using GCPs as a 
reference. For instance, if creating a training site for coffee, a polygon was drawn around whichever 
coffee plant(s) a GCP identified as coffee. For farms that may be larger, significant areas of land would 
have no GCPs. In order to create representative training sites across the entirety of a farm, polygons 
were drawn in areas without GCPs that were visually confirmed to match plants with associated 
GCPs. After creating ample training sites for each class within each farm, a support vector machine 
(SVM) classifier was run on the entirety of the farm. As we expected that many farms would have 
limited training classes for a given class, we selected SVM because classifiers make no assumptions 
about the data distribution [22] and is less susceptible to an imbalance in training samples [23].  

After preliminary classifications were completed, interviews occurred, and analysis was 
finalized after the interviews. Accuracy assessments were run using testing created with the same 
process as the training sites. For each farm, roughly the same number of testing sites and training 
sites (0-15 sites depending on the farm and class) were created for a given class. As much as possible, 
testing sites did not overlap with previously created training sites, with a few exceptions. For 
instance, farms with water bodies typically only had one small pond. Testing sites were used as 
reference data for the accuracy assessments, which were then run. We tested additional iterations of 
classifications utilizing principal component analyses (PCAs) to determine if accuracy was increased 
by the addition of more data (Table 3).  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0379.v1



 6 

 

Table 3. Improved classification iterations applied on 2022 farm imagery. 

Iteration 
name 

Multispectral 
bands  

Principal 
components 

Other layers Farms layer stack was 
performed on 

Iteration A 1-10 一 一 UTUA2, UTUA16, UTUA18, 
UTUA20, UTUA30, YAUC4, 

ADJU8, JAYU2 

Iteration B 一 1-10 一 UTUA2, UTUA16, UTUA18, 
UTUA20 

Iteration C 5-7 1-3 一 UTUA2, UTUA16, UTUA18 

Iteration D 5-8 1-3 一 UTUA20 

Iteration E 5-10 1, 2 一 UTUA2 

Iteration F 5-7 1-3 NDVI UTUA2 

2.4. Farmer Interviews 

In May 2023, we conducted semi-structured interviews with farmers, land managers, and 
owners, with references made to the multispectral imagery and the classifications. For this purpose, 
we made posters of each farm’s multispectral imagery and classifications in ArcGIS Pro 3.1. These 
posters were then printed on 32” x 40” matte paper These interviews were done with the intention of 
better understanding land use history, farmers’ spatial relationships with their farms, and how 
remote sensing or land cover classifications may improve the management or understanding of such 
complex agroecosystems. Interviews were conducted onsite at farms, or at homes on farm property 
with teams of 2-3 researchers. Interviewees were asked if they consented to both the interview itself, 
as well as being recorded during the interview using an audio recorder. See Appendix A for more 
information on the interview script. 

Our interviews assumed that we would be referencing the printed orthomosaics and 
classifications, but many interviews also included walking areas of the farm with farmers as they 
pointed out specific crops or landmarks. Interview length varied greatly, with some interviews under 
an hour and others over two and a half hours. This length variation is primarily because interviews 
were farmer guided, with respondents addressing topics they felt relevant. After a series of questions 
that were intended to orient researchers to the specifics of a given farm, the multispectral image was 
shown to the farmers. This was intended to show the farmers what the UA had collected, as well as 
compile any preliminary thoughts the farmers had on the UA itself. In earlier interviews, tracing 
paper was laid on top of the multispectral image and farmers were encouraged to annotate any areas 
they felt important or of general interest. Annotating tracing paper was later removed as part of the 
interview process, as farmers were often more comfortable speaking generally about the land. After 
viewing the multispectral image, the classification image was brought out, and farmers were asked 
questions about the utility of the classification in their management. Viewing the classification map 
was largely considered to be the conclusion of the interview, and farmers were asked if they had any 
questions for the researchers. Both the multispectral imagery and the classification maps were left 
with interviewees at the conclusion of the discussions. 

