

The Space Congress® Proceedings

2016 (44th) The Journey: Further Exploration for Universal Opportunities

May 25th, 7:30 AM

Advancing the Theory and Practice of Engineering Project Management by addressing the issue of CPI Stability and Hidden **Project Performance**

Michael Staley PE, PMP Dean of the School of Engineering, Design, & Construction, Seminole State College Doctoral Research, Center for PM Research

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

Staley, Michael, "Advancing the Theory and Practice of Engineering Project Management by addressing the issue of CPI Stability and Hidden Project Performance" (2016). The Space Congress® Proceedings. 31.

https://commons.erau.edu/space-congress-proceedings/proceedings-2016-44th/presentations-2016/31

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

NASA 44th Space Congress

Advancing the Theory and Practice of Engineering Project Management by addressing the issue of CPI Stability and Hidden Project Performance.

Michael Staley, PE, PMP

24 May 2016

Overview

Literature Review

- Why EVM?
- What is EVM?
- Define the CPI Stability Issue

Research

- Propose a Solution
- Illustrate with Case Study

Practice

Application to Case Study

Identify Hidden Performance

Literature Review: Why EVM?

\$12T in projects globally

□ 62% of all projects studied use EVM

- U.S. government requires EVM on major projects...OMB, DoD, NASA, FAA, etc.
 - 69% of projects using EVM are voluntary adopters
- Usage not just in U.S., but globally, e.g., UK, Australia, New Zealand, Japan, Hong Kong, Sweden, UAE, Saudi Arabia, India, Pakistan...

Song, Lingguang (April 2010) Earned Value Management: A Global and Cross-industry Perspective on Current EVM Practice", ISBN: 1935589067.

EVM requires an integrated baseline!

Project Management Institute. <u>A Guide to the Project Management Body of Knowledge</u>. 5th edition, 4th edition, 3rd edition, 2000 edition. Newton Square, Pennsylvania. USA *PMBOK is a registered mark of Project Management Institute, Inc.*

□ Three key terms

Earned Value (EV) is

"The value of work performed expressed in terms of the approved budget assigned to that work completed"

Actual Cost (AC) is

"Total costs actually incurred and recorded in accomplishing work performed..."

Planned Value (PV) is

"The authorized budget assigned to the scheduled work to be accomplished..."

Project Management Institute. <u>A Guide to the Project Management Body of Knowledge</u>. 5th edition, 4th edition, 3rd edition, 2000 edition. Newton Square, Pennsylvania. USA *PMBOK is a registered mark of Project Management Institute, Inc.*

Definitions are taken from the Glossary of the Project Management Institute, A Guide to the Project Management Body of Knowledge, (PMBOK® Guide) - Fifth Edition, Project Management Institute, Inc., 2013

Measure performance and progress

Plan Value	Project Task		CV = EV - AC CV = - \$5
PV = \$100 $Actual Cost$ $AC = 80		Earned Value 75% Complete EV = \$75	CPI = EV / AC CPI = 0.9375
			SV = EV - PV SV = - \$25
			SPI = EV / PV SPI = 0.75

Definitions are taken from the Glossary of the Project Management Institute, A Guide to the Project Management Body of Knowledge, (PMBOK® Guide) - Fifth Edition, Project

Forecast depends upon CPI Stability:

 $\blacksquare EAC = AC + (BAC- EV)/CPI = BAC/CPI$

S-Curves are whole-project... all tasks in aggregate. \$

CV & SV are the vertical distance between curves.

Definitions are taken from the Glossary of the Project Management Institute, A Guide to the Project Management Body of Knowledge, (PMBOK® Guide) – Fifth Edition, Project Management Institute, Inc., 2013 EVM: CPI Stability & Hidden Performance © Michael Staley, PE, PMP, 2015 7 Cornell University 04-2015

4. Determine Project Performance

© Michael Staley, PE, PMP, 2014

CPI Stability Rule

□ CPI stabilizes by the time a project is 20% complete.

□ Stability test for CPI

- CPI_{final} does not change by more than +/- .10 from CPI_{20%}
- CPI does not change by more than +/- 10% from 20% complete through project completion

Henderson, Kym, O. Zwikael. "Does Project Performance Stability Exist ...a re-examination of CPI and evaluation of SPI(t) stability," CrossTalk, April 2008

CPI Stability Rule

Christensen and Payne (1992)

First empirical confirmation of CPI stability rule based upon 26 projects from USAF Systems Command Aeronautical Systems Division.

