

The Space Congress® Proceedings

2018 (45th) The Next Great Steps

Feb 27th, 7:30 AM - 8:30 AM

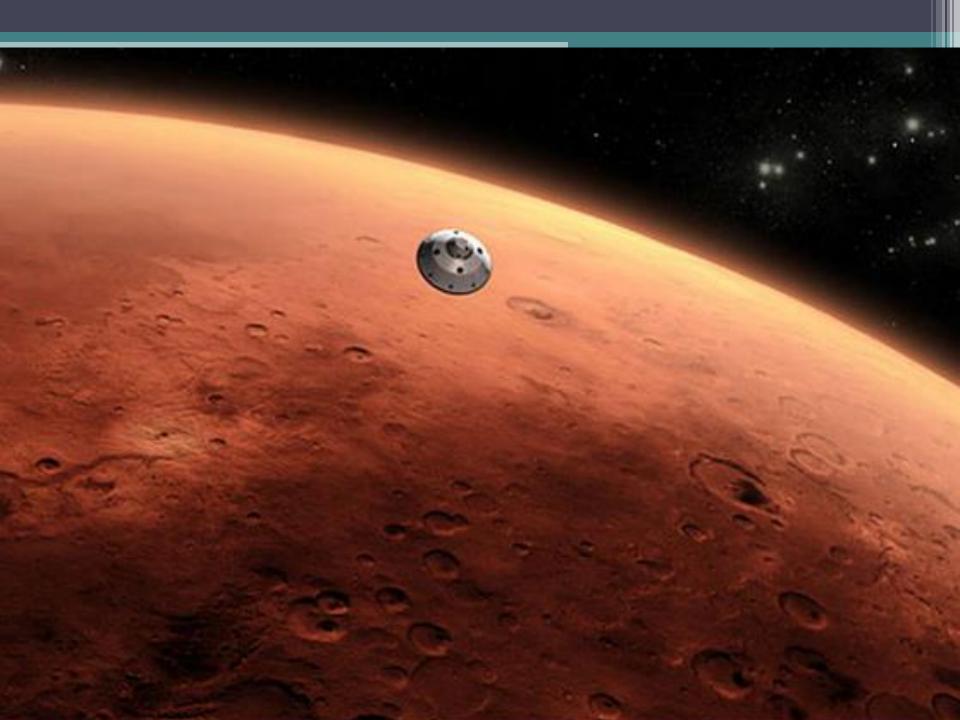
Conducting Rock Mass Rating for Tunnel Construction on Mars

Heidi D. Beemer Chemical Defense Officer, U.S. Army

David Worrells Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

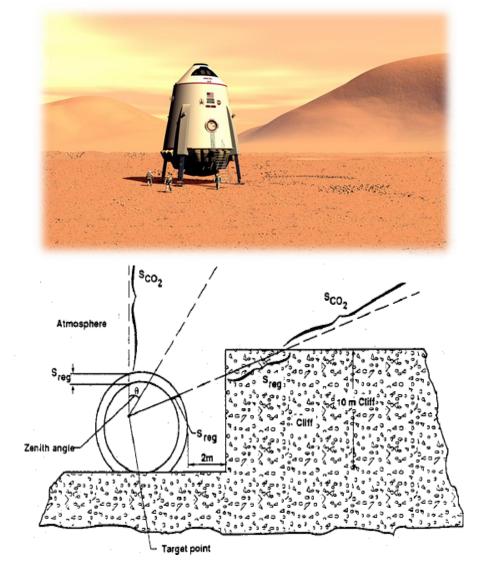

Beemer, Heidi D. and Worrells, David, "Conducting Rock Mass Rating for Tunnel Construction on Mars" (2018). The Space Congress® Proceedings. 9. https://commons.erau.edu/space-congress-proceedings/proceedings-2018-45th/feb-27-2018/9