After the interviews were completed, they were uploaded into transcription software and 
transcribed in Spanish. Researchers then translated the transcriptions from Spanish to English, 
making corrections to the transcriptions where the software failed to capture any regional language 
differences or language not otherwise captured. A content analysis was run on the interviews, which 
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included coding each interview transcript individually, as well as synthesizing notes from interviews 
that were not recorded. In order to conduct an effective content analysis, each theme was clearly 
defined by researchers. Examples or quotes from interviews were highlighted and sorted into 
relevant themes. Each example was again reviewed by researchers to ensure that a given example fit 
into the theme it was assigned to. Each theme was linked to a more generalized research finding from 
the interviews, and the relevancy of each theme to the project at large was defined. Results were then 
summarized and put into a content matrix. 

3. Results 

3.1. Ground Data and Image Capturing 

The results of drone flights for 2022 were largely successful. 10 farms were surveyed with both 
LiDAR and multispectral imagery. Table 4 details the number of flights flown per farm. Of these 10 
farms, all but two (ADJUCP and ADJU7) were classified. ADJUCP was not classified as we were 
unsure if an interview would occur with land managers, and ADJU7 was not classified as large 
amounts of water were highly reflective and changed the color balance of the farm mosaic. 

Table 4. The number of flights flown for each farm in the 2022 field campaign. 

Farms Number of flights 

UTUA2 1 

UTUA16 1 

UTUA18 1 

UTUA20 1 

UTUA30 2 

YAUC4 1 

ADJUCP 2 

ADJU7 3 

ADJU8 7 

JAYU2_3 8 

The results of the ground data field campaigns are listed in Table 5. In 2021, time constraints 
meant that ground control points were not able to be taken in UTUA16. In 2023, GPS errors on farms 
UTUA30 and ADJU8 were unable to be resolved in a timely manner, therefore little to no GPS ground 
truths were collected. Additionally in 2023, no points were collected in YAUC4 due to a thunderstorm 
that made it unsafe for researchers to conduct ground research. The most points taken occurred in 
farm JAYU2_3 in 2021. UTUA2 had the most points taken throughout the field campaigns, seemingly 
because of its proximity to researcher housing. 
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Table 5. Ground control points collected by year. 

 Year  

Farm 2021 2022 2023 TOTAL 

UTUA2 69 112 73 254 

UTUA16 - 20 52 72 

UTUA18 41 32 21 94 

UTUA20 49 41 31 121 

UTUA30 51 24 - 75 

YAUC4 51 28 - 79 

ADJU8 63 44 1 108 

JAYU2_3 140 63 30 233 

TOTAL 464 364 208 1036 

3.2. Classifications and Accuracy Assessments 

An example classification result is shown in Figure 3. Classification figures for all other farms 
can be found in Appendix B, Figures A1–A7. Training and testing sites are detailed in Tables A1–A4 
in Appendix C. Both training and testing sites are quantified in two forms: polygons and pixels. 
Polygons designate the number of sites drawn, and pixels refer to the total number of pixels across 
all polygons. 

 
Figure 3. Example land cover classification of farm UTUA2 using 2022 multispectral imagery. All 
maps shown are projected in the coordinate system “StatePlane Puerto Rico Virgin Isl FIPS 5200 
(Meters),” datum of NAD 1983. 

The initial landcover classifications were all assessed for accuracy. Table 6 details both the 
overall accuracy of the classification, as well as the Cohen’s Kappa statistic. The Cohen’s Kappa 
statistic incorporates errors of commission and omission and is regarded as more nuanced than that 
of overall accuracy [24]. Kappa is reported on a scale of -1 to +1, with values closer to +1 indicating a 
stronger classifier. A classifier is considered strong if it has a high accuracy while considering the 
expected accuracy of a random classifier [25]. 

The average overall accuracy across all farms was 53.9% and the average Kappa statistic across 
all farms was 0.409. Farm YAUC4 had the highest overall accuracy, as well as the highest Kappa 
statistic. The lowest accuracy and Kappa statistic for classification was farm UTUA16. Individual 
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accuracy assessments, including users’ and producers’ error, can be found in the Supplementary 
Material, Tables S1–S9. 

