EMBRY-RIDDLE

Aeronautical University.
SCHOLARLY COMMONS

Publications

5-10-2018

Bit-Serial Multiplier for FPGA Applications

Akhan Almagambetov

Holly Renee Ross

Follow this and additional works at: https://commons.erau.edu/publication

b Part of the Signal Processing Commons

Scholarly Commons Citation

Almagambetov, A., & Ross, H. R. (2018). Bit-Serial Multiplier for FPGA Applications. , (). Retrieved from
https://commons.erau.edu/publication/2214

This Patent is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in
Publications by an authorized administrator of Scholarly Commons. For more information, please contact
commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F2214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=commons.erau.edu%2Fpublication%2F2214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/publication/2214?utm_source=commons.erau.edu%2Fpublication%2F2214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

a9y United States
12y Patent Application Publication o) Pub. No.: US 2018/0129475 Al

US 20180129475A1

Almagambetov et al. 43) Pub. Date: May 10, 2018
(54) BIT-SERIAL MULTIPLIER FOR FPGA GO6L 7/504 (2006.01)
APPLICATIONS GO6L 13/42 (2006.01)
GO6L 13/40 (2006.01)
(71) Applicant: Embry-Riddle Aeronautical (52) U.S. CL
University, Inc., Daytona Beach, FL CPC ..o, GOG6F 7/52 (2013.01); GOGF 7/4824
(US) (2013.01); GO6F 2207/481 (2013.01); GO6F
13/4282 (2013.01); GO6F 13/4022 (2013.01);
(72) Inventors: Akhan Almagambetov, Rochester, NY GO6F 7/504 (2013.01)
(US); Holly Renee Ross, Oro Valley,
AZ (US) (57) ABSTRACT
(21) Appl. No.: 15/807,147 A Field-Programmable Gate Array (FPGA) implementation
of a multiplier topology can provide a considerable increase
(22) Filed: Nov. 8, 2017 in computation performance and cost benefit as compared to
other approaches, particularly for large bit widths (e.g., for
Related U.S. Application Data multiplication of large-bit numbers). A lack of suflicient
- L input/output (I/O) ports on the FPGA for a particular bit
(60) Provisional application No. 62/419,2435, filed on Nov. Wipdth Caﬁ be(renzegied by implementing largI;-bit number
8, 2016. multiplications in a bit-serial fashion. The bit-serial multi-
o _ _ lier topologies described herein can provide a relativel
Publication Classification Isjmall fo%tprignt as compared to other aplfroaches. An FP‘GA}Z
(51) Int. CL implemented bit-serial multiplier can 1improve operation of
GO6F 7/52 (2006.01) a computing system, for example, by oflloading binary
GO6F 7/48 (2006.01) multiplication operations from a general-purpose processor.

I - L
;

‘..._.,_.._u...;...._,_...__._......._...J___.n....-

US 2018/0129475 Al

May 10, 2018 Sheet 1 of 15

Patent Application Publication

]

1
—'H.HHH'-

[

|
l

i
i

FiG. 1A

Patent Application Publication May 10, 2018 Sheet 2 of 15 US 2018/0129475 Al

4 41 4 4 1 1]

- - Routing Segments - -
200 228

N RR—— 1

T T TTTTTTTTTTTTTTTTTTTTTTTTOT

4

4 4 4

4

41 1 1 1 1.1 1 141 4 9 41 4 1 1 3
4

-
T T T TTTAITTTTTTTTTT
-

Slice

4 4 4 4 4 4 4 4 4 4 4 44444444444 4444

T T TTTTTTTTTTTTTTTTTTTTTTTT r T TTTTTTTTTTTTTTTTTTTTTTOT

[4 1 44 41 4 1 4 4.4 4 4141 1 41 9 1 1]
4

T T TTTTTTTTTTTTTTTTTTTTTTTTTTTT T

. 4
-
4
4
o
4
4 4

4 4
4 4 4 4 4 4 4 4 4 4 44 44 444444444444

L 4.4 4 4 4 1 41 41 44 4414 4914 49 1 - 3
4

1

| :
i .
i -
'] | r
i
N ¥ i
i i :
i i i i
- , - I
- R . N HEEEEEEEEEEE———————— :
: i :
i i :
I r
i I -
] -
I r
] .
i I i
I r
] .
I - — I - S—
] -
! M
i
T
i
i
T
i
i
T
i
i
T
i
i
T
i
i
T
i
i
T
i
i
i .
i
.. Tl

e L e I R R R e L I B B

]
]
r
]
]
]
i
]
]
]
]
]
!I
iI
]
!
!
!
]
]
]
il
]
]
]
]
]
]
]
T
II
i
]
]
]
]
]
!I
iI
]
i
]
!
1

Patent Application Publication @ May 10, 2018 Sheet 3 of 15 US 2018/0129475 Al

: .
- A i
h B
']
- .
- i
- .
.
- .
FFEs ¥y WTE} ‘T L] il WEl ‘WTE I [z - o [] [- o | - i k7] = - o FIrE Irmm ETEs
- .
.
- .
. .
- .
.
- .
.
T L

J18A~
3188~

310A
3168

T r *T T TTTTTTT - T r T T TTTTT T

T r T TTTTTTTT T T TTTTTTTT

T
-

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 44

TTTrTrrTTTTTTTTTTTTTITTOTTT TTTFTTTTTTTTTTTTTTITTTTTTT

1 4 4 4 4 4 4 4 4 4 44
L
A
4
4
4
4
4 4 4 4 4 4 4 4 4 4 4
4
4
4
4
]
4
4
4
4
PRl @SS R R R RS AR AR AR PR R R AR AR AR RN R R R R

320A
~314A

M

T T T T TTT

. !
.

E :
.
.
:

E .
.
:
. !
. 4

T - = i
:

.
.
:
.
.
:
.
.
:
.
.

. " i

T T T T T T T

4 4 4 4 4 4 4 4 4 4 4 4 44 49 4949494494949+
4
4
4

T T T TTTTTTTTTTTTTTTTTT T T T T T TTTTTTTTTTTTTTTTTTT T T

310A

T rTTTTTTTTTTTTTTTTTTTTTTT

L] L]

312A

-
TaT
o -
T T

I ']
|
4
4 4 4 4 4 4 4
o
]
]
]
4 4 4 4 4 444
4 4 4 4 4.4 4
o
]
]
fl
4 4 4 44 444
ii
4
! b
]
]
44 4 4.4 4.4 4
]
]
4
] k]
4
4 h
]
]]
4

Patent Application Publication May 10, 2018 Sheet 4 of 15 US 2018/0129475 Al

ViSH LSB
Qfg a—z ai ﬁ{;
X
by By by by
ashg dayby aby apbg PPy
ashy apby a by agh, PPy
—- _
asby azby ajby agby PPy
(}353 (l'ﬁbg leg a@b3 ppg

rrr

US 2018/0129475 Al

May 10, 2018 Sheet 5 of 15

Patent Application Publication

US 2018/0129475 Al

May 10, 2018 Sheet 6 of 15

Patent Application Publication

G Ol

o 1 @sealoul 0] \/ pue A\ Ussmiag
{"d "Ud} papesu] 8q ues syo0lg sleIpauLBlU;
DEND0}) ASNOUCIUDUAS 1 1IN0AY)

cL

US 2018/0129475 Al

ow\

N0~ o@ i w

ﬁEN) 19PPY |IN4 UG-Z
wﬁb O %\ i g (} T.. I ww

VOLS

PeS

May 10, 2018 Sheet 7 of 15

X
{0°57)

076 - (dzl)yooig ug-z buneuwsay A (gzi) yoolg ug-z arerpauuay] Nmm
,, ? m&

s Rgog

Patent Application Publication

Patent Application Publication @ May 10, 2018 Sheet 8 of 15 US 2018/0129475 Al

visis LS
v gy 4y 4y 4y
by by by by
""
a3 azbﬁg dy Dy ﬁebeg PPo
1 : i
¢ 1

Patent Application Publication @ May 10, 2018 Sheet 9 of 15 US 2018/0129475 Al

-

T T T T T T

- T T T -

T T T T T T

- T T LK LK -
T T T T T T

- Tr T r T T r T T

4 4 4 4 4 4 4 4 4 4

‘TTTTTTTTTTTTT s T T T T T T T T T T T T e
-
o

FIG. T

Patent Application Publication @ May 10, 2018 Sheet 10 of 15 US 2018/0129475 Al

U~

annnmmmmm Fn:ﬂmmmmm—:n

== rFr rTTTTTT E TTTTTTTTT T ! N N N E

LaE]
py
i
J.J
K
B
B
n
4
e i
[
2
4 4
4 4
h
[]
[|
Va
'
4
a
41
a4
44

M7 == =rrFrrTT

- rrrTTTTTTT

.
; .
.
Py - . —r
g .
A7 1= ==rFrrTTrTrTTTTTTTT == rrrTT - B = ¥ 11 ===rFrFrrFrTrTTrTrTTrTrTTrTrTrTTroTaaa- - r rr T ToT
. -
e _— . - n
r
.
.
E " g
. r
.
. r
.
. .
, . .
.
— i o - _ . —
) . i - - .
111---rr-r'r'r'r'r'r-r'r'r'r'r-r-r TTTTITTT T TTTTTIT FrTTFTrTrTrFITr7TT1IIS " = rrrTTrTTT
‘t j - . . "
. 4
.
L) .
.