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

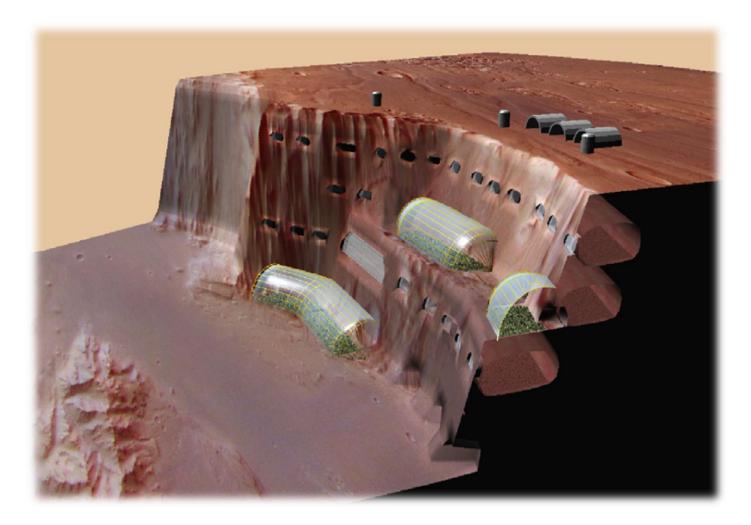
Conducting Rock Mass Rating for Tunnel Construction on Mars

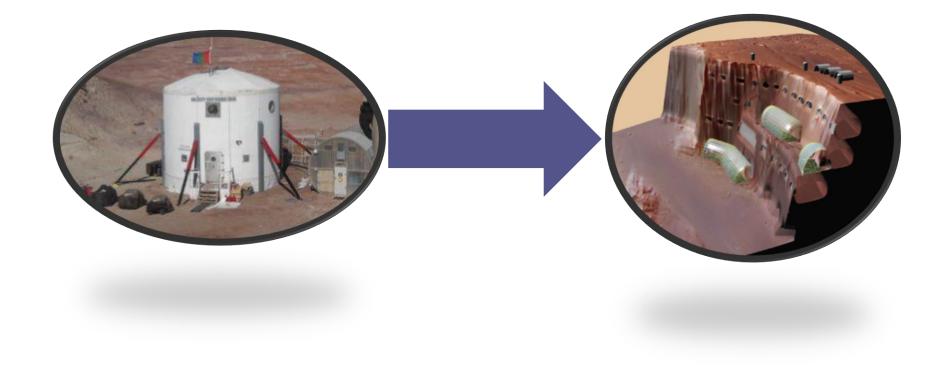
Heidi Beemer and David Worrells U.S. Army Embry Riddle Aeronautical University, Worldwide

