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On the Long Lasting “C‐Type” Structures in the Sodium
Lidargram: The Lifetime of Kelvin‐Helmholtz Billows
in the Mesosphere and Lower Thermosphere Region
S. Mondal1 , S. Sarkhel1 , Jay Agarwal1, D. Chakrabarty2 , R. Sekar2 , Tao Yuan3 ,
Xuguang Cai3 , Alan Z. Liu4 , Satonori Nozawa5 , Norihito Saito6, Takuya D. Kawahara7,
Martin G. Mlynczak8 , and James M. Russell III9

1Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India, 2Space and Atmospheric Sciences
Division, Physical Research Laboratory, Ahmedabad, India, 3Physics Department, Utah State University, Logan, UT,
USA, 4Center for Space and Atmospheric Research & Department of Physical Sciences, Embry‐Riddle Aeronautical
University, Daytona Beach, FL, USA, 5Institute for Space‐Earth Environmental Research (ISEE), Nagoya University,
Nagoya, Japan, 6Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Japan, 7Faculty of
Engineering, Shinshu University, Nagano, Japan, 8Atmospheric Sciences Division, NASA Langley Research Center,
Hampton, VA, USA, 9Center for Atmospheric Sciences, Hampton University, Hampton, VA, USA

Abstract In order to understand the characteristics of long‐lasting “C‐type” structure in the Sodium (Na)
lidargram, six cases from different observational locations have been analyzed. The Na lidargram, collected
from low‐, middle‐, and high‐latitude sites, show long lifetime of the C‐type structures which is believed
to be the manifestation of Kelvin‐Helmholtz (KH) billows in the Mesosphere and Lower Thermosphere
(MLT) region. In order to explore the characteristics of the long‐lasting C‐type structures, the altitude profile
of square of Brunt‐Väisälä frequency in the MLT region has been derived using the temperature profile
collected from the Na lidar instruments and the SABER instrument onboard TIMED satellite. It is found to
be positive in the C‐type structure region for all the six cases which indicates that the regions are
convectively stable. Simultaneous wind measurements, which allowed us to calculate the Richardson
numbers and Reynolds numbers for three cases, suggest that the regions where the C‐type structure
appeared were dynamically stable and nonturbulent. This paper brings out a hypothesis wherein the low
temperature can increase the magnitude of the Prandtl number and convectively stable atmospheric region
can cause the magnitude of Reynolds number to decrease. As a consequence, the remnant of previously
generated KH billows in nearly “frozen‐in” condition can be advected through this conducive region to a
different location by the background wind where they can sustain for a long time without much
deformation. These long‐lived KH billows in theMLT region will eventually manifest the long‐lasting C‐type
structures in the Na lidargram.

1. Introduction

The existence of layers of neutral metal atoms and its ions was first detected by sunlight's resonant scattering
(Slipher, 1929). The formation of these layers in the Mesosphere and Lower Thermosphere (MLT) region (80
to 110 km) is due to the ablation of meteors. Development of lidar in early 1960s (Bowman et al., 1969) has
helped in detailed study of vertical distributions of these metal atoms and its ions. Sodium (Na) is the easiest
among all the metals which present in the atmospheric layer to measure because of its large resonant
scattering cross section. There are occurrences of sporadic thin layers of enhanced concentration of metals,
which were first reported for Na then subsequently for other metals, superposed over the regular back-
ground layers and are called sporadic neutral (Ns) layers (e.g., Clemesha et al., 1978). Neutralization of metal
ions concentrated by wind shear mechanism in the lower E region is given as a possible explanation for
formation of Ns layers (Axford, 1967). The lidar measurements of the neutral Na atoms concentration over
low‐ and high‐latitude stations have been carried out for several decades (e.g., Clemesha et al., 1979;
Clemesha, 2004; Collins et al., 2002; Sarkhel, Raizada, et al., 2012, 2019; Sarkhel et al., 2009, 2010;
Takahashi et al., 2014; Tsuda et al., 2011, 2015). Na lidar observations from Arecibo Observatory (Kane
et al., 2001) revealed the occurrence of a different type of sporadic Na layer, which was very different in
appearance from normal Ns layers and occurred much less frequently. Kane et al. (2001) interpreted these
layers as related to field aligned ionospheric irregularities. Normal Ns layers do not show any kind of
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rapid temporal variations with height, and they appear as quasi horizontal structures in lidargram
(Clemesha et al., 1999). However, different layers reported by Kane et al. (2001) and Raizada et al. (2015)
show complex structure in the lidargram, which somewhat resembled overturning structures. They lasted
for around an hour and extended for several kilometers vertically. It was suggested that these complex struc-
tures could be the indication of prominent dynamics features, such as Kelvin‐Helmholtz (KH) instabilities in
regions of strong wind shear.