== rFr rTTTTTT T TrTTTTTTTTT T T T T11= = =1 == rrrTTTTT

rrrrTTTTTTTTT TrTrTTTTTTTIOAA T T3 == =1 == rrrTTTTTTTT

I 4 4 4 4 44444

4 4 4 4 4 4 - -

MR "R W Y N S AR R
EEEE N EEN S S5 S CEKEE KB
4 4 4 4 4 4 4

L ‘I

lnnwi_lnnl“mm-"
1

e N R T RN T T e

NN EEEE] CECEE ECENE EESN EEE EEE KN

T T .- - T T
L | L} L] . L L '1_'1_' I L I L L L L} L '1_'1_' L L | . 1'_ - L L L '1_'1_'1_ e L

- r v N = = -

-

= -
- n
- n
- -
R
- -
-
-
o -

-Bif Full Adder {(1FA

Cout

T T111=-="~rrFrrTTTTTT - r rr

-
-
T
*
-
-
-
-
T
*
-

T r T T T T~ rrTTTTTTTT

4 4 4 4444444

T 711 = = =r FrrTTTTT

-
;
I
l
;
l
i
{
{
i
i
i
i
i
{
{
i
!
i
i
}
i
!
i
i
|
i
i
i
;
;
I
I
i
:
I
i
i

Patent Application Publication

T T EE B B S S S EEEEEENENR

*T T T TTTTTTT

T T
- .
T T
P
T T
T T
*
rrr v rrrrr EEETRRET TrTTTTTTTTOT
TTTTTTTTTOCT
T T TTTTTTTT
r r T T TTTTT T
T T
iy oy oy -
L
T T
n
T T

T T T T T T T T T T LN N] EEEEEESFESESSEsEsEEssadsasa

T T T*TTT™TTTT

+ Be B B e B B B Br B B BT |

R E]

&
&

T AT ATRETETETRTETE TR TH T

- -

B B B - ol e B B B B R B EEEEEEREREEREF S A EEEEE .

r T TTTTTTTT

L o o o I B o L K

bl o N G Al el ol ol o ol

b wkoad bl bl bl bl ki br b

-

g TH TH TH TH TH TH 3 N

T

= AN NN NN = . .
*

B B B B B B B B R

L]
-

-

clk tle

A tle

I8 tle

inpu

inpu

D
-
-
=
N
o
-1
-
—
-

L
-
e

output

May 10, 2018 Sheet 11 of 15

FIG. 10A

S 2018/0129475 Al

Patent Application Publication May 10, 2018 Sheet 12 of 15 US 2018/0129475 Al

EEI B S S EEEEEEEN EFE EEEFEFIEIEE (A A EFFITIITITTIAA AT ATETETE TR TR TR TR TN T e TH TH T TH TH TH N N T

30 ns

4 4 4 4 4 4 4 4

* v v v v v v v v v R Rl r v v v v v v v v vl S FCFEEEXEEKIDKEKKT [B E v+ v v v r v rrrrBE T R R

T T TTTTTTTT

T r TrTTTTTTTOT

rTrTTTTTTTTT

r T T T TTTTTTTT

25 ns

T T T T TTTT T T

T T TTTTTTTTT

T TTTTTTTTT r T TTTTTTTT

r T T TTTTTTTTT T T TTTTTTTT

T T T T TTTTT T

20 ns

L I ETEETEEEETEE.. ["N "W TS Sy Sy Sy Wy Wy Ey oEy oAy L R e N N B B Eall ol o o O o I L

rTrTTTTTTTTT

T T TTTTTTTT

r T T T TTTTTTTT

T T T T TTTT T T

TTTTTTTTTT

15 ns

[A B B E KT T T T T T T £ E] E R B B - B B B B B B | . B B BT BT BT T RT BT RT AT T v v v v v v v v v FETETE N TH TN TH 3 S b 3 [8 N . o

-G, 108

r T T TTTTTTTTT T T TTTTTTTT

T T T T TTTTT T

rTrTTTTTTTTT

T T TTTTTTTT

10 ns

4 4 4 4 4 4 4 4 4 4 44 444444444444 4444444994994 994994994994 99499499 499494494 4944444444 dd 4 d 444 d 4 dd 44 d 4 dd A dd A dd A dd A dd A d A A d A A d A A d A A d A A d A A dd A dd A dd A d A A dd A d A A dd A dd A d A A d A A d A A d A d A d A d A A d A A dd 444 d 4

4 4 4 4 4 4 4 4 4 4 4 4 4444444444449 4494494449444949494949494949494949494949494949494 949494949494 94949494949499494 949494949494 9494 9494994949494 9494949499949 4949494449494 49 4444449444944

T T T T T T T T T T LN I T T Y T T ¥y T T T T PN s E E dEaaa F o BT BT BT T T N pF BT BT BT ETRETR TR TR TR TR TE T T B B B B B B R b R ik
T T T T TTTT T T
-
TTTTTTTTTT
T T T TTTTTTTTT
T T TTTTTTTT
T T T T TTTT T T
L N - . L B N B N B K B N B B | i ol ol W W W BN M W M W chE R B RE B B R N R AR R R R B B L NN
T TTTTTTTTT
T T T T TTTTTTTT
-
T T TTTTTTTT
T r rTTTTTTTOT
L N EEEEEEsFFESEEEE. EETET S EEEE. U U Ny Sy Wy Ny Wy Wy Wy Wy R N AN S RW W OPW PN WO _-EEEEE e L N

A {le

clk {le
(B {le

D
—
. ‘wainiai
=

nput
inpu

QD
-
-
=
-

—

-3
"

o

-

output

Patent Application Publication @ May 10, 2018 Sheet 13 of 15 US 2018/0129475 Al

w:ecmLc;l
5 | B3 Restrc

1 :::55 *aa,zsﬂz

1 ﬂhé 18 480=~ 149 ;23 38”/)
_

‘4 :38a

| XCTANT
Al
| [dasysd

-
T

y §
”ﬂ«- 9”5%

XCTVIBST, 401 0.53%)
L Vitex (| 5
| (VorT) |

104 10 69::”'

iTol! & ; , | | : : : :3
XGFK:BLST * ' Y o .rq;} _,_ 329[0 4};%,
T e o S e 30950 ey A3800

| KCTOS)

. 3 255*‘*
25@"“7 i

Hrplemented using XE|EH"’ESE 47stem Edi tion,
Xilinx Vivado 2015.4 System Edition othervise.
2 Legend: P—proposed, C-~comparative aﬂpm ach.
: éh?re are no instances of only the U5 output being used.
Ll- ﬂ\f
3 Overmapped. Implementation on device not possible
FiG. 11

Patent Application Publication May 10, 2018 Sheet 14 of 15 US 2018/0129475 Al

1260““¥
1204 -1202
5 1208
5 General Purpose | Field Programmable
; Frocessor Circuit Gate Array (FPGA)

1210

AR @ AR RS AR R U
4
L]
4 4
4 4

F1G. 12

Patent Application Publication May 10, 2018 Sheet 15 of 15 US 2018/0129475 Al

+ r T T TT-TTTTITTTTTTFTTTT-TTTTI1ITFTTYTTT=-TTTT-TTTTI1ITFTTTT-TTTTITTTTTTFITTTT-TTTTITCFTTTT-TTTT-TTTTITCFTTTT-TTTTITTTTTTCTTTT-TTTTITFITTTT-TTTT-TTTTI1TFITTTT-TTTTITTTTTTITTTT-TTTTI1ITFETTTT - TT TT - TTTTATTTT T
-
-
-
-
-
OEE LEF & EE I EE A GO GEE oI EEE EEl EE D Ok [[EE LEE s EHEl EE &5 &GO &GN [@EnE N I DR IO LD ED AR OOE OEE I EEE DEa o r] -
T
-
-
-
T
-
-