Table 6. Accuracy of farm classification using 2022 imagery. The table details the overall accuracy of 
each farm along with Cohen’s Kappa statistic. 

Farm Overall Accuracy (%) Kappa (𝛋) 

UTUA2 57.0 0.463 

UTUA16 49.4 0.369 

UTUA18 58.4 0.447 

UTUA18_obj 36.8 0.221 

UTUA20 52.4 0.388 

UTUA30 51.3 0.391 

YAUC4 74.0 0.509 

ADJU8 53.5 0.463 

JAYU2_3 52.6 0.430 

Our secondary classification results were similar to those of the initial classification, but 
ultimately did not improve classification accuracy consistently. Because of this, they were omitted 
from the paper but more information on their results can be found in Appendix D, Table A5. 
Individual accuracy assessments for secondary classifications can be found in the Supplementary 
Material, Tables S10–S19.  

3.3. Farmer Interview Content Analysis 

We conducted a total of nine interviews, six of which were recorded on an audio recorder, 
following the interviewee’s consent. Using the recorded interviews and notes from the interviewees 
who did not consent to be recorded, we created a content matrix (Table 7) to summarize shared 
themes across interviews. The themes highlighted included utility, novelty, orientation, biodiversity, 
clarity, and land management. Farmers found the maps interesting and exciting but were unsure if 
they were applicable to the land management of their farms. Many farmers struggled to orient 
themselves, especially when landmarks the farmers were familiar with weren’t overtly visible in the 
map. Many farmers noted a lack of biodiversity or crops present in the map. Lastly, while viewing 
maps many farmers noted current or future management decisions they consider. These were 
included in the content matrix as they may inform future iterations or methodologies of 
classifications. 

Table 7. Content matrix summarizing interview findings. 

Themes Quote/Example Research Finding Subthemes 

Relevance to land cover 

classification map and methodology 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0379.v1



 10 

 

Utility 
“What is the purpose 

of us seeing this?” 

Many farmers were 

unsure how the 

classification maps 

could fit into the 

farm management 

but were excited 

about the maps and 

being able to keep 

them. 

Beauty 

Landcover maps are created with the 

intention of better understanding the 

makeup of a given area to enhance 

land management. However, there 

were no clear farmer-generated ideas 

on the implementation of the maps in 

their own management, nor any 

motivation to implement the ones 

suggested by researchers. 

Novelty 

The majority of 

farmers provided 

excited exclamations 

when presented with 

a map. 

Farmers are open to 

the use of maps and 

the classification and 

visuals in their 

present form. 

Pride, 

Technology 

There is still excitement about the 

prospect of utilizing drone imagery 

and classifications but there still exists 

a gap in understanding the 

applicability of relatively new 

technology in these contexts. 

“You can think you 

know everything. On 

the contrary, huh. 

Technology 

advances, Knowledge 

is continuous.” 

Orientatio

n 

“I don’t know where 

it is.” 

When relevant 

personal landmarks 

were noted, farmers 

often used them to 

orient themselves. In 

the case that they 

were not present, 

their absence was 

noted and farmers 

then used other 

points or direction 

from interviewers to 

orient themselves. 

Movement, 

Landmarks, 

Perspectives 

In connection to novelty and utility, a 

lack of orientation means that the 

imagery or classification maps may 

not be implemented and may instead 

become a barrier for farmers engaging 

with this technology. 

“Oh, there’s my 

lake!” or “I let myself 

be led by the 

buildings.” 

Biodiversi

ty 

Many farmers noted 

that other food crops 

and vegetation were 

present on the farm 

but had not been 

mapped (i.e., 

peppers, guaraguao 

trees, smaller citrus, 

mangoes). 

Within diversified 

farming, there is a 

wealth of food crops 

and non-food crops 

that farmers 

prioritize. 