The ripple‐type structures frequently observed in airglow images within the same region by several
researchers (e.g., Cai et al., 2014; Hecht et al., 1997, 2000; Peterson, 1979; Taylor & Hill, 1991; Taylor &
Hapgood, 1990; Taylor et al., 1997) are the indication of instabilities in the layers. Hecht et al. (1997,
2000, 2001) have shown that both large wind shears and super adiabatic lapse rate were the cause of this
structures. KH instability can lead to form KH billows structures in a dynamically unstable region due to
a large wind shear, and the onset condition of formation of billow can be judged by the Richardson number
(Ri) (Richardson, 1920), which is the ratio of static stability and square of wind shear. Whenever it is less
than its canonical threshold value (0.25), it causes the atmosphere to become dynamically unstable and
KH billows may form in that region (e.g., Gossard & Hooke, 1975; Miles & Howard, 1964). The dynamical
instability may be created if the wind shear is sufficiently large, and it plays a critical role in the neutral Na
layer. Pfrommer et al. (2009) observed KH billows using a high‐resolution Na lidar in the MLT region which
is due to the dynamic instability which also responsible for generating various short‐period structures in the
MLT region (e.g., Sarkhel, Sekar, et al., 2012). In order to study the evolution and the lifetime of these struc-
tures, many theoretical and observational studies have been carried out (Browning & Watkins, 1970;
Browning, 1971; Davis & Peltier, 1979; Klaassen & Peltier, 1985a, 1985b, 1991; Thorpe 1968, 1973) including
3‐D simulations to provide more realistic scenario of the evolution of KH billows and secondary instabilities
(Caulfield & Peltier, 1994; Caulfield & Peltier, 2000; Fritts et al., 1996; Palmer et al., 1994, 1996; Peltier &
Caulfield, 2003; Werne & Fritts, 1999). Based on the laboratory experiments, Thorpe (1968, 1973) suggested,
as the evolution of KH billows takes place, secondary instabilities are formed which eventually decay
into turbulence.

Clemesha et al. (2004) reported several similar cases, similar to Kane et al. (2001), and have alternately
explained the formation of complex structures which is commonly referred as “C‐type” structures. The
structure appeared in the sodium lidargram looks like “C” alphabet with overturning feature. They sug-
gested that these structures could be resultant or remnant of spatial structures advected over the lidar site
rather than wave breaking or KH instabilities as suggested by Kane et al. (2001) because of limited correla-
tion found between sporadic E layers and these structures. Larsen et al. (2004) also reported similar type of
structure with ~1‐ to 3‐hr timescale. They discussed about the possible physical processes behind the gen-
eration of this type structure and concluded to be convective instability instead of KH instability. Sridharan
et al. (2009) also reported four such cases over Gadanki, India, which occurred in early morning. The
observations carried out by them are in complete agreement with the suggestions reported by Kane
et al. (2001) that the strong wind shear was present during all the four cases. Therefore, Sridharan et al.
(2009) supported the hypothesis, proposed by Kane et al. (2001), of KH instability for the formation of com-
plex sporadic structures. Sarkhel et al. (2015a, 2015b) have examined the Na lidargram from Gadanki,
India, on a night using a meteor radar from Thiruvananthapuram, India, and satellite borne measure-
ments. They suggested that the KH billow formation took place over Thiruvananthapuram, southern part
of India. The wind measurements suggest that the billow was initially modified due to the wind shear.
Then, it eventually got “frozen‐in” the background due to the reduction of vertical wind shear and was
advected to the lidar site. They concluded that the lifetime of KH billows could be of order of a few hours,
under favorable background conditions, in the MLT region. Therefore, those long lasting KH billow
manifests as a long lasting C‐type structure in the Na lidargram. The question that remained unaddressed
was what kind of background conditions can enable KH billows to survive hours together in apparently
frozen‐in condition.

In this paper, we will analyze six cases from low‐, middle‐, and high‐latitude locations, wherein C‐type struc-
tures have been detected by lidar system on the Na lidargram. Based on this study, we will attempt to con-
clude the dependency of lifetime of KH billows on different atmospheric parameters and finding the
background condition for which KH billow can last longer in the MLT region and appear as long lasting
C‐type structure in the Na lidargram.
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2. Experimental Techniques

In order to assess the effect of different atmospheric parameters on the occurrence of the C‐type structures
appeared in the Na lidargram, we have chosen six cases from low‐, middle‐, and high‐latitude sites where the
C‐type structure is observed clearly in the Na lidargram. The details of the sites and the occurrence of the
C‐type structures are given in Tables 1 and 3. The altitude profiles of temperature for the first three cases
(Table 1) have been obtained from the SABER (Sounding of Atmosphere using Broadband Emission
Radiometry) instrument onboard TIMED (Thermosphere Ionosphere Mesosphere Energetics and
Dynamics) satellite (data source: http://saber.gats‐inc.com; v2.0; Level 2A). SABER uses the 15‐μm terres-
trial emission from CO2 molecules to retrieve pressure at a given altitude, which is then utilized to derive
the altitude profile of temperature. The altitude profile of uncertainty in deriving the temperature from
SABER in the altitude range of 80–105 km is available in Mertens et al. (2001). SABER measurement loca-
tions and time chosen nearest to the observing sites (Gadanki, India, and Hefei, China) are given in Table 2.
Altitude profile of temperature and wind data for last three case have been measured from the resonance Na
lidar. It provides high‐resolution spatial and temporal data compared to the SABER data set. It is also
capable of simultaneous measurements of mesospheric temperature profile and horizontal wind profiles
along with neutral Na density. The details on the resonance Na lidar system over Gadanki, derivation of
Na density measurement, and its statistical error are given in Bhavani Kumar et al. (2007). The description
of the Na lidar over Tromsø, Norway, is available in Nozawa et al. (2014) and Kawahara et al. (2017).