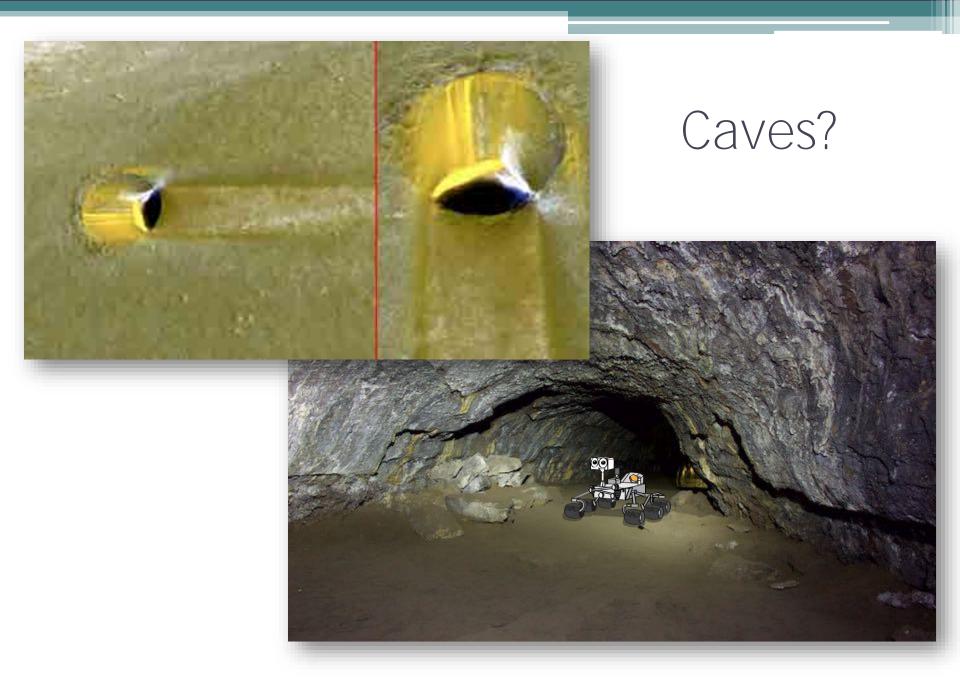
Radiation on Mars


- Radiation on Mars is a known obstacle for any mission to the red planet.
- Shielding will be the best way of mitigating its adverse effects.

Year 1		Year 2		Year 3			
(180 day transit, 180 days on		(320 days on Mars, 40 days transit)		(140 days transit to Earth)			
Ma	Mars)						
180 Transit (1.84± 0.30 mSv/day)	331 ± 54 mSv	320 days on Mars (0.64 ± 0.12)	205 ± 38 mSv	140 Transit (1.84 ± 0.30 mSv/day)	258 ± 42 mSv		
180 days on Mars (0.64±0.12)	169 ± 22 mSv	40 Transit (1.84 ± 0.30 mSv/day)	73.6 ± 12 mSv	220 days on Earth	negligible		
Total mSv	500 ± 76 mSv/year	Total mSv	279 ± 50 mSv/year	Total mSv	258 ± 42 mSv/year		
Total Rem	50.0 ± 7.6 Rem/year	Total Rem	27.9 ± 5.0 Rem/year	Total Rem	25.8 ± 4.2 Rem/year		


Living in the Lander




A More Permanent Solution

How do we get from landers to tunnels for long term colonization of Mars?

Rock Mass Rating

- According to Z.T. Bieniawski (1979) RMR is the easiest way to classify the geomechanics of a site.
 - Primarily used for tunneling projects, but can also be applied to slopes, foundations, and mines.

Rock Mass Rating

- Aims of the RMR System:
- 1. Identify the most significant parameters influencing the behavior of a rock mass.
- 2. Divide a particular rock mass formation into a number of rock mass classes of varying quality.
- 3. Provide a basis for understanding for engineering design
- 4. Derive quantitative design for engineering design
- 5. Provide a common basis for communication between engineers and geologists.

Rock Mass Rating cont.

- Rating uses six parameters to classify rock formations:
 - Uniaxial compressive strength of rock material
 - Rock Quality Designation (RQD)
 - Spacing of Discontinuities
 - Condition of Discontinuities
 - Ground Water Conditions
 - Orientation of Discontinuities

_	Parameter			Range of values						
	Streng	th strength index		>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	For this low range - unitatial compressive test is preferred		
1	intact #		istial comp.	>250 MPa	100-250 MPs	50-100 MPa	25-50 MPa	5-25 MPa	1.5 MPa	<1 MP:
		Ratin	8	15	12	7	4	2	1	0
	Drill	cost Qua	lity RQD	90%-100%	75%-90%	50%-75%	25%-50%		< 25%	
2	Rating		20	17	13	8	3			
-	Spacing of discontinuities		ontinuities	> 2 m	0.6-2.m	200-600 mm	60-200 mm	< 60 mm		
3	Roting		6	20	15	10	8	5		
4	Condition of discuttinuities (See E)		Very rough surfaces Not crotinuous No separation Unweathered wall rock	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1-5 mm Continuous	Soft gauge >5 mm thick ff Separation > 5 mm Continuous			
	Ruting		1	30	25	20	10	0		
-		Jafforw p	er 10 m rigth (Vm)	Nose	< 10	10-25	25-125		> 125	
5	water	(Major p	wice press)/ wincipal (0)	0	< 0.1	0.1,-0.2	02-05		>05	
	General conditions Rating			Completely dry	Damp	Wel	Dripping	Flowing		
_		_	-	15	10	7	4	-	0	
_				ISCONTINUITY ORIEN						
Seni	linke and dip orientations		Very favourable	Favourable	Fair	Uafavourable	Very	Uwfawnu	rable	
	Turnels & mines		0	-2	-5	-10		-12		
8	Carings	Fou	indations	0	-2	-7	-15		-25	
	Slopes		Slopes	0	-5	-25	-59			