Fleming and Koppel hann (1999)

Generalized CN stability rule to all projects

Christensen and Templin (2002) Summarized findings...some projects improve

Adopted into EVM Standard (2004)

CPI Stability Rule Questions

Michael Popp (1995)

Plotted CPI₂₀ vs CPI_{final} NAVAIR internal unclassified report.

David Christensen (1999 & 2002) Using data from Michael Popp (eseatch, found that CPI stability could not be generalized.

Henderson & Zwikael (2008)

Analyzed 45 projects from 3 countries...87% Stable @20% Some projects did not stabilize until 70-80%.

Czarni owska, Jaskowski & Biruk (2011) Whole-project measures can be misleading"...poor

performance may be compensated by good performance."

Michael Popp chart shows a significant number of projects presenting unstable CPI's

CORRELATION BETWEEN CUMULATIVE CPI AT 10-20% COMPLETE AND FINAL CPI

Henderson, Kym, O. Zwikael. "<u>Does Project</u> <u>Performance Stability Exist</u> <u>...a re-examination of CPI</u> <u>and evaluation of SPI(t)</u> <u>stability</u>," *CrossTalk*, April 2008

© Michael Staley, PE, PMP, 2015

Research: Proposed Solution

Working Hypothesis:

□ CPI is stable at the performance unit level.

- Performance Unit is a collection of resources working on the same task(s).
- Each performance unit within a project may have different cost and schedule performance, each requiring a unique management response.
- Hidden Performance Good performing units hide poor performing units at the whole-project level.
- We can develop alternative whole-project CPI formulae based upon each unit's performance...better stability compliance.

Research: Proposed Solution

CORRELATION BETWEEN CUMULATIVE CPI AT 10-20% COMPLETE AND FINAL CPI

1,40 project that presents a CPI 1.20 greater than 1.0 at 20% 1.00 complete. However by the d 0.00 time the project finishes, the CPI 🚆 🚥 has eroded to less than 1.0. 0.40 CPI₂₀>1.0 Henderson, Kym, O. CPI_{FINAL}<1.0 0.20 Zwikael. "Does Project Performance Stability Exist **Outside Stability Range** ...a re-examination of CPI and evaluation of SPI(t) 0.00 0.10 0.20 0.30 0.40 0.50 -1.00 1.10 1.20 1.30 1.40 1.50 1.00 1.70 1.80 0.60 0.70 0.90 stability," CrossTalk, April CPI AT 10-20% COMPLETE 2008

Here we see a

Research: Proposed Solution

CPI<1.0

How can Stable Performance Unit CPI's present an unstable whole-project CPI?

Answer: The wholeproject CPI is a weighted average...

Performance Unit CPI's can identify hidden performance issues in time to correct them!

Research:

Case Study

Mini Case Study A2D: You are the project manager of an A/E building design project. Task 1 is completed by the same team as Task 4.

Simple Baselines								
WBS	ES	EF	Budget	1	2	3	4	
Task 1	1	2	\$100,000	35	65			
Task 2	2	3	\$125,000		75	50		
Task 3	2	4	\$145,000		20	60	65	
Task 4	3	4	\$75,000			25	50	
	160	135	115					
	Cum PV 35 195							

Project Status Report end of wk 2							
Task	Status	Spent					
1	Complete	\$97,750					
2	65% Complete	\$75,750					
3	10% Complete	\$19,850					
4	Not Started	\$0					

Calculate the CV, CPI, SV, and SPI for the whole project.

Then calculate the same values for each of the performance units and compare the results.

Research: Case Study

Mini Case Study A2D												
WBS	WBS BAC EV AC CPI EAC											
Task 1	\$100,000	\$100,000	\$97,750	1.0230	97,750							
Task 2	\$125,000	\$81,250 \$75,750	1.0726	116,538								
Task 3	\$145,000	\$14,500	\$19,850	0.7305	198,500							
Task 4	\$75,000	\$0	\$0	1.0230	73,313							
445,000 195,750 193,350 1.0124												

The whole-project CPI is > 1.0

EAC = BAC/CPI = 445,000/1.0124 = **\$439,546**

Task 3's poor performance is masked by the good performance of the other units.