3. Data Analysis

The dynamic instability of the atmosphere is characterized by the Richardson number (Richardson, 1920). It
is defined as follows:

Ri zð Þ ¼ N2 zð Þ
S2 zð Þ (1)

where N2 is the square of Brunt‐Väisälä frequency which follows the equation:

N2 zð Þ ¼ g
T zð Þ

g
Cp

þ dT zð Þ
dz

� �
(2)

where T (z) is temperature at height z (meter), CP is the molecular specific heat at constant pressure
(1,004 J kg−1 K−1 for diatomic molecules like N2 and O2), g is the acceleration due to gravity
(g ≈ 9.8 m/s2), and S2 is the square of resultant vertical shear, which is defined as follows:

S2 zð Þ ¼ du
dz

� �2

þ dv
dz

� �2

(3)

where u and v are the altitude profile of zonal and meridional wind, respectively. The dynamical instability
occurs when Ri < 0.25 and N2 < 0 suggest the occurrence of convective instability in the medium. The tem-
perature profiles for the three cases listed in Table 1 are obtained from the SABER instrument onboard
TIMED satellite. In order to get the optimized temperature profile, the satellite measurement locations have
been chosen in nearest proximity to the Na lidar sites and closest to the time of the event when the C‐type
structure appeared in the Na lidargram (shown in Tables 1 and 2). As reported in Kishore Kumar et al.
(2008), the average temporal variation in the nocturnal temperature over Gadanki (a low‐latitude station)

Table 1
The First Three Cases of the “C‐Type” Structure (Cases 1–3) With the Date of the Events, Occurrence Time Duration Including the References, and the Vertical Extent of
Those Structure

Case no. Date of the event Location of the site References C‐type occurrence time (in UTC) Altitude region of C‐type structure

1 27 Nov 2005 Gadanki (13.5 °N, 79.2 °E) Sridharan et al. (2009) 17:00–18:00 94–98 km
2 18 Mar 2007 Gadanki (13.5 °N, 79.2 °E) Sarkhel et al. (2015a) 16:00–16:30 93–98 km
3 13 May 2013 Hefei (31 °N, 117.0 °E) Qiu et al. (2018) 16:55–19:13 92–98 km
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is not significant in the altitude range of 80–105 km. Therefore, the satellite‐retrieved temperature profile,
measured a few hours before or after the event occurred, is valid enough and will not alter our
conclusions. Since Hefei, China, is also a geographically low‐latitude station, the same argument can also
be drawn for this site. Therefore, the simultaneous measurements of wind, temperature, and Na atom
density profiles are available for the last three cases (shown in Figures 2–4).

In order to assess the stability of C‐type structures in MLT region, the magnitude of the Prandtl (Pr) number
of the air medium is calculated in the region. Pr is defined as the ratio of momentum diffusivity (kinematic
viscosity) to thermal diffusivity:

Pr ¼ ν
α

where ν is kinematic viscosity and α is the thermal diffusivity which is defined as

α ¼ k
Cp ρ

Hence, we have the expression for the Prandtl number

Pr ¼ Cpμ
k

where Cp is specific heat capacity at constant pressure, ρ is the density of air medium, μ is dynamic viscosity
(ν·ρ), and k is the thermal conductivity of the air medium.

Following Zografos et al. (1987), an empirical expression for the Prandtl number in case of air at the
temperature (T) in Kelvin (K) (T is the average temperature taken in the altitude region where C‐type
structures appeared) can be written as follows:

Pr ¼ 1:0677×10−23T7−7:6511×10−20T6 þ 1:0395×10−16T5 þ 4:6851×10−13T4−1:7698×10−9T3

þ 2:2260×10−6T2− 1:1262×10−3T þ 0:8835 (4)

It is to be noted that this expression is valid for range of temperature 100–3,000 K at 1 atm pressure. It is a
well‐known fact that the pressure is very low in the MLT region, and therefore, air gas can be considered
behaving as an ideal gas (Çengel & Boles, 2015). In case of an ideal gas, Cp, μ, and k are independent of
air pressure, and thus, Prandtl number, which depends on the magnitudes of Cp, μ, and k, is independent
of pressure in the MLT region (Çengel & Cimbala, 2017). Hence, the effect of pressure while deriving the
Prandtl number in MLT region has already been taken care. Therefore, in practice, the equation (4) will give
significant accuracy in deriving Prandtl number of air medium in the MLT region. The maximum uncer-
tainty for deriving Prandtl number within the regions of C‐type structures is 0.01. It is interesting to note that
the Prandtl number of air medium within the Tropospheric Boundary Layer (TBL) is ~ 0.7.

4. Results

The left column of Figure 1 depicts the temperature profiles obtained from SABER instrument onboard
TIMED satellite for all the first three cases nearest to the observational sites (details shown in Table 2),

Table 2
The Location and the Measurement Time (in UTC) of the SABER Instrument Onboard TIMED Satellite Near to the Location Site of the Cases Mentioned in Table 1

Case
No.