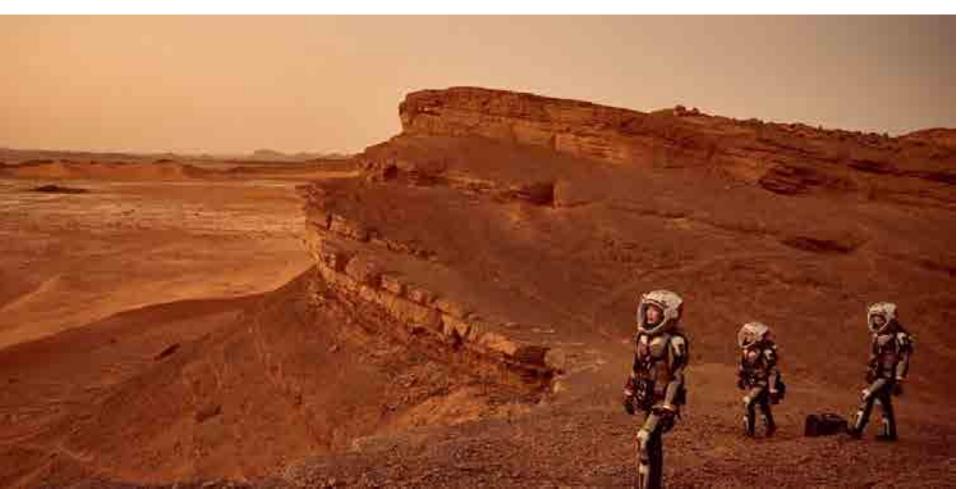
Rock Mass Rating (cont)

- Each parameter is given a number rating based on present conditions.
- Final RMR is a number 1-100 totaling previous ratings.
- Rating allows the engineer to know the behavior of the rock.
 - Providing quantitative data for engineering design.

C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS						
Rating	100 ← 81	80 ← 61	60 ← 41	40 ← 21	< 21	
Class number	1	N	III	IV	v	
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock	

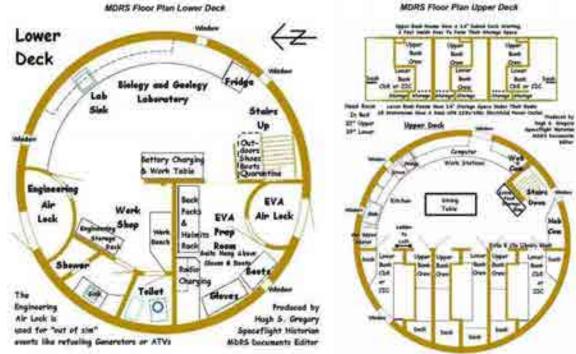
How do we bring this Earth based engineering to Mars?

Identifying Rock Structures


- Remote sensing techniques may be used to initially determine feasible sites for tunnel construction before committing a Martian colony to one site.
- Nahm and Schultz (2007) conducted a remote RMR for a Martian outcrop located within Vostok crater at Meridiani planum, Mars, using Remote sensing instruments
 - NASA's Mars Orbiter Camera (MOC)
 - Opportunity's navigation camera (NAVcam)

Identifying Rock Structures

• Once on the ground, Astronauts will be able to confirm RMR results remotely calculated.



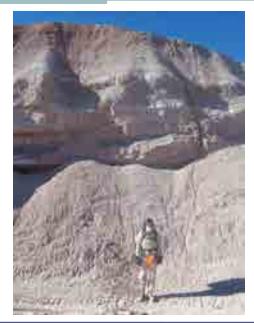
Hyposis: Simulation Astronauts can conduct RMR for a specified Rock Outcrop under simulated Mars conditions.