I 4 4 4 4 -

1 4 4 4 4 4

I 44 44 - 4 4 4 4 -

- 5008

l"“"'""“"”“"“"L“'“'“""““"“"H

4 4 4 4 4 4

Multiplier #2
Results

4 4 4 4 444 44 44

1 4 4 4

L“mmmmmwm“mmm—nm RN MR e
1 4 4 4

* .' TrTTT1TTrTTTT" TTTTI1ITTTT1ITIETTTT - g ol 3 T T TTITTTTTI1TTCIrTTOTT " TTTTTTTTT 'r "
{:J § 4 § L -
] d :
<00 : i :
e - H g 5 -
- ! e I T
¢ 3 i :
F
” Y
. XN *
2 ; .
By E"“-ﬁ_ ~ - —
5 &
- SO e
™ o N OE B S O O O O O B O D S A O B B B D D O O B I O O R D D R B oL EoE OB D BD BN OE BD DN O ED BN I O B EE P B B I D aa = B oI EE R o G- 0 D OB D EE O 3R B EE B B F . I
% 3 »
s A) , U3 1 e
" ‘ : 73
y | T ‘i; "
: : : ',
, i ' § '
N ? T Q MOAOONN

4 4 4

4

4

4
e i AR WY T
W M R WA

4 4 4 4 444 44 44

X I O K I
4 4 44 444 94 44
]

]
44 44
]
L4]
L)
44 44

Tl

L
4 4 4

4
1 4 44 44

4
= 4 4 4 4 -

4 4 4 4

4 4 4
1 4 44 44

4

Tl

- 200

Multiplier #1

1 4 4 4

4
1

4 4 4 4

4 4 4 4

4

14 4 4 -

4 4 4 4 4 4 4 4 4
4 4 44 - 44 44 441

4

1 4 4 4

memmmw“mmmmm“nﬂn“ A R
4 4 4 4 444 44 44

= 44 4.4 44

4 4 4

* * T 3 TTTTITFrPTTTT-TTTTIAITTTTTTFTTTT-TTTTAITFTTTT - TTTTAITTTTIAITFIETTTT " TTTTAITTTTTTFETTTT " TTTTAITCFPTTTT - TTTTAIAITTTTAAITFITTTT - TTTTIAITTTTTTCFPTTTT - TTTTAITCFTTTT = TTTTIATTTTAITFTTTT =" TTTTITTTTTTCFTTTT =TT T 4 T T TT AT EFPETTTT ST T

US 2018/0129475 Al

BI'T-SERIAL MULTIPLIER FOR FPGA
APPLICATIONS

CLAIM OF PRIORITY

[0001] This patent application claims the benefit of prior-
ity of Almagambetov et al., U.S. Provisional Patent Appli-
cation No. 62/419,245, titled “BIT-SERIAL MULTIPLIERS
FOR FPGA APPLICATIONS,” filed on Nov. 8, 2016 (Attor-

ney Docket No. 4568.001PRV) which 1s hereby incorpo-
rated by reference herein in 1ts entirety.

TECHNICAL FIELD

[0002] This document pertains generally, but not by way
of limitation, to multiplier logic circuit topologies, and 1n
particular to bit-serial multiplier circuits that can be 1mple-
mented at least 1n part using a Field-Programmable Gate
Array (FPGA) device or another programmable logic

device, or implemented using an Application Specific Inte-
grated Circuit (ASIC).

BACKGROUND

[0003] Various bit-serial multiplier circuit topologies may
consume a large number of flip-flops, which generally
translates 1to a large physical footprint when such circuits
are 1implemented using a Field-Programmable Gate Array
(FPGA) device. This can occur because “slices” of the
FPGA device where a flip-tlop 1s used, but where accom-
panying combinational logic may not be required, are
deemed “occupied” and the associated look-up tables
(LUTs) on such slices may not then otherwise be available
for use. Additionally, some circuit topologies may consume
a large area due to a larger number of control sets. Gener-
ally-available serial multiplier implementations can be inei-
ficient 1n terms of a number of clock cycles consumed per
multiply operation, or such approaches may not start gen-
crating a partial result immediately (each of these consid-
erations can pose a serious computational bottleneck).
Another approach can include use of a hybrid bit-serial/
parallel multiplier implementation, but such an approach can
be 1neflicient 1n terms of consuming input/output facilities
on the FPGA device, such as consuming excess pins on the
device package.

SUMMARY

[0004] Diagital multipliers can be used 1n a vanety of
applications, such as the implementation of neural networks,
use 1n cryptography (e.g., including encryption algorithms),
or use 1n a broad range of other applications. For example,
other applications can include system simulation (including
control system analysis using state-space matrices), outcome
prediction, or digital signal processing (DSP), more gener-
ally. In such applications, a large-bit multiplication facility
can be desirable, with good scalability and ease of imple-
mentation.

[0005] The present iventors have recognized, among
other things, that using a Field-Programmable Gate Array
(FPGA) circuit implementation can provide a considerable
increase 1 computation performance and cost benefit as
compared to other approaches, particularly for large bit
widths (e.g., for multiplication of large-bit numbers). The
present inventors have also recognized, among other things
that a problem of msuthicient input/output (I/O) ports on an
FPGA circuit can be addressed by implementing large-bit

May 10, 2018

number multiplications 1n a bit-serial fashion. The bit-serial
multiplier topologies described herein can provide a rela-
tively small footprint as compared to other approaches,
when 1mplemented using an FPGA circuit. The examples
described herein are highly scalable, such as supporting the
multiplication of numbers of arbitrary length by replicating
certain blocks in the topology, which enables use of elec-
tronic design automation tools to easily scale the topology.
An FPGA-implemented bit-serial multiphier can improve
operation of a computing system, for example, by offloading
binary multiplication operations from a general-purpose
Processor.

[0006] For the illustrative examples described herein, a
number of clock cycles defining a duration to multiply two
“n”-bit numbers can be n, with a latency (e.g., a duration,
when no results or partial results are output) of n-3 (e.g., to
provide total time to output result of 2n—3), which represents
a major improvement as compared to other approaches,
because the result 1s generated 1n n clock cycles and pipe-
lining can be used to stagger the multiplication operations on
two or more multipliers in order to eliminate the effect of
latency. The examples described herein can also start pro-
ducing a partial result almost immediately (e.g., such as
having a latency of no more than one clock cycle, according
to an 1llustrative example), without requiring a wait for data
to become fully available. This can be usetul for applications
such as computationally intensive simulations.

[0007] In an example, a system or a portion of a system
can include a general-purpose processor circuit and a field-
programmable gate array (FPGA) circuit coupled to the
general-purpose processor circuit to serially recerve a binary
multiplicand and a binary multiplier and to provide a result
ol a bit-serial multiplication performed on the binary mul-
tiplicand and the binary multiplier. The FPGA circuit can be
configured to perform the bit-serial multiplication using a
bit-serial multiplication circuit, the performing the bit-serial
multiplication including: serially recerving the binary mul-
tiplicand, serially receiving the binary multiplier, and con-
temporaneously during the serially receiving, providing two
bits comprising the least significant bit and the second least
significant bit of the result of the multiplication.

[0008] In an example, a method can include serially
receiving a binary multiplicand, senally receiving a binary
multiplier, contemporaneously during the senally receiving
the binary multiplicand and the binary multiplier, providing
two bits comprising the least significant bit and the second
least significant bit of the result of the multiplication. The
method can be performed using a system comprising digital
circuitry including field-programmable gate array (FPGA)
circuit configured to provide a bit-serial multiplication cir-
cuit.

[0009] In an example, a system can include a means for
serially receiving a binary multiplicand, such as serial input
port, a means for serially receiving a binary multiplier, such
as using the same serial mput port or another serial 1nput
port, and a means for contemporaneously during the serially
receiving the binary multiplicand and the binary multiplier,
providing two bits comprising the least significant bit and
the second least significant bit of the result of the multipli-
cation using an FPGA circuit, such as an FPGA circuit
configured to provide a bit-serial multiplier circuit. In an
example, the system can include a means for receiving
istructions to configure the FPGA circuit to provide the
bit-serial multiplication circuit to perform the bit-serial

US 2018/0129475 Al

multiplication, such as a programming mnput coupled to a
memory circuit separate from the FPGA circuit, or a
memory circuit located internally within an FPGA circuit
package.

[0010] This summary 1s mtended to provide an overview
ol subject matter of the present patent application. It 1s not
intended to provide an exclusive or exhaustive explanation
of the mnvention. The detailed description 1s included to
provide further information about the present patent appli-
cation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1A illustrates generally an internal architec-
ture of an illustrative example comprising an FPGA.
[0012] FIG. 1B illustrates generally another representation
of an internal architecture of an illustrative example com-
prising an FPGA.

[0013] FIG. 2 1llustrates generally a generalized represen-
tation of a configurable logic block (CLB) such as can be
included as a portion of an FPGA.