Date of satellite
measurement

Time of satellite measurement
(HH:MM:SS)

Satellite measurement
location

Average temperature (K) of the C‐type
altitude region

Prandtl
number

1 27 Nov 2005 18:16:03 12.23 °N, 82.38 °E 172 0.75
2 18 Mar 2007 19:59:32 13.56 °N, 86.71 °E 183 0.74
3 13 May 2013 13:55:58 30.25 °N, 107.50 °E 174 0.75

Note. The average temperature and the corresponding Prandtl number of the air in the region of “C‐type” structures for those cases.
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whereas the right column represents the square of Brunt‐Väisälä frequency (N2) obtained from the SABER
temperature profile using the equation (2). The horizontal dashed lines in every case indicate the altitude
range where the unusual C‐type structure appeared in the Na lidargram. The vertical dashed lines on the
right column of the Figure 1 indicate zero value of N2. The right column shows that the values of N2 for
all the three cases (given in Table 1) in the altitude range wherein the C‐type structure appeared to be
positive. In case (2), the magnitude of N2 becomes slightly negative (−0.105 × 10−3 s−2 at 94 km and
−0.049 × 10−3 s−2 at 97.5‐km altitude). However, the maximum uncertainty in N2 (ΔN2) within the
region of the C‐type structure is 0.114 × 10−3 s−2. Hence, we cannot draw any conclusion that the N2 is
negative for case (2) in the region of the C‐type structure. Overall, the temperature structure indicates that
those regions were convectively stable at the time of C‐type structure appearance for those corresponding
cases (time and locations of the respective observational sites are given in Tables 1 and 2).

Figure 2 presents the Na lidar measurements over Cerro Pachón, Chile (30.3 °S, 70.7 °W; low‐latitude site)
on 30 October 2017. Figures 2a–2f, respectively, depict the height‐time map of neutral Na atom density
(Na lidargram), temperature, N2 (from equation (2)), zonal wind, meridional wind, and Ri number (from
equation (1)). Similarly, Figures 3 and 4, respectively, present the Na lidar measurements over Logan,
USA (42 °N, 112 °W), on 31 July 2013 and Tromsø, Norway (66.9 °N, 19.2 °E), on 14 December 2014. From
Figure 2a, the Na lidargram shows the C‐type structure appeared during 2:00–4:00 UTC in the altitude range
of 97 to 103 km over Cerro Pachón, Chile. The C‐type structure over this site occurs during 9:30–10:00 UTC
in the lidargram over Logan, USA (Figure 3a). Figure 4a shows the C‐type structures in the Na lidargram
over Tromsø, Norway, that appears during 22:00–26:00 UTC within the altitude range of 90–99 km. The
C‐type structures are clearly visible in the Na lidargram for these three cases, and the other details of those
events are tabulated in Table 3. The average occurrence time of all the C‐type events, tabulated in Tables 1
and 3, is found to be in the range of 30 min to a few hours and the vertical extent of those structures is in the
range of 4–10 km. The N2 is found to be positive in the region of C‐type structure for all the six cases which
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Figure 1. The temperature profiles obtained from SABER (left column) and the corresponding Brunt‐Väisälä frequency
square (N2) profiles (right column) for all the three cases shown in Tables 1 and 2. The horizontal dotted line in every
case is the altitude range in where the “C‐type” structure appeared in the Na lidargram, and vertical dotted line on the
Right column represents Brunt‐Väisälä frequency of “Zero” magnitude.
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implies the region was convectively stable. The maps of Ri for the last three cases (shown in Figures 2f, 3f,
and 4f) found to always greater than the threshold limit 0.25 in the region of C‐type structure indicating
that nonexistence of dynamical instability. The Prandtl numbers calculated in the altitude region of C‐
type structures are more than 0.7 for the all six cases (shown in Tables 2 and 3). The Reynolds numbers,
calculated for the last three cases, are found be less than 1,000 (shown in Table 3) which is the clear
indication of nonturbulent medium.

5. Discussion

It is well‐known that the Na lidar records horizontally‐narrow vertical profiles of Na atom concentration as a
function of time. Thus, the height‐time‐concentration map of neutral Na atoms or the “lidargram”

Figure 3. (a–c) Na lidargram, absolute temperature (in K), and the square of Brunt‐Väisälä frequency (N2) over Logan, USA (mid latitude), on 31 July 2013, respec-
tively. (d–f) The map of zonal wind, meridional wind, and derived Richardson number.

Figure 2. (a–c) Na lidargram, absolute temperature (in K), and the square of Brunt‐Väisälä frequency (N2) over Cerro Pachón, Chile (low latitude), on 30 October
2016, respectively. (d–f) The map of zonal wind, meridional wind, and derived Richardson number.
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represents a time history of the vertical distribution of Na atoms in a narrow cylindrical volume over the
lidar location. As the neutral Na atoms in the layer have a long chemical lifetime relative to the evolution
of atmospheric dynamics (Xu & Smith, 2003), they are collisionally well embedded in the neutral atmo-
sphere. The C‐type structures observed in the lidargram on several occasions could be caused by wave break-
ing or KH billows and may be generated in the Na layer due to strong wind shear (Kane et al., 2001). As
described in Sarkhel et al. (2015a), a KH billow structure can imprint a C‐type structure in the lidargram.
Therefore, in order to judge the persistence of the C‐type in the lidargram, the evolution of KH billows needs
to be investigated.