Food Crops, 

Land 

Management 

While capturing biodiversity present 

in diverse agroecosystems is desired, 

maps created that highlight such 

diversity may also be overwhelming 

or imperceivable to those who have 

not yet had an introduction to this 

type of imagery. 
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Clarity 

“I know the farm, but 

that’s not exactly it, 

but it’s not because I 

really see it there.” 

While farmers 

express wanting 

representation of the 

entirety of crops and 

vegetation, a cursory 

introduction to the 

maps in a simplified 

form aids synthesis 

of imagery and 

content. 

Digestibility, 

Simplificatio

n 

Understanding the audience of a map 

is a principal element of cartography. 

In a setting such as this study, 

creating a simpler iteration may serve 

as a tool with which to foster 

connections and understand where to 

expound upon classifications or tools 

in the future. 

Visual representation 

provided in a concise 

formatting supported 

outward expressions 

of map legibility. 

Land 

Managem

ent 

A farmer speaking to 

the increased heat 

noted they needed to 

plant more plants to 

shade coffee. 

Land management 

techniques often 

include practices to 

address climatic 

conditions. By 

diversifying crops, 

farmers are better 

shielded from 

economic downturns 

and a rapidly 

changing 

environment. 

Crop 

Selection, 

Crop 

Placement 

Land management may inform 

classifications by creating more 

targeted areas for ground truthing 

and testing sites. For example, if a 

farmer noted that coffee was planted 

under an area of dense canopy, it may 

make sense to ground truth the area 

heavily and test the degree to which 

the coffee in that area was present in 

the classification. 

Farmers intercropped 

coffee with citrus as a 

means of protecting 

the coffee (their 

primary crop). 

4. Discussion 

We learned from our interviews with farmers how our maps could be improved in terms of 
accuracy and relevancy. While diversified coffee agroecosystems have a myriad of potential land 
cover classes, we initially believed that fewer classifications categories would support the legibility 
of the maps to farmers who might be unfamiliar with this format. However, many farmers noted that 
biodiversity and plants that they deemed important were absent from our maps. These exchanges 
underscore the importance of contextualizing the development of a classification workflow with local 
knowledge, as it can help identify critical problems that justify extra effort to provide a more relevant 
deliverable for farmers. 

We obtained an average kappa value across all farms of 0.409, meaning that the classifiers, 
generally, are fair in comparison to a random classifier [26,27]. Many of the farms have a slight 
disagreement between overall accuracy and the kappa index, for instance YAUC4 had an accuracy 
of 74% (or 0.74) and a kappa statistic of 0.51. In the case of all classification iterations in this paper, 
the overstory vegetation class often had more training and testing sites made of larger segments. 
Even though the overstory vegetation may have skewed overall accuracy, the kappa statistic takes 
into account the relative impact of each class, meaning that it is not skewed by a single well-
represented class [24,25,28], in this case, overstory vegetation. It is worth noting, in this paper and 
otherwise, that while overall accuracy and the kappa statistic are common ways to evaluate land 
cover classifications in the remote sensing field, more recent literature [29,30] has highlighted that 
confusion matrices are not entirely reliable and need to be analyzed with some understanding that 
the accuracies reported are not absolute.  

Somewhat expectedly, many of the vegetation classes (i.e., coffee, citrus, banana, palm, and 
overstory vegetation) were misclassified as other vegetation classes. Because these classes are 
spectrally similar, and because the initial classifications utilized all ten bands, including those that 
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have little separation between classes within the same band, it can be anticipated that there would be 
some confusion amongst these classes. Figure 4 illustrates the spectral similarities across vegetation 
training classes. Another area of confusion was between the pavement and building classes. Across 
many of the farms, buildings and pavements were misclassified as one another, but were less often 
misclassified as bare earth and vegetation.  

 
Figure 4. The spectral profile of vegetation classes for farm UTUA2. 