[0014] FIG. 3 illustrates generally an example of multi-
plication of two numbers represented as a binary multipli-
cand and a binary multiplier

[0015] FIG. 4A illustrates generally an example of a
technique for generation of a least significant bit (LSB) of
two bits 1n a partial product that can be generated during a
single clock cycle using a serial pipelining technique.
[0016] FIG. 4B illustrates generally an example of a
technique for generation of a most significant bit (MSB) of
the two bits 1n the partial product that can be generated
during a single clock cycle using a serial pipelining tech-
nique.

[0017] FIG. 5 illustrates generally an example of a bat-
serial multiplier circuit topology (e.g., showing a four-bit
multiplier, but extensible to an arbitrary number of bits, n).
[0018] FIG. 6 illustrates generally a technique for genera-
tion of 2-bit partial product groups, such as to provide a
result from multiplying a 4-bit binary multiplicand and a
4-bi1t binary multiplier to provide a multiplication result.
[0019] FIG. 7 illustrates generally an example comprising
a 2-bit full adder circuit with 1-bit carry-in/out.

[0020] FIG. 8 shows an illustrative example of a 4-bit
block of a bit-serial multiplier topology that was 1mple-
mented for purposes of comparison with the topology shown
in FIG. S.

[0021] FIG. 9 illustrates generally an example comprising
a 1-bit full adder with 1-bit carry-in/out.

[0022] FIG. 10A shows an 1illustrative example including
a simulated signal timing diagram for a 4x4 bit-serial
multiplier implementation, such as can be obtained using the
topology shown generally 1n FIG. 5.

[0023] FIG. 10B shows an 1illustrative example including
a simulated signal timing diagram for a 16x16 bit-serial
multiplier implementation, such as can be obtained using the
topology shown generally in FIG. 5 modified to include
additional 2-bit full adder (2FA) sections.

[0024] FIG. 11 1s an illustrative example comprising a
table showing a comparison in FPGA resource utilization for
the illustrative examples of bit-serial multiplier topologies
shown 1n FIG. § and FIG. 8, respectively.

[0025] FIG. 12 illustrates generally an example of a sys-
tem, such as can include an FPGA circuit, and optionally,
one or more ol a general-purpose processor circuit and a
memory circuit.

May 10, 2018

[0026] FIG. 13 illustrates generally an example of a por-
tion of a system, such as can implement a data serialization
scheme where a general purpose processor circuit can pro-
vide a binary multiplicand and a binary multiplier to provide
a multiplication result to one or more FPGA-implemented
multiplier circuits, and the general-purpose processor circuit
can receive results from the one or more FPGA-imple-
mented multiplier circuits.

[0027] Inthe drawings, which are not necessarily drawn to
scale, like numerals may describe similar components 1n
different views. Like numerals having different letter sui-
fixes may represent diflerent instances of similar compo-
nents. The drawings 1llustrate generally, by way of example,
but not by way of limitation, various embodiments discussed
in the present document.

DETAILED DESCRIPTION

[0028] A proliferation has occurred where neural networks
are used 1n various aspects ol modern engineering ranging
from system simulation and outcome prediction to encryp-
tion techniques and Digital Signal Processing (DSP) appli-
cations as 1llustrative examples. In such applications, large-
bit number multiplication may be used. A digital
multiplication facility can be implemented at least 1in part
using Field Programmable Gate Array (FPGA) devices. For
example, using dedicated FPGA-based hardware for com-
putationally intensive operations can provide a considerable
increase in computation performance and cost benefit can be
achieved for operations involving multiplication of large-bit
numbers.

[0029] Use of FPGA circuits can present challenges. For
example, an mmsuflicient number of mput/output (I/O) pins
present on FPGA devices can preclude use of parallel
large-bit multiplication topologies. Another challenge can
include that FPGA circuits generally constrain a number of
available logic blocks that can be used for implementation of
the multiplier. In one approach, FPGA circuit routing opti-
mization can be performed, such as using statistical or other
methods to maximize the logic block utilization, while
working under a constraint of insuthlicient available 1/O pins.
However, such an approach can still have limitations. For
example, parallel implementations of large-bit mathematical
operations generally cannot support having an individual pin
assigned to every bit of the input. As such, mputs to the
multiplier are generally multiplexed or managed via some
parallel-serial hybrid implementation to reduce the hardware
complexity. But, such hybrid implementations may also
“waste” a large number of FPGA logic blocks for extra
tlip-flops that can be used to provide the multiplier circuitry
with nput bits in the correct order.

[0030] The modifier “bit-serial,” when applied to arithme-
tic circuit implementations, can generally refer to the man-
ner 1n which the operands for the arithmetic operation are
processed. In certain approaches, one operand can be pro-
cessed senially, while the other operate need not be pro-
cessed serially. The modifiers “serial-parallel” and *“‘seral-
serial” can be used as a means of distinguishing an
exclusively serial architecture from a “hybrid” or partially-
serial architecture. In this patent document, a generic, bit-
serial multiplier 1s described. The bit-serial multiplier
described herein 1s serial-serial in that both operands are
processed serially and the class of system implementations
that 1t 1s compared against are systems where both operands
are treated bit-by-bit. Generally, the phrase “bit-serial”

US 2018/0129475 Al

applies to those systems where all arithmetic operands are
processed serially (though not necessarily output senally),
and the phrase “senial-parallel” 1s applied to architectures
where only one operand 1s processed bitwise.

[0031] Programmable logic devices (PLDs) and program-
mable array logic (PAL) devices have been generally avail-
able since the early-1970s and 1980s, respectively. The
introduction of power-eflicient and easy-to-customize
FPGAs 1 1985 by Xilinx, Inc. (San Jose, Calif., United
States of America; heremafter “Xilinx”) promoted wide-
spread use of customizable programmable glue-logic-based
devices. FPGA circuits generally provide a readily modifi-
able hardware configuration that does not need to go through
the lengthy process of fabrication, unlike Application-Spe-
cific Integrated Circuits (ASIC). FPGA devices can be used
for testing and implementing novel logic topologies. In the
illustrative examples described herein, a number of FPGA
devices from Xilinx are used for realization of such
examples. The selected devices provide an ample amount of
internal resources and 1I/O facilities for current implemen-
tation examples and can operate at high frequencies.

[0032] FIG. 1A illustrates generally an internal architec-
ture of an illustrative example 100 comprising an FPGA
circuit and FIG. 1B illustrates generally another represen-
tation of an internal architecture of an illustrative example
200 comprising an FPGA circuit. FPGA devices can 1nclude
circuits having different structure, such as having internal
clectrically-erasable or erasable programmable read-only
memory ((E)EPROM), static random access memory
(SRAM), fuse, and anti-fuse-based topologies. Despite such
variations. FPGA internal device architectures can be gen-
erally similar to the illustrative examples 100 and 200 of
FIG. 1A and FIG. 1B. For example, FIG. 1 shows an
example 100 that can include at least one input/output block
(IOB) 102, such as can be routed to a programmable
interconnect multiplexer (IM) 104. The IM 104 can be
coupled to other IMs such as using an interconnect routing
segment 108. A configurable logic block (CLB) can be
coupled to one or more IMs, such as by establishing a
connection to one or more interconnect routes.

[0033] Referring to the example 200 of FIG. 1B, routing
segments such as a routing segment 208 can be located at or
nearby one or more slices, such as a slice 206. Generally, a
low-level logic block of any type within an FPGA can be
referred to as a “slice,” 206 although diflerent manufacturers
sometimes refer to such basic logic blocks by other names.
A typical slice 206 can include, as an illustrative example, a
4- or 6-mput look-up table (or LUT), which can be used for
combinational logic needs within the device, coupled with a
a fhip-flop that 1s connected to the LUT a multiplexer. The
slices are either connected to or disconnected from the
circuit via “routing segments.” such as nets connected to the
“routing switches” that can be configured to connect or
disconnect a particular routing segment to provide a par-
ticular circuit topology. An 1llustrative example of a routing
matrix 1s shown in FIG. 1B. Slices can be programmatically
coupled to routing segments, such as shown at a coupling
228 (e.g., using switch structures internal to the FPGA of the
examples 100 or 200).

[0034] FPGA circuits offer flexibility because of their
programmability after the manufacturing process 1s com-
plete (hence the phrase “field programmable.” referring to
the ability to program FPGA devices after they depart the
manufacturing facility). Conversely, in an ASIC device,

May 10, 2018

individual devices and interconnects are generally perma-
nently established at fabrication, during the manufacturing
process. ASIC functions are generally optimized for specific
applications and remain static through the life of the chip;
aside from use of general-purpose processor blocks, circuit
function of an ASIC cannot be changed once an ASIC 1is
designed and produced. While the examples herein can be
realized using an FPGA, such examples can also be imple-
mented as functional blocks of an ASIC or other device.
FPGASs can act as a “stepping stone” toward ASIC devel-
opment for applications with strict power requirements, as
FPGAs typically consume more than twice the power
required for the operation of an ASIC.