The features of KH billow or instability have been observed for decades (e.g., Browning, 1971; Hecht et al.,
1997, 2000; Peterson, 1979; Taylor & Hapgood, 1990; Taylor et al., 1997; Taylor & Hill, 1991). As earlier
referred, the atmosphere becomes conducive for the generation of KH billows and dynamically unstable,
whenever Ri becomes less than the canonical threshold, 0.25. The evolution of these KH billows depends
on a few atmospheric parameters that will decide its evolution and lifetime. These are discussed below:

5.1. Role of Viscosity: Reynolds Number (Re)

For homogenous fluid, if we consider the viscosity term, then the energy lost frommean flow in creating the
fluid particle deformation will not be available for feeding any kind of instabilities. Therefore, there should

Table 3
Date, Locations, and Time (in UTC) of the Events Mentioned in Figures 2–4

Date and location of event
C‐type occurrence
time (in UTC)

Altitude range of
C‐type structure

Average temperature (K) of
the C‐type altitude region

Prandtl
number (Pr)

Reynolds
Number (Re)

30 Oct 2016 Cerro Pachón, Chile
(30.3 °S, 70.7 °W)

02.00–04:00 93–99 km 184 0.74 146

13 Jul 2013 Logan, USA
(40.6 °N, 105 °W)

09:30–10.00 86–96 km 181 0.74 245

14 Dec 2014 Tromsø, Norway
(69.6 °N, 19.2 °E)

22:00–26:00 90–99 km 199 0.73 641

Note. Average temperature in the region of interest (“C‐type” structure) and obtained magnitudes of the Prandtl numbers and the Reynolds numbers for those
cases.

Figure 4. (a–c) Na lidargram, absolute temperature (in K), and the square of Brunt‐Väisälä frequency (N2) over Tromsø, Norway (high latitude), on 14 December
2014, respectively. (d–f) The map of zonal wind, meridional wind, and derived Richardson number.
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be a stabilizing effect on shear flow dynamics due to introduction of viscosity term. We can estimate the
magnitude of this stabilizing effect using molecular Reynolds number (Re) with the following relation:

Re ¼ u:h
ν

(5)

where h is taken as the half depth of the unstable layer, u is half of the velocity difference across unstable
layer, and ν being kinematic viscosity (Hecht et al., 2005). Re is the comparison of maximum available mean
kinetic energy with the linear damping per unit mass, which is contributed by the production of stress, that
is, comparison of viscous and inertial forces. Therefore, the relationship between the mean shear and the
wave instability becomes more complex due to presence of this viscosity term. The importance of the effect
of Re on the lifetime and evolution of KH billow is described in the next subsections.

5.2. Dependence of the Lifetime of KH Billows on Re From Different Models

Klaassen and Peltier (1985a, 1985b, 1991) have suggested a model (known as KP model), wherein Ri is vari-
able and Re is in between 300 and 900. The initial billow formation takes slightly longer time which is around
3.5 to 7 min. When Re is 500, secondary instability occurs at around 9 min. At around 11 min, the secondary
instability's maximum growth rate was achieved. Moreover, at 13 min, it had maximum amplitude at an
amplification factor of 20 to 30% of the primary KH billow. When Re has magnitude of 300, the secondary
instabilities have much lower growth rates. For Re of 500, the lifetime is around 20 min. Similar to FPmodel,
the KP model also suggests that whenever the magnitude of Re is higher, the lifetime of the KH billow
is reduced.

Palmer et al. (1996) and Fritts et al. (1996) have suggested amodel (known as FPmodel), which has Re as 0.05
and Re as 300 and 500, that reach maximum amplitude after 8 min from starting and billows collapse into
turbulence after around 12 min. However, when Re is 300, the turbulence is over by around 25 min. The
collapse of billow is slower than for Re of 500 cases, wherein collapsing structures were much coherent
and less turbulent as compared to Re of 500. Thus, the lifetime of KH billow for Re of 300 is more compared
to Re with 500, which can be estimated around 25 min.

Hill et al. (1999) andWerne and Fritts (1999) discussed a model (known asHWmodel) with Ri of 0.05 and Re
as 2,000, in which billow growth is maximum at around 10 min. Between 14 and 18 min, the secondary
instabilities become visible. The structures collapsed after 29 min which implies that the lifetime of the
secondary instability is around 10min, as observed by Palmer et al. (1996) and Fritts et al. (1996), (FP model)
when Re was 500.

Caulfield and Peltier (2000) have discussed a model which has the magnitude of Ri between 0 and 0.125 and
Re of 750. The lifetime of KH billow is around 20–30 min. The above studies suggest that the decrease in the
Re generally leads to the increase in the lifetime of the KH billows. Also, according to Hecht et al. (2005), the
KH billows in mesopause region appeared to last longer than those observed in the troposphere based on
observations by Browning and Watkins (1970) and Browning (1971), which had lifetime of less than
15 min in the troposphere.