There exists a myriad of reasons why the land cover classifications of this paper may be 
considered “inaccurate”, many of which have been alluded to earlier in this discussion. One such 
reason may be the inability of researchers to distinguish land cover types in multispectral imagery. 
For instance, on many farms, coffee may be grown under the canopy cover of other vegetation. If all 
coffee ground control points were obscured by larger overstory vegetation, researchers would be 
unable to accurately draw training and testing sites. In addition, some classes present on farms, while 
relevant, lacked sufficient training and testing points due to their rarity. As an example, we trained 
the classifier to identify citrus in UTUA20, but found that the small number of citrus present meant 
testing sites were either generated on the same tree training was done on, or testing was unable to be 
completed. 

Our classification results could be improved with additional steps that were not available to us 
at the time but may benefit future studies. We were unable to conduct radiometric normalization 
prior to the image mosaicking process, which may have improved consistency across flights and 
farms [31]. While histogram equalization was conducted during the mosaicking process, the resulting 
mosaics still had visible radiometric differences. For example, radiometric normalization could have 
reduced the bright spots present in one flight over ADJU7, which likely led to spectral imbalances 
that prevented us from successfully classifying the imagery of this farm. In addition, if radiometric 
normalization occurred earlier in the process, it may have been feasible to train the classifier on only 
one farm and then apply it across farms. This would reduce the work to create many training sites 
across farms in order to compensate for the radiometric discrepancies. Additionally, classifications 
may be improved by using ground control points in orthomosaic creation. During the processing of 
imagery in Agisoft Metashape, only the internal UA GNSS system was used to georeference raw 
images. By including ground control points collected with a more precise external GPS receiver in 
the image processing methodology, multispectral imagery may have been better aligned with ground 
control points collected for building training sites. More broadly speaking, the inclusion of more 
GCPs in creating training and testing sites may also improve classification accuracy. However, for 
some research, the time and labor needed to complete more ground truthing may not be justified by 
an increased overall accuracy. 

Analyzing the interview recordings and notes allowed for a more nuanced understanding of the 
remote sensing work done in this paper. It became very apparent during interviews that farmers and 
land managers were extremely excited to view, talk about, and keep the map printouts. Many 
remarked that the images of their farms were beautiful and were excited to display the printouts for 
others to see but were unsure of how the maps or products derived from the maps could be 
implemented in regular management. One farmer noted that they planned to hang imagery in a cafe 
for visitors to see, but when questioned about the utility of the map in their work, they indicated that 
they would instead be more interested in utilizing the drone to evenly distribute pesticides.  

While the beauty and excitement of images and landcover classification maps are often 
overlooked as an aspect of utility in the remote sensing field, we understood this to be an extremely 
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important subtheme, as it became more evident that farmers and researchers could build further 
rapport by addressing the beauty of the images and the farms that land managers work so hard to 
maintain. Connection building in the context of this paper is extremely relevant as land cover 
classifications are regarded as an iterative process [15]. By fostering better connections between 
researchers and farmers, we can more intimately understand the ways in which our work fits into 
farmers’ management and make adjustments to maps accordingly. In many of our interviews, 
interviewees often pointed out a lack of diversity or missing landmarks. Without having 
conversations with land managers, researchers are limited to making changes that may not be useful 
to farmers and instead only serve to increase classification accuracies for schemas that were flawed 
themselves.  

Farmers who communicated to us that maps were lacking relevant information also had more 
difficulty orienting themselves during interviews. One farmer remarked that he had often regarded 
his land as a square parcel and viewing it as the roughly rectangular shape the imagery was captured 
as led him to become disoriented. The farmer also noted that he might have been able to orient himself 
in spite of his perception of the parcel, but only if landmarks he passed by daily had been included 
and labeled as such. When farmers are not able to orient themselves to the imagery, implementation 
of the maps in management becomes even farther fetched.  

While many farmers indicated absent crop and vegetation diversity in the land cover 
classification map, we felt that sharing a more simplistic map first actually enhanced the feedback we 
received and farmers’ own understanding of the maps. Because the map shared was simpler, farmers 
noted specific areas where they were interested in seeing more detail, where they were practicing a 
given land management technique, or where they had a few personally relevant crops. In addition, 
we believe that the lack of detail present allowed for quicker orientation and better clarity of 
understanding of the maps. This was extremely important as we understood that land managers had 
not ever seen their land displayed in this manner and needed some time to relate the imagery to land 
they were intimately familiar with. 