[0035] Generally-available FPGAs can include “multi-
slice logic blocks.” such as containing more than one LUT
and thp-flop per slice. This approach can be taken to cater to
functionality related to higher-complexity circuit configura-
tions. In the 1llustrative example here. Referring to the table
of FIG. 11, a count of LUTs and tlip-tlops are shown that are
roughly twice a count of slices (a feature of the Spartan 3E
FPGA mentioned elsewhere). An 1llustrative example 300 of
a configuration of a multi-slice logic block 1s shown 1n FIG.
2, and can be referred to as a Configurable Logic Block, or
CLB, such as can be included as a portion of an FPGA. The
example 300 of FIG. 2 shows elements of a CLLB such as can
be coupled to one or more routing segments 108, which can
then be coupled elsewhere such as using an IM 104 as

mentioned above. The CLB can include mputs 312A, 3128,
312C, 312D, such as coupled to a LUT 310A.

[0036] The LUT 310A can either feed out of the slice to an
output 318A or 1nto a register 316A. A carry-operation block
314 A can be 1included such as to provide a carry input 320A.
Registers can also be referred to as tlip-tlops, or FFs. FFs are
time-based elements and are fundamental elements of all
clock-based circuits. The flip-flops can support clock enable
and asynchronous set and reset functionality, according to
various examples. There are many diflerent potential con-
figurations for flip-flops, and some 1mplementations are
specific to a particular manufacturer FPGA device family.

[0037] In order to support higher-level functional blocks,
slices may be grouped together by the manufacturer, form-
ing a larger structure. For example, FIG. 2 illustrates gen-
erally a grouping of slices forming a larger structure, where
the CLB includes a second LUT 310B, a second carry-
operation block 314B such as having a carry output, and a
second register 316B. The nomenclature, architecture, fea-
tures and sizes of these larger blocks can vary between
supplier, family, and device. Some example of names for
these combined logic block groups can include: tile, con-
figurable logic block (CLB); logic array block (LAB); and
Megal _LAB. To clanty further discussions, the term CLB will
be used to refer to multi-slice structures.

[0038] Although parallel architectures may be most efli-
cient at realizing the arithmetic for application circuits such
as digital filters, modularity and cost effectiveness can be
achieved through the use of a bit-senal architecture. Such
architecture also allows for a more mathematically-straight-
forward implementation, as sample delays can be realized
with simple shift registers (or, in the case of FPGAs, with
tlip-flops available on every slice such as represented by the
registers 316 A and 3168 shown illustratively in FIG. 2).

Fully bit-serial multiplier architectures are generally easily

US 2018/0129475 Al

place-able due to their modularity, having a reduced I/O pin
needs, as well as having a shorter routing distance between
components.

[0039] In one approach, a hybrid multiplier topology can
be used, such as using serial-parallel two’s complement
binary multiplication devices, utilizing simple D-latches and
combinational logic. Not truly senal, such an approach 1is
instead a hybrid serial-parallel device, using a parallel input
for the multiplicand and a serial mput for the multiplier,
which reduces the required I/O by about 24, when compared
with a {fully-parallel multiplier implementation. The
approximate figure for I/O reduction comes from the data
pins used for a fully-parallel implementation of a hybrid
approach. As an 1illustrative example, for an 8x8-bit fully-
parallel multiplier (disregarding the clocking and set/reset
pins, depending on the realization), a count of multiplicand
and multiplier mnputs would be 8, as well as 8 pins used for
product output (24 total). For a parallel-serial hybrid imple-
mentation, pin usage i1s 8-1-1 for the multiplier, multipli-
cand, and product, respectively (10 total).

[0040] FPGA technology, such as introduced by Xilinx 1n
the mid-1980s, atfords a relatively cheap, easy, and powertul
way to ofl-load the computationally-intensive operations
from a general-purpose processor circuit to dedicated hard-
ware, which 1s useful such as for Digital Signal Processing,
(DSP) applications. For example, by distributing the com-
putationally-intensive workload to custom-configured
FPGA co-processors, a notable performance increase can be
achieved as compared to using general purpose processor
circuits. Some FPGA devices can include dedicated DSP
hardware. Various approaches can be used to realize bit-
serial multiplier arrangements that are compatible with
FPGA implementation. However, the present inventors have
recognized, among other things, that existing bit-serial mul-
tiplier topologies generally use a large number of flip-tlops,
which translates mto high area utilization on the FPGA
device (since slices, where a flip-tlop 1s used but no com-
binational logic 1s required, are generally considered “occu-
pied” and the LUTs on such slices may not be available for
use 1n realizing other functional blocks). Since FPGAs can
include two flip-tlops for every logic “multi-slice,” (e.g., as
shown 1n FIG. 2 including registers 316A and 316B) metrics
relating to slice counts can be used to determine whether the
number of flip-flops has been reduced for bit-serial multi-
plier implementations when such implementations are com-
pared to each other.

[0041] FIG. 3 illustrates generally an example of multi-
plication of two numbers (e.g., operands) represented as a
binary multiplicand and a binary multiplier. Binary multi-
plication 1s similar to ordinary integer multiplication, with
regard to the steps taken when completing a multiplication
operation. In this document, a multiplicand, “A” can be
represented as (a,, a__,, ..., a;, a5), and the multiplier “B”
can be represented as (b, b, , . .., b;, by). An illustrative
example of four-bit binary multiplication 1s shown in FIG. 3.
As shown by the example, the multiplicand, A, 1s multiplied
by b, the least significant bit of the multiplier. This opera-
tion generates the first partial product, pp,. For the next step,
the least significant bit position 1s filled with a zero (indi-
cated by a “*”” 1n the figure) and A gets multiplied by b,. This
process continues until all of the bits in the multiplier have
been exhausted [39]. At this point, the resulting partial

May 10, 2018

products are added to produce the final product, indicated by
“P” 1n the figure (p-, . . ., py). Bit p, can be reserved for use
as a possible carry bat.

[0042] Based on the procedure shown 1illustratively above,
when the partial products are added together, they result in
the following bit breakdown for each of the eight product or
result bits (p-, . . ., py), as seen 1 EQN. 1:

PPo PP, PP> pp; (1)
o = aobg
Cycle 1 g
pi. = aby + ab
, p2 = axby + aiby + aph;

Elgbg + ﬂzbl + ﬂlbz + ﬂgbg

R
3
1

€13 bg + .{Igbg

=
o
1

a3 b;

™
=)
|

fd
s s s et N
b
Hics
[

p7 = possible carry bit

[0043] The equation above can provide a template for a
serial pipeline for data, as outlined below. By having the full
product bit breakdown, 1t 1s possible to provide a hardware
implementation including an eflicient sernial data pipeline.
FIG. 4A and FIG. 4B illustrate generally how such serial
pipelining can produce partial product bits, at a rate of 2 bits
per every clock cycle (e.g., with clock cycle referring to a
bit-clock within the circuit block of the FPGA circut
performing the bit-serial multiplication). Such partial prod-
uct generation, in effect, generates an 8-bit result for a
4x4-bit multiplication in 4 cycles (with a 1 cycle latency, or
time when no data i1s output). Positioming of AND gates on
the serial pipeline can be used to produce the partial products
for every final product bit position. A constraint can exist,
such that all of the product bits are generated in “n” or less
clock cycles for an n-by-n-bit-serial multiplication (not
including any applicable latency). Such a constraint can
ensure that all of the product bits are delivered 1n the number
of clock cycles that 1s less than or equal to the number of
final product bits present. For example, as shown above,
during a first bit-clock cycle, product bits p, and p, can be
provided, and during a second bit-clock cycle, product bits
p, and p; can be provided, and so on.

[0044] FIG. 4A illustrates generally an example of a
technique for generation of a least significant bit (LSB) of
two bits 1n a partial product that can be generated during a
single clock cycle using a serial pipelining technique. The
Arabic numerals on the left-hand side of the figure (denoted
by the word “Cycle” i FIG. 4A) specily the clock cycle of
the operation, while the horizontal ovals surrounding groups
of numbers. “a, b " specily an AND operation. The direction
in which the numbers are accepted by the multiplier is
toward the right in grouping a and toward the left in
grouping b.

[0045] As the counters for n and m bits are advanced by
+1, anoverlap ofa_and b_, begins to generate partial product
data. The individual 2-bit partial products generated during
respective clock cycles are generally summed together
within the same clock cycle (using a 2-bit full adder with a
delayed carry loop, as shown and described below). As an
illustrative example, partial products a,b,, a,b,, and a,b, are
added together using two’s complement arithmetic during
the second clock cycle. The diagonal ovals are explained

US 2018/0129475 Al

below 1n relation to FIG. 4B, and can be used for generation
of a most significant bit (MSB) of a partial product.