5.3. Effect of Prandtl Number on the Evaluation of KH Billow

In the fluid mechanics, the Prandtl number (Pr) is defined as: Pr = ν/α , where ν is the kinematic viscosity
of the fluid and α is the thermal diffusivity. By definition, it is clear that unlike Re, it contains no such length
scale and depends only on the fluid state. Therefore, it is a property of the fluid itself not the flow state. The
growth and collapse of the KH billow are common features in a stably stratified shear flow and play a crucial
part in the dynamics and energetics of the upper atmosphere. Numerous numerical analyses and laboratory
experiments have been carried out to understand the nonlinear evaluation of KH billowwith various Prandtl
numbers (e.g., Klaassen & Peltier, 1985a; Peltier & Caulfield, 2003; Thorpe, 2005). However, the dependence
of Prandtl number on the evaluation of KH billow, which appeared in the upper atmosphere, is not well
understood. In order to assess the stability of KH billow in a density‐stratified fluid, we are trying to study
the evolution of KH billow in conjunction with the Prandtl number. The objective is to find out the depen-
dency of KH billow on the Prandtl number and its influence on the characteristics of KH billow. The Prandtl
number may have numerous effects on energy budget of KH billow and the exchange of energy of that with
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the mean flow energy. On basis of the previous numerical and laboratory experiment, the variation of the
amplitude and stability of billow structures with the Prandtl number are briefly described below.

This section is dedicated to understand whether the Prandtl number plays any role to the variation of vertical
scale height of C‐type structure which is believed as themanifestation of the KH billow in Na lidargram. One
of the most characteristic features of KH instability is the variation of vertical scale height of KH billows.
Klaassen and Peltier (1985c) observed that the density stratification has a stabilizing effect on the formation
of KH billow, and consequently, the shear flow having greater thermal diffusion rate (which means lower
Prandtl number) should lead to form KH billows with maximum vertical scale height. The numerical study
by Rahmani et al. (2016) also confirmed that the KH billows with lower Prandtl number achieve larger
vertical extent. Thereafter, lower Prandtl number shear flow might be the reason of the higher vertical
extends of the KH billow in the MLT region. The vertical extent of KH billows in a flow having lower
Prandtl number (Pr ~ 0.7) medium is found to be in the range of a few kilometers, whereas the vertical range
of KH billows in the Ocean with higher Prandtl number (Pr ~ 13.6) is about a few meters (De Silva et al.,
1996). Larsen et al. (2004) also reported overturning or roll type structure on the Na lidargram, similar to
C‐type in the MLT region. They also found nearly 5‐ to 6‐km vertical extents of those overturning or rolls
type structure. In this context, our results tabulated in the Tables 2 and 3 reveal few kilometer vertical
extents for all the observed locations. Therefore, there is a correlation between the vertical extent of KH
billow and the Prandtl number. It indicates that the lower Prandtl number leads to the higher vertical extent
of KH billow or the C‐type structure.

5.4. Effect of Convective and Dynamic Stability: Brunt‐Väisälä Frequency and
Richardson Number

Thermal or convective stability and dynamics stability play important role in upper atmosphere whether the
frozen‐in condition of KH billow will last long and will depend on the thermal stability of the medium,
which is controlled by temperature gradient. On the other hand, the dynamics stability of the medium is
controlled by the wind shear. This section is devoted to study the thermal stability as well as the dynamical
stability of the background condition in the region of C‐type structure and the role of different atmospheric
parameters to the convective and dynamical stability.
5.4.1. Convective Stability
It is a well‐known fact that the thermal convection depends upon the temperature gradient. The thermal
convection in the medium plays an important role in the mixing of the species present in the medium.
This motivates us to investigate the altitude profiles of temperature gradient and, hence, Brunt‐Väisälä
frequency over the Na lidar locations to study the effect of thermal stability in the region of C‐type structure.

In turbulent thermal convection, Prandtl number and Rayleigh number (Ra) are also imperative and control
parameters. In this context, an asymptotic expression of Rayleigh number in Rayleigh‐Bénard convection,
which is useful to the present scenario, can be expressed as follows:

Ra e β:g:L4:T′
ν·αð Þ (6)

where L is vertical scale size of the C‐type structure, T′ is the temperature gradient between the colder upper
and warmer lower surfaces dT

dz

� �
, g is the acceleration due to gravity, and β, ν, and α are, respectively, the

thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the convecting fluid
(Grossmann & Lohse, 2002; Qiu & Tong, 2001). The experimental observations suggest that the relationship
between Ra, Re, and Pr is Re ~ Ra0.43 Pr−0.76 (Lam et al., 2002). Therefore, Ra increases with themagnitude of
the negative temperature gradient and subsequently increases the magnitude of Re that leads to the turbu-
lent atmosphere in the mesosphere. In addition, it is clear from the equation (2) that if the magnitude of
negative temperature gradient increases and more than the adiabatic lapse rate (g/Cp), square of Brunt‐
Väisälä frequency (N2) becomes negative and the atmosphere becomes convectively unstable. Therefore,
the relationship between Re and N2 is consistent and conclusively indicates that the convectively stable
atmosphere leads to lower magnitude of Ra and hence Re.

It is to be noted that the above relationship of Ra with Re and Pr from Lam et al. (2002) applies to thermal
(Rayleigh‐Bénard) convection, in which the fluid velocities develop from the temperature gradients.
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Interestingly, Figures 2–4 depict the negligible wind shear during the observation of the C‐type structure in
the MLT region over low‐, middle‐, and high‐latitude stations. Therefore, this is the condition wherein the
thermal convection due to the temperature gradient will play dominant role in the stability of KH billow
in the MLT region, and any existing KH billow structure will be affected primarily by the convection. This
is the similar situation to Rayleigh‐Bénard thermal convection, wherein fluid velocities developed solely
due to the temperature gradients and the convective cell is generated in the medium. This type convective
cell can also be generated in theMLT region due to the temperature gradient which can lead to the distortion
of any existing structure in the medium (like C‐type structure in the present case).