Including interviews as part of this project greatly enhanced the findings of this paper and 
would enhance any future work in similar settings. Colloredo-Mansfield et al. found similar results 
in their work, noting that participatory drone mapping allowed researchers to ascertain broader and 
more relevant information about land management [32]. In addition, Colloredo-Mansfield et al. 
found that conducting land cover classification maps allowed them to understand sensitive areas of 
farms (e.g., where young plants were growing) and establish rapport between researchers and 
farmers. Following Colloredo-Mansfield et al. [32] it is clear that our project would benefit from more 
knowledge sharing between researchers and farmers. One farmer noted during our interview that 
while she was extremely excited about participating in research, she was disappointed that she 
previously had no proof of the drones being on the property to share with a friend. By leaving her 
with the printout of the map and a description of the work we had done, the farmer may be more 
likely to continue working with researchers. In return, we received valuable feedback on the crops 
and vegetation relevant to her on her property. Similar land cover classification projects would 
benefit from additional iterations incorporating such feedback and knowledge-sharing. 

The detailed nature of the high-resolution imagery was seemingly part of the interest that 
farmers had in interacting with the printouts. While the pixel-based supervised land cover 
classifications had fair accuracy, switching to an object-based classification would likely increase the 
overall average accuracy, as it is documented that object-based classifications perform better, 
especially at finer resolutions [33]. However, the fine-resolution data presented in this paper comes 
at a cost of increased processing power and time requirements for each step of image processing and 
classification. Object-based classifications may require even more computational power, especially at 
the segmentation step [34].  

Classification maps may also be enhanced with the addition of elevation or surface data, like 
LiDAR data that is collected together with the multispectral imagery, and could be the subject of 
collaborative data fusion projects. Farmers interviewed also often noted that they oriented 
themselves using peaks and valleys present on farms, something not reflected in the printout of the 
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multispectral imagery or land cover classification maps. However, including data like this may 
mandate a more dynamic format in which to present maps to farmers. While digital elevation and 
surface models are something many in remote sensing are familiar with, viewing elevation data on a 
2D plane may still present some challenges for those who have not seen such maps before. This could 
potentially be remedied by creating a 3D model of the surface or elevation data and viewing it 
together with farmers on a computer.  

5. Conclusions 

This study was conducted to better understand pixel-based supervised land cover classifications 
of diverse agroecosystems, and the utility they serve as management tools. We applied this 
exploration to coffee agroecosystems in Puerto Rico, contributing to the growing literature on using 
fine-resolution imagery collected by UAS in remote sensing. We found that while our land cover 
classifications are only moderately accurate, they have the potential to become more accurate by 
utilizing different methodologies and better ground truths. In addition, we concluded that while 
farmers were unsure about using the maps as a farm management tool, they were still excited about 
the technology being applied to their land. In addition, we found that sharing our maps with farmers, 
even with their flaws, generated better communication between researchers and farmers and created 
the opportunity to “be attentive to the ‘social position of the new map and how it engages institutions’ 
” [15,35]. 

However, there still exist many opportunities to expand and improve this research. Improving 
remote sensing methodologies includes further exploring object-based classifications in the context 
of Puerto Rican coffee agroecosystems, and improving interviews could include viewing more map 
iterations in more dynamic forms. Both remote sensing and interview methodologies would be 
improved by visiting farmers and their land more often. We hope this paper encourages further 
exploration of fine-resolution remote sensing in coffee agroecosystems. We also hope that this paper 
encourages more work alongside farmers to create classification schemes and products better suited 
to the needs of farmers. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. Table S1–S19: accuracy assessments for all iterations. 
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Appendix A 

English Version of Interview 
Note: The interviews will be conducted in Spanish, but we have included the English version 

for IRB purposes.  
“Hello, my name is Nayethzi Hernandez and this is my colleague Gwen Klenke. We’re both 

graduate students at the University of Michigan. And this project is in collaboration with Ivette 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0379.v1



 15 

 

Perfecto, who you know. Thank you for taking the time to participate in this study. As Warren let 
you know, our team is looking into diverse Puerto Rican coffee farms and agroecology systems. As 
someone who is so knowledgeable, I really appreciate your time. Through interviews, we’re just 
looking for generalizable information, and none of this will be identifiable. If that’s still okay with 
you it’ll take us roughly 1 hour. Before we begin I want to confirm that it’s okay that I record our 
conversation. Please let me know if anything comes up during the interview you just let me know.  