[0046] FIG. 4B illustrates generally an example of a
technique for generation of a most significant bit (MSB) of
the two bits 1n the partial product that can be generated
during a single clock cycle using a serial pipelining tech-
nique. In the illustrative example of FIG. 4B, cycle numbers
are marked within the AND operations themselves. A dii-
ference between LSB and MSB approaches 1s that one of the
terms for the AND operation 1s retrieved from a diflerent
tlip-flop device, so AND operations include terms separated
diagonally 1n FIG. 4B. As 1n the example of FIG. 4A (which
shows LSB generation), partial products from the same
cycle are generally added together within the same cycle
(e.g., asb,, a,b,, a;b,, and asb; are summed during the
second cycle).

[0047] FIG. 5 illustrates generally an example of a bait-
serial multiplier circuit topology (e.g., showing a four-bit
multiplier, but extensible to an arbitrary number of bits, n).
Generally, an n-by-n-bit-serial multiplier can be imple-
mented 1n hardware, such as using a logic topology as shown
in the 1llustrative example 500 of FIG. 5. In the illustrative
example of FIG. §, a 4-bit multiplier topology 1s shown.

[0048] The schematic illustration i FIG. 5 can greatly
reduce a count of tlip-tlops as compared to other approaches,
due at least 1n part to AND gate (e.g., gate 534) positioning.
The topology shown in FIG. 5 can also provide contempo-
rancous 2-bit addition of partial products, allowing the
topology to provide partial product results (and a complete
multiplication result) in fewer clock cycles as compared to
other approaches. The topology shown in FIG. 5 can be
subdivided into two types of serially-cascaded circuit
blocks, which can then be fed into 2-bit single-carry adders
(such as an adder circuit 532 shown in FIG. 5) to provide an
ultimate multiplication result. The two circuit blocks can be
referred to as an “intermediate” block 3522 and an “end” or
terminating block 526.

[0049] Referring to FIG. 5, an example of the intermediate
block 522 can include an mput 520 to senially receive a
binary multiplicand represented as {a3,0}, and the end block
526 can include an input to senally receive a binary multi-
plier represented as {b3,0}. For each bit-clock cycle, the
intermediate block 522 can perform a partial product deter-
mination such as using AND gates (e.g., using an AND gate
534 amongst other gates), and a 2-bit Tull adder circuit (2FA)
530A. Similarly, the terminating block 526 can perform a
partial product determination such as using other AND gates
and another 2FA circuit 530N. The topology of the inter-
mediate block 522 provides a modular configuration that can
be extended to an arbitrary number of bits. For example, the
intermediate block 522 allows for the modularity of the
topology and further intermediate blocks can be mserted
(c.g., cascaded serially) between symbols, s« (e.g.,
between blocks 522 and 526) in FIG. 5 such as including
(n—4)/2 1nstances to provide a topology capable of n-by-n-
bit multiplication.

[0050] An adder tree can be provided, such as using 2-bit
adders (similar to the adder circuit 532) with a single
carry-bit, to sum the partial products to provide an ultimate
result. Generally, a count of adders increases at a rate (n-1),
while a count of flip-tlops 1s equal to (2n-2) 1n addition to
the (n-1) flip-tlops that are a result of using a topology
including a delayed carry. Delay elements in FIG. 5 (such as
a register 538) are shown 1illustratively using blocks includ-

May 10, 2018

ing the symbol, A. The delayed carry system allows the carry
bits to propagate to the next partial product sum group. If
used to sum an ultimate result 1n examples having more than
n=4, the adder trees can be further reduced 1n complexity. In
the example of FIG. 5, the usage of AND gates 1s illustrative.
Other approaches can be used.

[0051] FIG. 6 illustrates generally a technique for genera-
tion of 2-bit partial product groups, such as to provide a
result from multiplying a 4-bit binary multiplicand and a
4-bit binary multiplier to provide a multiplication result. A
technique of breaking the partial product positions into the
LSB and MSB pair 1s illustrated generally in FIG. 6. The
Arabic numerals at the bottom of FIG. 6 (shown contained
in white circles in the rendering of FIG. 6) indicate a clock
cycle index during which the LSB and MSB pair (shown to
cach side of the Arabic numerals and shown as an oval
outline including [p- p«], for example) was generated. The
larger dashed-rectangular areas between the lines indicate
which 2-bit pairs were added during the corresponding clock
cycle (where “*” signifies a “0”, used as padding). An
illustrative example of combinational logic that can be used
to generate a 2-bit full adder circuit 1s shown 1n FIG. 7.

[0052] FIG. 7 illustrates generally an example comprising
a 2-bit full adder circuit 530 with 1-bit carry-in/out. The
2-bit full adder circuit 530 of FIG. 7 can be provided using
a combination of AND gates (such as a gate 734), exclusive
OR-gates (such as an XOR gate 736) and OR gates (such as
a gate 738) as shown in FIG. 7. Operands {A, ,} and {B, }
can be provided to mputs A,, A, B,, B,, and the resultant
sum {S, ,} can be provided at an output. A carry input C
and a carryout output C,,,,~ can be provided.

[0053] FIG. 8 shows an illustrative example 800 of a 4-bat
block of a bit-serial multiplier topology that was 1mple-
mented for purposes of comparison with the topology shown
in FIG. 5. The example 800 of FIG. 8 can include input logic
and registers coupled to first and second 1-bit full adder
circuits (1FA) 840A and 840N. Results from the 1-bit tull
adder circuits 840A and 840N can be summed by another
1-bit full-adder circuit 842 to provide a result comprising a
product bit, {p,}. For the illustrative example of FIG. 8, 8
tull clock cycles are consumed the last bit of the product to
appear at the output pin, which 1s twice the amount of time
it takes to generate an 8-bit result of a 4x4 multiplication
using the topology shown 1n FIG. 5. The AND gate outputs
of the thip-tflop chain are added by using a 1-bit full adder
with a looping carry bit that 1s delayed by a single clock
cycle. This ensures that the carry bits propagate to the next
product bit position. An illustrative example of a logic

diagram for a 1-bit full adder with a 1-bit carry-in/out is
shown 1 FIG. 9.

[0054] FIG. 9 illustrates generally an example 840 com-
prising a 1-bit full adder with 1-bit carry-in/out, such as can
be used to provide one or more 1-bit full adder circuits for

the example 800 of FIG. 8.

[0055] FPGA-implemented realizations of the circuit
topologies of FIG. 5 and FIG. 8 were evaluated, and FPGA
resource utilization statistics were determined. When FIG. 8
1s compared against FI1G. 5, aside from the two sets of A and
B thip-flops (8 total, represented as circuit blocks including
the symbol “A”), there are an additional 4 flip-tflop devices
that are presented with a repeating binary sequence L{0, 0,
..., 1} in the example of FIG. 8. The function of line L is
to select only one pair of bits at a time, since all of the B
flip-flops receive the same value of bit B {b_}. In FIG. 8, all

US 2018/0129475 Al

of the circuit elements are synchronously clocked, with the
exception of the B-sequence flip-flops (shown as having
inputs coupled back to the input L.{0, 0, . . ., 1}.

[0056] In particular, FPGA realizations for FIG. 5§ and
FIG. 8 were developed in VHDL using Xilinx ISE 14.7 and
Vivado 2015.4 (depending on which FPGA device was
targeted). One device was targeted with ISE 14.7, to imple-
ment a 256x256 bit-serial multipliers: Spartan 6 MityDSP
LL138F board from CriticalLink (XC6SLX16). Three other
devices were targeted with Vivado 2015.4: Virtex 7 Evalu-
ation Board VC707 (XC7VX483T), Kintex 7 Evaluation
Board KC705 (XC7K325T), and Basys3 Artix 7 Evaluation
Board from Digilent (XC7A357T).

[0057] An illustrative example of FPGA mapping results
corresponding to the aforementioned devices are shown
illustratively 1n FIG. 11. To automate code generation for
large-bit numbers, a script was written that generates the
supporting VHDL files, given the length of the multiplicand
and the multiplier. Since code generation was automated,
both optimized and un-optimized versions of the designs
were provided in the results. In the competing approach,
hand-optimization 1s used to implement the realization,
which 1s cumbersome for large-bit implementations. The
device utilization did not change between the optimized and
un-optimized versions of the proposed approach.

[0058] For 1illustrative purposes, behavioral simulations
using the waveform simulation tool 1 Xilinx Vivado were
performed for 4x4-bit and 16x16-bit-serial multiplication
operations corresponding to the topology shown in FIG. 5,
and results are shown 1 FIGS. 10A and 10B, respectively.