The Prandtl number plays an important role in the secondary instability. This secondary instability, which is
convective in nature, has a crucial role in vertical mixing of fluids. Increasing Prandtl number has profound
effects on small‐scale features like secondary instability, which sometimes developed in the outer core of the
billow. As discussed in the Data Analyses, the Prandtl number is the ratio of momentum diffusivity
(kinematic viscosity) to thermal diffusivity. The momentum transfer is related to the kinematic viscosity
while the diffusion of heat is related to the thermal diffusivity in the region of interest. In equation (4), it
can be inferred that the Prandtl number is dependent on the temperature of the region of interest. It indi-
cates that the increase in the temperature leads to the decrease in the magnitude of Prandtl number, which
means higher thermal conductivity and/or lower viscosity of the region. This enables the heat transfer by
thermal convection between the bottom warmer region and the upper cooler region of the KH billow in
the mesosphere, activating the convective cells that tend to mix between the two regions. On the other hand,
if the temperature is decreased, the Prandtl number is increased, which indicates low thermal conductivity
and/or the region becomes more viscous. As discussed in Majumder et al. (2002), the fluid becomes stiffer
and more time is required for the development of structure from an initial temperature perturbation.
Hence, the thermal convective cell between the bottom and the upper region of the KH billow in the meso-
sphere will not be very effective. Therefore, the collapsing of billow will take a longer time in a fluid having
higher Prandtl number. Rahmani et al. (2014) also indicated the extension of overall lifetime of the KH
billow in high Prandtl number fluid.
5.4.2. Dynamic Stability
The dynamic stability is mainly controlled by the wind shear. Therefore, the medium with large wind shear
or dynamically unstable regionmay not conducive for long lifetime of KH billow. It is earlier mentioned that
the magnitude of Ri is the indication of dynamical instability of the atmosphere which occurs when
Ri < 0.25. The maps of Richardson number for the last three cases found always greater than the threshold
limit of 0.25 in the region of C‐type structure indicating that nonexistence of dynamical instability. In addi-
tion, the Reynolds numbers, which are calculated for the last three cases, are found be less than 1,000 which
is the clear indication of nonturbulent medium. Hence, the conclusion can be drawn that the KH billows
that manifested as the C‐type structures in the Na lidargram over Cerro Pachón, Chile, Logan, USA, and
Tromsø, Norway, are not locally generated. Rather, they were generated earlier at some other locations
and advected through a nonturbulent medium to reach the Na lidar site. The nonturbulent medium pre-
serves the shape of any overturning structure which was previously generated in other locations due to
strong wind shear. These are called frozen‐in structures which are advected by the backgroundwind without
much deformation.

5.5. Lifetime of KH Billow

As discussed above, we can directly relate the turbulence with the magnitude of Re and Prandtl number
wherein the turbulence will likely occur when the magnitude of Re is high and Prandtl number is low. In
the present investigation, the Prandtl number derived for all the six cases (shown in Tables 2 and 3) from
low‐, middle‐, and high‐latitude stations is more than the typical magnitude of Prandtl number observed
within the TBL. The Re, which is calculated for the last three cases, are found be less than 1,000 which is
the clear indication of nonturbulent medium. It is also discussed that convectively stable atmosphere leads
to lower magnitude of Re. Despite there are no windmeasurements for the first three cases available with us,
we can also extend the same argument that the magnitude of Re must have been in the lower side in that
altitude region as it was convectively stable during the occurrence of the C‐type structure in the Na lidar-
gram over all those observational sites. In this connection, it is important to note that the observations of
C‐type structures from the different locations reveal that they lasted for 30 min to a few hours and bring
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out the existence of KH billows in the Na layer. As discussed above, the C‐type structure is the manifestation
of a KH billow in the lidargram; hence, the lifetime of the KH billow must be somewhere in between 30 min
and a few hours. The longer lifetime of the KH billow is because of the low magnitude of Re and increase in
the magnitude of the Prandtl number in that altitude region. Tables 2 and 3 reveal that the Prandtl numbers
for all the locations within the C‐type structure region are noticeably greater than 0.7, which is the magni-
tude of the Prandtl number in the TBL. This is consistent with the observation reported by Hecht et al. (2005)
that the KH billows in the MLT region appear to last longer than the KH billows observed in the troposphere
using radar observation reported by Browning (1971) and Browning andWatkins (1970). However, the accu-
rate estimation of the Prandtl number is very difficult in the MLT region. Experimental measurement of the
eddy Prandtl number from photographic tracking of rocket released chemical clouds was found to be ~3, but
the data was significantly scattered (Justus, 1967). Several numerical studies also suggest that the effective
value of eddy Prandtl number should be much greater than 1 in the MLT region (Coy & Fritts, 1988;
Gavrilov & Yudin, 1992; Huang & Smith, 1991; Strobel et al., 1985, 1987; Strobel, 1989). Strobel et al.
(1985), Strobel (1989), and Brasseur and Solomon (2005) reported that the tracer and heat transport in the
mesosphere can be best reproduced by taking Prandtl number ~3. In this context, Strobel et al. (1987) also
suggested a large value of the Prandtl number (~10) in the mesosphere after deriving eddy momentum diffu-
sion coefficient from momentum stress, constituents transport, and heat transport (Johnson & Killeen,
1995). Thereby, experimental and numerical studies show that the effective value of the Prandtl number
is much higher in the MLT region compared to the TBL region. As discussed above, the longer lifetime of
KH billows is possible when the magnitude of the Prandtl number is increased. Hence, the lifetime of KH
billows in the MLT region is expected to be longer than in TBL provided other parameters remained unal-
tered. In the present investigation, the magnitude of the Prandtl numbers for all the observed cases must
have been very high, and as a result, the KH billow or the C‐type structure lasted for longer time.