Excellent! Let’s begin talking a bit about your land. 
Question group 1: Land history and farm management  
Can you tell me a bit about how you started growing coffee? 
When it comes to your farm, what are your goals with your crops? 
Could you tell me a little bit about how you decided to put which crops where? 
What type of knowledge or techniques influence how you manage the farm? 
Could you tell me about some of the environmental changes that you’ve experienced while 

farming this land? 
What are some goals you have for your farm? 
Question group 2: Show farmers the map 
*Translate what Gwen says about how the maps are made* 
When you first look over the map what are some of your thoughts? 
Question group 3: Map review 
After looking over the map, what are areas of the map that are of interest to you? 
Are there any changes you would like to consider when looking over this map? 
If this technology was available to you would it be helpful for farm management? 
If it’s helpful to you, how often would you want an updated map? 
Closing:  
Thank you so much for your insights! We really appreciate your time. We invite you to keep the 

map if you’d like it. Before we finish, is there anything you’d like to ask or say to us regarding the 
map or the interview? I will provide you with my contact information if you have any questions for 
me about this study, or anything else.” 

Appendix B 

 

Figure A1. Land cover classification of farm UTUA16 using 2022 multispectral imagery. 
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Figure A2. Land cover classification of farm UTUA18 using 2022 multispectral imagery. 

 

Figure A3. Land cover classification of farm UTUA20 using 2022 multispectral imagery. 

 
Figure A4. Land cover classification of farm UTUA30 using 2022 multispectral imagery. 
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Figure A5. Land cover classification of farmYAUC4 using 2022 multispectral imagery. 

 

Figure A6. Land cover classification of farm ADJU8 using 2022 multispectral imagery. 

 
Figure A7. Land cover classification of farm JAYU2_3 using 2022 multispectral imagery. 

Appendix C 

Table A1. Number of training sites for each class in each farm. Each site is a polygon drawn around 
one representative site. 

Farm sites/polygons  

 coffee citrus banana palm 

grasses/lo

w herb 

bare 

earth paved 

buildin

gs 

wate

r 

oversto

ry veg total 

UTUA2 16 9 3 3 6 6 2 4 0 1 50 
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UTUA16 3 0 2 5 1 1 1 2 1 2 18 

UTUA18 0 0 4 0 3 3 2 2 0 3 17 

UTUA18_

obj 6 0 2 0 2 3 3 3 0 2 21 

UTUA20 4 7 4 0 2 4 2 3 0 2 28 

UTUA30 10 0 8 0 2 4 4 4 0 4 36 

YAUC4 9 0 6 0 8 5 4 3 0 3 38 

ADJU8 14 0 14 0 10 10 3 6 2 7 66 

JAYU2_3 22 0 14 11 10 12 7 10 2 11 99 

Table A2. Number of pixels in training sites per class in each farm classification. 

Farm pixels  

 coffee citrus banana palm 

grasses/lo

w herb 

bare 

earth 

pave

d 

buildin

gs 

wate

r 

overstory 

veg total 

UTUA2 15420 89118 17989 148768 60581 47051 20753 185462 0 130191 715333 

UTUA16 22218 0 219318 164487 46675 13170 4615 85679 26321 448878 1031361 

UTUA18 0 0 29439 0 21740 113898 8102 54437 0 246623 474239 

UTUA18_o

bj 19621 0 14374 0 52909 161456 18481 60649 0 427093 754583 

UTUA20 4467 24900 218041 0 28145 20922 13867 176316 0 346139 832797 

UTUA30 9420 0 45587 0 37646 18861 23754 55815 0 1339405 1530488 

YAUC4 13393 0 74659 0 63188 49843 

10753

8 142527 0 983011 1434159 

ADJU8 36804 0 10892 0 96113 48835 23161 99930 45674 424707 786116 

JAYU2_3 60510 0 42551 47663 361668 163092 57446 142129 10865 635097 1521021 

Table A3. Number of testing sites per class for each farm. Each site is a polygon drawn around one 
representative site. 
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Farm sites/polygons  