The sum of the performance unit EAC's is \$486,101.

Research: Case Study

Alternative Whole-Project CPI Formulae

CPI¹ = EV/AC (Traditional CPI)

$\Box CPI^{2} = \sum ((BAC_{PU}/BAC_{total}) \times CPI_{PU})$

Where CPI² is the sum of the performance unit CPI's weighted as a proportion of relative size

$\Box \operatorname{CPI}^{3} = \operatorname{BAC}_{\operatorname{total}} / (\Sigma (\operatorname{BAC}_{\operatorname{PU}} / \operatorname{CPI}_{\operatorname{PU}}))$

Where CPI³ is an estimate of final CPI instead of a cumulative to date metric

Research: Case Study

Mini Case Study A2D										
WBS BAC EV AC CPI EAC										
Task 1	\$100,000	\$100,000	\$97,750	1.0230	97,750					
Task 2	\$125,000	\$81,250	\$75,750	1.0726	116,538					
Task 3	\$145,000	\$14,500	\$19,850	0.7305	198,500					
Task 4	\$75,000	\$0	\$0	1.0230	73,313					
	445,000	195,750	193,350	1.0124	486,101					

CPI¹ = 1.0124 CPI² = 0.9416 CPI³ = 0.9155

Aerospace Laboratory Case Study

- Multi-functional Propulsion Research Laboratory.
 - Unique environment where synergism among different advanced propulsion technologies can be exploited and used to expedite development.
- Supports exploratory research and feasibility investigations of a wide range of high-payoff propulsion technologies.

Advanced Propulsion Research Technologies, including

- Beamed Energy (Laser)
- Antimatter
- Chemical Synthesis
- Magnetohydrodynamics
- Simulated Fission
- High Power Plasma (Fusion)
- **Propulsion Physics**
- Solar Thermal

Facility Design Goals and Principles

- Stimulating Environment for Research
 - Building Flexibility for Changing Research
- Sustainable Facility Design
- Safe Laboratory Environment

Work Breakdown Structure				SCHEDULE	(Wks)	PROFESSIONAL LABOR								
Line	Level 1 Level 2		Level 3	Level 4	WBS ¹	WBS Code	Early Start	Early Finish	Project Manager	Sr. Engineer	Engineer	Tech	TOTALS Laborhours	TOTALS Dollars
									156.25	125.00	93.75	62.50		
	Construct	ion E	Docu	imen	ts for \$22,000,000 Plant	1			0.1	0.25	0.3	0.35		
	Arch	hitec	tural	& E	ngineering	1.1								
		Arc	chite	ectura	al	1.1.1								
А			S	Scher	matic or Conceptual Des	1.1.1.1	1	4	80	200	240	280	800	77,500
С			Α	\rch	Design Development	1.1.1.2	5	7	150	375	450	525	1500	145,313
F			Α	Arch (60% Construction Doc's	1.1.1.3	8	13	125	313	375	438	1250	121,094
J	Arch 90% Construction Doc's			1.1.1.4	14	17	125	313	375	438	1250	121,094		
κ	100% Construction Doc's			1.1.1.5	18	20	100	250	300	350	1000	96,875		
	Structural, Mech, Elect, Plumb			1.1.2										
В	Engr Design Development		1.1.2.1	5	6	120	300	360	420	1200	116,250			
Е			E	Ingr	60% Construction Doc's	1.1.2.2	8	10	300	750	900	1050	3000	290,625
Н			E	Ingr	90% Construction Doc's	1.1.2.3	14	16	300	750	900	1050	3000	290,625
К			1	00%	Construction Doc's	1.1.1.5	18	20	150	375	450	525	1500	145,313
	Indu	Istria	l En	ginee	ering (IE)	1.2								
		Pla	ant L	ayou	it, Equipment, Process	1.2.1								
D	D IE Design Development 1		1.2.1.1	5	6	75	188	225	263	750	72,656			
G	G IE 60% Construction Doc's 1.			1.2.1.2	8	11	125	313	375	438	1250	121,094		
- 1	I IE 90% Construction Doc's 1.			1.2.1.3	14	17	100	250	300	350	1000	96,875		
К	K 100% Construction Doc's 1			1.1.1.5	18	20	75	188	225	263	750	72,656		
									1825	4563	5475	6388	18250	
									285156	570313	513281	399219		1,767,969