It is clear from the above discussion that the gradient of temperature and wind shear will dictate the overall
lifetime of KH billows in the MLT region. The maps of Richardson number for the last three cases found
always greater than the threshold limit 0.25 in the region of C‐type structure indicating that it was not locally
generated due to strong wind shear. Convectively and dynamically stable regions are conducive to sustain
KH billows for a longer time once they are generated due to a strong wind shear. If the strong wind shear
persists for a long time, the vertical mixing will prevent KH billows from persisting for a long time.
However, if there is a significant reduction in the magnitude of a wind shear, the further evolution and
deformation are ceased and the remnant of the previously generated KH billows can get nearly frozen‐in
the background. Qiu et al. (2016) also support the frozen‐in concept. They observed the same C‐type struc-
ture in Na lidargram from different lidar locations in China. The structure advected by the background wind
without much deformation that was detected at different time by a series of Na lidars, although there is no
scope in this present paper to determine the generation mechanism of KH billows or the similar bow‐like
shape structure as discussed by Clemesha et al. (2004). However, this present paper brings out the hypothesis
wherein these previously generated KH billows in frozen‐in condition can be advected by the background
wind to a different location through the low temperature and convectively stable region where they can sus-
tain for a long time without much deformation. These long‐lived KH billows, in nearly frozen‐in condition,
will eventually manifest as the long‐lasting C‐type structures in the lidargram.

5.6. Limitation and Justification

The temperature profiles utilized to derive N2 for the first three cases have been measured by the SABER
instrument onboard the TIMED satellite. These satellite‐retrieved temperature profiles from the SABER
are less accurate compared to the temperature profiles measured by the Na lidar, used for last three cases.
In addition, the time and measurement locations may not exactly coincide with the event and the lidar
location, respectively. Moreover, there are also no wind data available for the first three cases. Therefore,
there is no scope of calculating Ri and Re for the first three cases to assess the effect of dynamical instability
and turbulence of the altitude region wherein C‐type structures occurred over the Na lidar location.
However, we have other three case studies from different latitude sites (low, middle, and high latitude) with
simultaneous measurements of wind and temperature profiles, which are enough to validate the hypothesis.
Hence, based on the adequate data set for the last three cases, we can also extend same argument for the first
three cases that low temperature and convectively stable atmosphere in theMLT region can be conducive for
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the longer lifetime of the already formed KH billows that are advected to the lidar location wherein they
manifest as the long‐lasting C‐type structure in the Na lidargram.

6. Summary and Conclusion

The characteristics of the C‐type structure appeared in the Na lidargram have been analyzed in order to
investigate the evolution of the KH billow in the MLT region. The appearance of this unusual structure in
the lidargram is independent of the locations and depends only on the physical processes. In order to validate
the hypothesis, we have analyzed the Na lidargram for six cases from low‐, middle‐, and high‐latitude
locations. The lidar observations of neutral Na atoms concentration from these sites are complemented by
the temperature measurements either by the same Na lidar or by the SABER instrument onboard TIMED
satellite. Simultaneous wind measurements are also available for over Cerro Pachón, Chile, Logan, USA,
and Tromsø, Norway. An attempt has been made to understand how the lifetime of the KH billow depends
on the various atmospheric parameters in the MLT region: Reynolds number, Prandtl number, and
Richardson number. The altitude profile of Brunt‐Väisälä frequency (N2) derived from the temperature mea-
surement found to be positive for all the cases in the region of C‐type structure. The height‐time maps of
Reynolds number clearly indicate the nonturbulent atmosphere over Cerro Pachón, Chile, Logan, USA,
and Tromsø, Norway, during the event. It has been proven that the convectively stable atmosphere leads
to the low Reynolds number and hence nonturbulent atmosphere. Based on the adequate data set for the last
three cases, we can also extend same argument for the first three cases that the convectively stable atmo-
sphere leads to the nonturbulent atmosphere. In addition, the Prandtl numbers for all the locations in the
altitude region of C‐type structure were found to be noticeably greater than the Prandtl number in TBL.
The larger magnitude of Prandtl number is the indication that the thermal convective cell between the
bottom and the upper region of the KH billow in the mesosphere will not be very effective. As a result,
the collapsing of the billow will take a longer time that increases its lifetime. Moreover, the height‐timemaps
of Richardson number for the last three cases found always greater than the threshold limit 0.25 in the
region of C‐type structure indicating that it was not locally generated due to strong wind shear. Based on
the results obtained in this investigation, it has been finally concluded that the low temperature and
convectively stable atmospheric in the MLT region will be the conducive medium wherein the remnant of
previously generated KH billows can be advected in nearly frozen‐in condition through this conducive
region to a different location by the background wind where they can sustain for a long time without much
deformation. These long‐lived KH billows in theMLT region will eventually manifest the long‐lasting C‐type
structures in the lidargram.
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