 

coffe

e 

citru

s 

bana

na palm 

grasses/l

ow herb 

bare 

earth 

pave

d 

buildin

gs water 

overstory 

veg totals 

UTUA2 9 4 4 3 5 5 3 3 0 2 38 

UTUA16 0 0 3 3 2 3 2 2 1 2 18 

UTUA18 7 1 3 0 4 9 5 5 0 4 38 

UTUA18_

obj 7 1 3 0 4 9 5 5 0 4 38 

UTUA20 6 0 4 1 3 9 5 5 0 3 36 

UTUA30 11 0 4 2 3 3 4 3 0 2 32 

YAUC4 11 0 5 3 6 7 3 2 0 3 40 

ADJU8 16 0 13 0 10 10 3 3 2 4 61 

JAYU2_3 22 0 15 4 12 12 7 4 1 5 82 

Table A4. Number of pixels in testing sites per class for each farm. 

Farm pixels  

 coffee citrus 

banan

a palm 

grasses/low 

herb bare earth paved buildings water overstory veg totals 

UTUA2 3810 17091 18297 80214 54190 10729 38281 125668 0 203356 551636 

UTUA16 0 0 7781 61145 41312 9343 9845 11010 37650 233632 411718 

UTUA18 2493 4121 59215 0 28739 22514 32468 80595 0 260498 490643 

UTUA18_obj 2493 4121 59215 0 28739 22514 32468 80595 0 260498 490643 

UTUA20 2793 0 21690 24840 9667 23540 6096 99500 0 239493 427619 

UTUA30 2483 0 2546 38088 35111 22465 22665 31082 0 137590 292030 

YAUC4 7746 0 34838 79386 10584 52144 24292 5484 0 367339 581813 

ADJU8 18869 0 43640 0 49656 69418 14798 51844 56798 306815 611838 

JAYU2_3 14095 0 41412 28680 51561 35116 33236 337495 16366 296676 854637 

Appendix D 

Table A5. Accuracy of secondary classifications. The table details the overall accuracy of each farm 
along with Cohen’s Kappa statistic. 

Iteration Farm Overall Accuracy (%) Kappa 

B 

UTUA2 51.3 0.399 

UTUA16 51.6 0.389 

UTUA18 55.3 0.425 
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UTUA20 52.7 0.395 

C 

UTUA2 45.4 0.361 

UTUA16 51.2 0.376 

UTUA18 46.9 0.324 

D UTUA20 50.9 0.372 

E UTUA2 47.3 0.380 

F UTUA2 45.6 0.358 

Secondary classifications were completed using several alternate band combinations, but 
overall, the new layer stacks did not lead to an increase in accuracy under these methods. With the 
exception of three classifications (Iteration B of farm UTUA16, Iteration B of farm UTUA20, and 
Iteration C of UTUA16), overall accuracies of secondary classifications were lower than the initial 
classification, although the differences in all cases were only marginal. When considering Iteration A 
accuracies alongside Iterations B-F, the average overall accuracies cannot be directly compared 
because not all farms initially classified were used in the secondary classifications. However, when 
comparing Iteration A to each of Iterations B, C, and D, and filtering to only the relevant farms, the 
accuracy for Iteration A maintained a higher overall average than the respective secondary 
classifications. The lowered accuracies of secondary classifications are somewhat anticipated. While 
it has been documented that ancillary data works well to enhance object-based classifications [34], 
the effects are not as strong for pixel-based classifications because pixel-based classifications lack 
“objects” that ancillary data can contextualize [34]. 
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