[0059] FIG. 10A shows an 1illustrative example including
a simulated signal timing diagram for a 4x4 bit-serial
multiplier implementation, such as can be obtained using the
topology shown generally 1in FIG. 5 and FIG. 10B shows an
illustrative example including a simulated signal timing
diagram for a 16x16 bit-serial multiplier implementation,
such as can be obtained using the topology shown generally
in FIG. § modified to include additional 2-bit full adder
(2FA) sections. As shown illustratively i FIG. 10A, a
4x4-bit multiplication of numbers OxF and OxF was per-
formed. As expected, the result 1s OxE1 (1110 0001,), given
in groups of 2-bits (LSB, MSB): “10 00 01 11.” The
operation took a total of 4 clock cycles with a 1-bit latency.
FIG. 10B shows OxFFFF being multiplied by OxFFFF,
resulting 1n a product of OXxFFFE 0001 (1111 1111 1111 1110
0000 0000 0000 0001,). The operation shown i FIG. 10B
consumed 16 clock cycles to complete, with a 13-bit latency.
Based on the behavioral simulations, the circuit latency
(period, when no data 1s output) can be represented as (n—3),
where n defines the number of bits 1n an n-by-n-bit-multi-
plication. Accordingly, a count of total cycles to complete a
bit-serial multiplication using the topology shown 1llustra-
tively m FIG. § 1s (2Zn-3).

[0060] FIG. 11 1s an illustrative example comprising a
table showing a comparison in FPGA resource utilization for
the illustrative examples of bit-serial multiplier topologies
shown 1n FIG. 5 (e.g., labeled “P” for Proposed) and FIG. 8
(e.g., labeled “C” for Comparative), respectively. FIG. 11
illustrates generally that when comparing un-optimized ver-
sions of the configurations of FIG. 5 and FIG. 8, the FPGA
area 1s much larger for the comparative configuration of
FIG. 8 due to LUT utilization that can stem from the number
of “unique control sets.” Since registers within one slice
share the same control signals, only signals that share a

May 10, 2018

control set may be placed within the same slice (a larger
number of different control sets causes some registers to be
unused or “lost”). A larger number of control sets generally
causes one or more of fewer options for placement (less
flexibility), higher power utilization, and lower perior-
mance. In order to make the two implementations more
comparable, the comparative configuration of FIG. 8 was
optimized by hand. In the hand optimization of the configu-
ration of FIG. 8, an extra set of registers from the L line
output needed to be removed at each bit position, making the
implemented design smaller 1n terms of area, but introduc-
ing a possibility of synchronization issues. FIG. 11 also
demonstrates the implementation ethiciency of the proposed
adder topology shown and described herein such as 1n
relation to FIG. 5§ and FIG. 6, such as by showing that hand
optimization makes only a slight improvement to device
area utilization.

[0061] Generally, a count of flip-tlops used for the topol-
ogy can be represented by the following equation, EQN. (2):

N=N

chiain
[0062] A count of 2-bit full adders and AND gates can be

represented by (n—-1) and (2Zn-1), respectively. If these
figures were translated 1nto a count of transistors in an ASIC
implementation (using the metric of 3p2n for XOR, 3p3n for
AND, 3p3n for OR, and 2p2n for NAND), they would then
equal to approximately (140n-134) transistors. For the
topology shown 1n FIG. 8, a count of transistors 1s (130n-
52), while the counts of flip-tlops AND gates, and 1-bit full

adders are equal to 4n, n, and (n-1), respectively.

[0063] An aspect of the circuit topology shown 1n FIG. 5
1s that that only n cycles are generally used to output a result
of an n-by-n-bit-serial multiplication, with a latency of (n-3)
clock cycles. Such latency can be overcome by pipelining
the data input to the multiplier. The implementation results
have demonstrated that despite a significant decrease in the
number of flip-tlops and a slight drop 1n power consumption
of the device, the combinational logic used for the 2-bit
adder trees has contributed significantly to chip area utili-
zation, potentially “wasting” precious FPGA hardware (flip-
flops) within a CLB. A highly-optimized look-up table could
be used, thereby reducing the amount of LUTs that are used.
A Booth’s recoding scheme can be used to reduce the
number of adders 1n the addition tree by a factor of up to %4.
Using a different type of FPGA architecture, such as a
serialized architecture, may improve performance of bit-
serial 1implementations 1n terms of LUT utilization. The
bit-serial multiplier architecture described herein, such as
shown 1llustratively 1n FIG. 5, generally outputs the product
bits 1n a serial-parallel fashion: two bits at a time. These bits
can be processed using a serialization scheme, to convert
them to a fully-bit-serial output. Thus may also add some
overhead when implemented.

[0064] FIG. 12 illustrates generally an example of a sys-
tem 1200, such as can include an FPGA circuit 1202, and
optionally, one or more of a general-purpose processor
circuit 1204 and a memory circuit 1206. The memory circuit
1206 can be coupled to the FPGA circuit 1202 through a bus
1210 or other link such as to provide a vector set or other
instructions to configure the FPGA 1202 to provide one or
more circuit topologies shown and described elsewhere
herein. In an example, the memory circuit 1206 can be
included as a portion of the FPGA circuit 1202, or the FPGA

circuit 1202 can include an integrated circuit having an

+Nadd€r5:(zn_2)+(n_1):3H_3 (2)

US 2018/0129475 Al

internal memory circuit separate from the memory circuit
1206. The general-purpose processor circuit 1204 can be
coupled to the memory circuit 1206, such as to execute
instructions that cause the general-purpose processor circuit
1204 to perform one or more tasks such as signal processing,
encryption, or decryption as illustrative examples. The gen-
eral-purpose processor circuit 1204 can be coupled to the
FPGA 1202 such as using bus 1208 or other link, such as to
offload operations on the FPGA circuit 1202. For example,
the FPGA circuit 1202 can be configured to provide a
bit-serial multiplication facility using one or more tech-
niques or circuits as shown and described elsewhere herein.
The general-purpose processor circuit can provide a multi-
plicand and a multiplier to the FPGA circuit 1202, such as
serially, and the FPGA circuit 1202 can provide a result.
Such results can include product bits determined contem-
poraneously while still serially receiving a portion of the
multiplicand or the multiplier. In this manner, such as due to
enhanced efliciency 1n performing bit-serial multiplication,
the FPGA circuit 1202 can enhance operational efliciency of
a task performed by the general-purpose processor circuit

1204.

[0065] The example of FIG. 12 shows the general-purpose
processor circuit 1204 as being separate from the FPGA
circuit 1202. In an example, the FPGA circuit 1202 can be
configured to provide a general-purpose processor circuit
internally, along with a specialized circuit, such as can
include a bit-senial multiplier circuait.

[0066] FIG. 13 illustrates generally an example of a por-
tion of a system 1300, such as can implement a data
serialization scheme where a general purpose processor
circuit (e.g., a processor 1304) can provide a binary multi-
plicand and a binary multiplier to provide a multiplication
result to one or more FPGA-1implemented multiplier circuits
500A or 500B, and the general purpose processor circuit can
receive results from the one or more FPGA-implemented
multiplier circuits. By using two multiplier circuits 500A
and 500B 1n parallel, 1t 1s possible to reduce or eliminate an
ellect of latency on a count of cycles consumed 1n generation

of a final multiplication result. The illustrative example of
FIG. 13 was implemented on CriticalLink’s MityDSP

[L138F board, which contains a TI OMAP-1.138 dual core
application processor (AP) and a Xilinx Spartan 6
XC6SLX16 FPGA. Two 2-bit serial lines were used for
communication between the AP and FPGA: one for trans-
mitting the multiplicand and multiplier (TX) (e.g. a channel
1310A) and one for receiving a 2-bit product bit (RX) (e.g.,
a channel 1310B).

[0067] A latency duration can be defined as a period when
the multiplier receives data, but no product bits are yet
provided. When the multiplier and multiplicand bits have
propagated, the final product bits are output in the “results™
stage as indicated graphically 1n FIG. 13. These product bits
can be staggered (e.g., results are obtained from multiplier
#1 S00A while waiting for result from multiplier #2 and vice
versa), such as resulting 1n a constant or at least more
cilicient data exchange, and reducing or eliminating idleness
of the FPGA. In another approach, such as including a
greater count of bit-serial multipliers (e.g., for performing
matrix multiplications). GPIO pins and free FPGA 10 bank
pins can be used for communication at a rate of four pins per
every two multipliers, according to an illustrative example.
If a communications bus 1s present, the data can be concat-
enated by the AP. For example, using two 32-bit buses would

May 10, 2018

allow up to 16 bit-serial multipliers to be implemented using
the hardware mentioned above 1n this illustrative example.
It 1s also possible to provide a queuing technique for a larger
count of bit-serial multipliers.

VARIOUS NOTES

[0068] Each of the non-limiting aspects above can stand
on 1ts own, or can be combined 1n various permutations or
combinations with one or more of the other aspects or other
subject matter described in this document.