Aerospace Laboratory Case Study

		Wł	nole-Project C	PI	Performance Unit CPI				
	Wk	CPI	CPI 2	CPI A	CPI E	CPI IE			
	4	1.0870			1.0870		2		
	8	1.0347	0.9863	0.9797	1.0799	0.9029	1.0351		
1	12	1.0193	0.9877	0.9811	1.0802	0.9047	1.0373		
	16	0.9940	0.9877	0.9811	1.0820	0.9048	1.0344		
	20	0.9909	0.9876	0.9809	1.0826	0.9044	1.0335		
	24	0.9804	0.9871	0.9804	1.0826	0.9034	1.0335		

- 1. CPI¹ does not drop below 1.0 until month 4 of 5. CPI² and CPI³ reveals poor performance in month 2.
- 2. Performance Unit analysis reveals which unit is performing poorly.

✓ Performance Unit CPI's are stable

✓ Each performance unit has a different CPI

Good performance is hiding poor performance

EVM: CPI Stability & Hidden Performance Cornell University 04-2015 © Michael Staley, PE, PMP, 2015

Practice: Identify Hidden Performance

Alternate Whole-Project CPI's are stable

CPI³ produces best fit

Conclusion:

Working Hypothesis:

✓ CPI is stable at the performance unit level.

- Performance Unit is a collection of resources working on the same task(s).
- Each performance unit within a project may have different cost and schedule performance, each requiring a unique management response.
- Hidden Performance Good performing units hide poor performing units at the whole-project level.
- We can develop alternative wholeproject CPI formulae based upon each unit's performance...better stability compliance.

Conclusion:

Take Aways:

- Use Limit States to identify project performance issues and management responses
- Each performance unit within a project may have different cost and schedule performance, each requiring a unique management response.
- Hidden Performance Good performing units hide poor performing units at the whole-project level.
- Drill down to the performance unit analysis level to identify hidden performance issues.

CPI Stability

Bibliography

Christensen, DS, Antolini, RC, McKinney, JW. <u>A Review of Estimate at Completion Research</u>. Journal of Cost Analysis and Management. Spring 1995 P. 41-65.

Christensen, DS, Templin, C. <u>EAC Evaluation Methods: Do They Still Work?</u> Acquisition Review Quarterly. Spring 2002. P 105-116.

Czarnigowska, Agata, Jaskowski, Piortr, Biruk, Slawomir. (2011) Project Performance Reporting and Prediction: Extensioins of Earned Value Management. International Journal of Business and Management Studies. Vol 3 No. 1 2011

Fleming, Quentin and Koppelman, Joel. (1994) <u>The Essence and Evolution of Earned Value</u>. AACE International Transactions.

Henderson, Kym, O. Zwikael. "Does Project Performance Stability Exist ...a re-examination of CPI and evaluation of SPI(t) stability," CrossTalk, April 2008

Kwak, Young Hoon and Anbari, Frank. <u>History, practices and future of earned value management in government:</u> <u>Perspectives from NASA.</u> Project Management Journal Volume 43, Issue 1 Pg 77-90 Feb 2012.

Lipke, Walt. <u>Further Study of the Normality of CPI and SPI(t)</u>. The Measurable News. 2012 Issue 2 Lipke, Walt. <u>Statistical Process Control of Project Performance</u>. The Journal of Defense Software Engineering. March 2002 Lipke, Walt and Vaughn, Jeff. <u>Statistical Process Control Meets Earned Value</u>. The Journal of Defense Software Engineering. June 2000

Project Management Institute. <u>A Guide to the Project Management Body of Knowledge</u>. 5th edition, 4th edition, 3rd edition, 2000 edition . Newton Square, Pennsylvania. USA

Project Management Institute. <u>Practice Standard for Earned Value Management</u>. Project Management Institute 2004 Song, Lingguang (April 2010) <u>Earned Value Management</u>: A Global and Cross-industry Perspective on Current EVM <u>Practice</u>", ISBN: 1935589067.