MARS DESERT RESEARCH STATION

ROCK MASS RATING TASK PACKET DO NOT OPEN THIS PACKET UNTIL DAY THREE OF SIMULATION AND AS INSTRUCTED TO DO SO BY CAPCOM

CONT NAME AND ADDRESS

THE TAX NAME


Recorder

Geologist

Navigator

- Location: Longitude 38.402738 and Latitude -110.792079
- RMR 63
- Classification: Good Rock

Geomechanics Classification	Result	# Rating
Drill Core Quality R.Q.D	Fair Quality 50-75%	13
Wall Rock of Discontinuities	Moderately weathered	20
Ground Water	Completely Dry	15
Strength of Intact Rock Material	Med High 50-100 MPa	7
Spacing of Discontinuities	Wide (200-600 mm)	10
Strike and Dip Orientations	Favorable	-2

Results

LS <u>Task</u>	Maximum Points per Task
The task was complete in less than three hours	20
The team was able to locate the rock outcrop	20
Rock Mass Rating Geologic Tasks	
1. Uniaxial compressive strength of rock mate	rial 5
2. Rock quality designation	5
3. Spacing discontinuities	5
4. Condition of discontinuities	5
5. Ground water conditions	5
6. Orientation of discontinuities	5
Completed the task safely	10
Correctly calculated RMR number using tables provi	ided <u>20</u>
T	Otal Points 100

Note. Rock outcrop located at: Longitude 38.402738 and Latitude -110.792079

The 1st Team got lost- 85

2nd **Team's Geologist spoke very little English**- 45

The 3rd team Nailed it!- 100

Results

Crew Number	Team Score
167	85
168	45
169	100

Task Performance

Mean	Standard Deviation	Range	
		-	
76.67	24.62	45-100	

Note. N= 9.

What have we learned?

0

Conclusions

- It can be concluded that the task of determining the Rock Mass Rating of a rock structure can be conducted by a Martian Simulation Astronaut.
- Without an engineering back ground, astronauts can collect the data needed for engineers back on earth to design a plan for a future Martian shelter.
 - The more knowledge and practice the team had on Geological survey techniques, the better the results.
- To replicate on Mars, teams would require additional core sample equipment.

Recommendations

- Reevaluating the task manual and include training prior to task performance
- Determine participants geological survey knowledge prior to task completion to determine effectiveness of training.
- Continue to analyze the human factors that effect performance
 - Team Efficacy
 - Stress
 - Feeling of isolation

References

Bieniawski, Z. T. (1988). The rock mass rating (RMR) system (geomechanics classification) in engineering practice. In L. Kirkaldie (Ed.), *Rock classification systems for engineering purposes* (pp. 17-17-34). Ann Arbor, MI: American Society For Testing And Materials.

Hamidi, J. K., Shahriar, K., Rezai, B., & Rostami, J. (2010). Preformance prediction of hard rock TBM using rock mass rating (RMR) system. *Tunnelling and Underground Space Technology*, *25*(4), 333-345.

doi:http://dx.doi.org.ezproxy.libproxy.db.erau.edu/10.1016/j.tust.2010.01.008

- Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., et al. (2014). Mars' surface radiation environment measures with the mars science laboratory's curiosity rover. *Science*, *343*, 1244797-1-6.
- Kozicka, J. (2008). Low-cost solutions for Martian base. *Advances in Space Research, 41*(1), 129-137.
- Simonsen, L. C., Nealy, J. E., Townsend, L. W., & Wilson, J. W. (1991). Martian regolith as space radiation shielding. *Journal of Spacecraft and Rockets, 28*(1), 7-8.

Photos credited to:

Space.com; Nat Geo; Mars Society; NASA

Thank you Dr. David Worrells, ERAU Dr. Gary Rodgers, Virginia Military Institute Shannon Rupert, Mars Society MDRS Crews 167, 168, & 169

Questions?

8