[0069] The above detailed description 1includes references
to the accompanying drawings, which form a part of the
detailed description. The drawings show, by way of 1llus-
tration, specific embodiments 1n which the invention can be
practiced. These embodiments are also referred to generally
as “examples.” Such examples can include elements 1n
addition to those shown or described. However, the present
inventors also contemplate examples 1 which only those
clements shown or described are provided. Moreover, the
present 1nventors also contemplate examples using any
combination or permutation of those elements shown or
described (or one or more aspects thereof), either with
respect to a particular example (or one or more aspects
thereol), or with respect to other examples (or one or more
aspects thereol) shown or described herein.

[0070] In the event of inconsistent usages between this
document and any documents so incorporated by reference,
the usage 1n this document controls.

[0071] In this document, the terms ““a@’ or “an’ are used, as
1s common 1n patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” 1s
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In this document, the terms “including”
and “in which™ are used as the plain-English equivalents of
the respective terms “comprising” and “wherein.” Also, in
the following claims, the terms “including” and “compris-
ing” are open-ended, that 1s, a system, device, article,
composition, formulation, or process that includes elements
in addition to those listed after such a term 1n a claim are still
deemed to fall within the scope of that claim. Moreover, 1n
the following claims, the terms “first,” “second,” and
“third,” etc. are used merely as labels, and are not intended
to 1impose numerical requirements on their objects.

[0072] Method examples described herein can be machine
or computer-implemented at least 1n part. Some examples
can include a computer-readable medium or machine-read-
able medium encoded with instructions operable to config-
ure an electronic device to perform methods as described in
the above examples. An implementation of such methods
can include code, such as microcode, assembly language
code, a higher-level language code, or the like. Such code
can mnclude computer readable 1nstructions for performing
various methods. The code may form portions of computer
program products. Further, in an example, the code can be
tangibly stored on one or more volatile, non-transitory, or
non-volatile tangible computer-readable media, such as dur-
ing execution or at other times. Examples of these tangible
computer-readable media can include, but are not limited to,
hard disks, removable magnetic disks, removable optical
disks (e.g., compact disks and digital video disks), magnetic
cassettes, memory cards or sticks, random access memories

(RAMSs), read only memories (ROMs), and the like.

US 2018/0129475 Al

[0073] The above description 1s intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereol) may be used 1n
combination with each other. Other embodiments can be
used, such as by one of ordinary skill in the art upon
reviewing the above description. The Abstract 1s provided to
comply with 37 C.FR. § 1.72(b), to allow the reader to
quickly ascertain the nature of the technical disclosure. It 1s
submitted with the understanding that 1t will not be used to
interpret or limit the scope or meaning of the claims. Also,
in the above Detailed Description, various features may be
grouped together to streamline the disclosure. This should
not be terpreted as intending that an unclaimed disclosed
feature 1s essential to any claim. Rather, inventive subject
matter may lie i less than all features of a particular
disclosed embodiment. Thus, the following claims are
hereby 1ncorporated ito the Detailled Description as
examples or embodiments, with each claim standing on 1ts
own as a separate embodiment, and it 1s contemplated that
such embodiments can be combined with each other in
various combinations or permutations. The scope of the
invention should be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

The claimed invention 1s:

1. A system, comprising:

a general-purpose processor circuit; and

a field-programmable gate array (FPGA) circuit coupled

to the general-purpose processor circuit to serially
receive a binary multiplicand and a binary multiplier
and to provide a result of a bit-serial multiplication
performed on the binary multiplicand and the binary
multiplier;

wherein the FPGA circuit 1s configured to perform the

bit-serial multiplication using a bit-serial multiplication

circuit, the performing the bit-serial multiplication

including;

serially recerving the binary multiplicand;

serially receiving the binary multiplier; and

contemporancously during the serially receiving, pro-
viding two bits comprising the least significant bit
and the second least significant bit of the result of the
multiplication.

2. The system of claim 1, wherein the FPGA circuit 1s
configured to perform the bit-serial multiplication including
completing a bit-serial multiplication of the binary multi-
plicand and the binary multiplier after at most n bit-clock
cycles not including a latency of n-3 bit-clock cycles, where
n defines a count of bits in the binary multiplicand and the
binary multiplier.

3. The system of claim 1, wherein the bit-serial multipli-
cation 1s implemented within the FPGA circuit using two or
more cascaded 2-bit full adder circuaits.

4. The system of claim 3, wherein the two or more
cascaded 2-bit full adder circuits comprise 2-bit full adder
circuit within an intermediate 2-bit block (I2B) and a 2-bit
tull adder circuit within a terminating 2-bit block (12B).

5. The system of claim 4, wherein the outputs of the
serially-cascaded 2-bit circuits comprise outputs coupled to
the mputs of another 2-bit full adder circuit to provide a 2-bit
result output.

6. The system of claim 5, wherein the 2-bit result output
represents a portion of the result of the multiplication that 1s
updated each bit-clock cycle starting with the least signifi-

May 10, 2018

cant bit and the second least significant bit of the result and
completing with a second most signmificant bit and a most
significant bit of the result.

7. The system of claim 1, comprising a memory circuit
including instructions that, when loaded into the FPGA
circuit, configure the FPGA circuit to provide the bit-serial
multiplication circuit to perform the bit-serial multiplication.

8. The system of claim 7, wherein the processor circuit 1s
also coupled to the memory circuit.

9. The system of claim 1, wherein the processor circuit 1s
coupled to the FPGA circuit 1n a manner defining two
serialized channels, including a first channel to transmit a
first portion of the binary multiplicand and the binary
multiplier to a first bit-serial multiplier circuit within the
FPGA circuit, and a second portion of the binary multipli-
cand and the binary multiplier to a second bit-serial multi-
plier circuit within the FPGA circuit.

10. The system of claim 9, wherein the first bit-serial
multiplier circuit provides at least a portion of a result during
a latency duration of the second bit-serial multiplier circuit
and vice versa.

11. A method comprising;:

using a field-programmable gate array (FPGA) circuit

configured to provide a bit-serial multiplication circuit:

serially recerving a binary multiplicand;

serially recerving a binary multiplier; and

contemporancously during the serially receiving the
binary multiplicand and the binary multiplier, pro-
viding two bits comprising the least significant bit
and the second least significant bit of the result of the
multiplication.

12. The method of claim 11, comprising, using the FPGA
circuit, performing the bit-serial multiplication including
completing a bit-serial multiplication of the binary multi-
plicand and the binary multiplier after at most n bit-clock
cycles not including the latency of at most n bit-clock cycles
not mcluding a latency of n-3 bit-clock cycles, where n
defines a count of bits 1n the binary multiplicand and the
binary multiplier.

13. The method of claim 11, wherein the bit-serial mul-
tiplication 1s implemented using the FPGA circuit to provide
two or more cascaded 2-bit full adder circuits.

14. The method of claim 13, wherein the two or more
cascaded 2-bit full adder circuits comprise 2-bit full adder
circuit within an mntermediate 2-bit block (I2B) and a 2-bat
tull adder circuit within a terminating 2-bit block (12B); and
wherein the outputs of the serially-cascaded 2-bit circuits
comprise outputs coupled to the inputs of another 2-bat full
adder circuit to provide a 2-bit result output.

15. The method of claim 14, comprising providing a
portion of the result of the multiplication at the 2-bit result
output that 1s updated each bit-clock cycle starting with the
least significant bit and the second least significant bit of the
result and completing with a second most significant bit and
a most significant bit of the result.

16. The method of claim 11, loading nstructions from a
memory circuit into the FPGA circuit to configure the FPGA
circuit to provide the bit-serial multiplication circuit to
perform the bit-serial multiplication.

17. The method of claim 11, comprising transmitting a
first portion of the binary multiplicand and the binary
multiplier from a general-purpose processor circuit to a first
bit-serial multiplier circuit within the FPGA circuit, and
transierring a second portion of the binary multiplicand and

US 2018/0129475 Al

the binary multiplier from the general-purpose processor
circuit to a second bit-serial multiplier circuit within the
FPGA circuit.

18. The method of claim 17, providing at least a portion
of a result from the first bit-serial multiplier circuit during a
latency duration of the second bit-serial multiplier circuit
and vice versa.

19. A system, comprising:

a means for serially receiving a binary multiplicand;

a means for serially receiving a binary multiplier; and

a means for contemporaneously during the serially receiv-

ing the binary multiplicand and the binary multiplier,
providing two bits comprising the least significant bit
and the second least significant bit of the result of the
multiplication using an FPGA circuit.

20. The system of claim 19, comprising a means for
receiving 1nstructions to configure the FPGA circuit to
provide a bit-serial multiplication circuit to perform the
bit-serial multiplication.

¥ ¥ # ¥ ¥

May 10, 2018

	Bit-Serial Multiplier for FPGA Applications
	Scholarly Commons Citation

	Front Page
	Drawings
	Specification
	Claims

