10-2006

An Elliptic Equation with No Monotonicity Condition on the Nonlinearity

Gregory S. Spradlin

Embry-Riddle Aeronautical University, spradlig@erau.edu

Follow this and additional works at: https://commons.erau.edu/db-mathematics

Part of the Mathematics Commons

Scholarly Commons Citation

Publications in ESAIM-COCV are copyright protected, but distribution of copies for non-commercial use is allowed and encouraged. The original publication is available at www.esaim-cocv.org.
This Article is brought to you for free and open access by the College of Arts & Sciences at Scholarly Commons. It has been accepted for inclusion in Mathematics - Daytona Beach by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu, wolfe.309@erau.edu.
AN ELLIPTIC EQUATION WITH NO MONOTONICITY CONDITION ON THE NONLINEARITY

GREGORY S. SPRADLIN

Abstract. An elliptic PDE is studied which is a perturbation of an autonomous equation. The existence of a nontrivial solution is proven via variational methods. The domain of the equation is unbounded, which imposes a lack of compactness on the variational problem. In addition, a popular monotonicity condition on the nonlinearity is not assumed. In an earlier paper with this assumption, a solution was obtained using a simple application of topological (Brouwer) degree. Here, a more subtle degree theory argument must be used.

Mathematics Subject Classification. 35J20, 35J60.

Received July 6, 2005.

1. INTRODUCTION

In this paper we consider an elliptic equation of the form

\[-\Delta u + u = f(x, u), \quad x \in \mathbb{R}^N,\]

where \(f \) is a “superlinear” function of \(u \). For large \(|x| \), the equation resembles an autonomous equation

\[-\Delta u + u = f_0(u), \quad x \in \mathbb{R}^N.\]

Under weak assumptions on \(f \) and \(f_0 \), we prove the existence of a nontrivial solution \(u \) of (1.1) with \(|u(x)| \to 0 \) as \(|x| \to \infty \).

Let \(f \) satisfy

(\(f_1 \)) \(f \in C^2(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}) \).

(\(f_2 \)) \(f(x, 0) = 0 = f_q(x, 0) \) for all \(x \in \mathbb{R}^N \), where \(f \equiv f(x, q) \).

(\(f_3 \)) If \(N > 2 \), there exist \(a_1, a_2 > 0 \), \(s \in (1, (N + 2)/(N - 2)) \) with \(|f_q(x, q)| \leq a_1 + a_2|q|^s - 1 \) for all \(q \in \mathbb{R} \), \(x \in \mathbb{R}^N \). If \(N = 2 \), there exist \(a_1 > 0 \) and a function \(\varphi : \mathbb{R}^+ \to \mathbb{R} \) with \(|f_q(x, q)| \leq a_1 \exp(\varphi(|q|)) \) for all \(q \in \mathbb{R} \), \(x \in \mathbb{R}^N \) and \(\varphi(t)/t^2 \to 0 \) as \(t \to \infty \).

Keywords and phrases. Mountain-pass theorem, variational methods, Nehari manifold, Brouwer degree, concentration-compactness.

1 Department of Mathematics Embry-Riddle Aeronautical University Daytona Beach, Florida 32114-3900, USA; spradlig@erau.edu

© EDP Sciences, SMAI 2006
(f_4) There exists \(\mu > 2 \) such that

\[
0 < \mu F(x, q) \equiv \mu \int_0^q f(x, s) \, ds \leq f(x, q) q
\]

for all \(q \in \mathbb{R}, x \in \mathbb{R}^N \).

Let \(f_0 \in C^2(\mathbb{R}, \mathbb{R}) \) with satisfy (f_1)-(f_4) (except there is no dependence on \(x \)). Let \(f \) also satisfy (f_5) \((f(x, q) - f_0(q))/f_0(q) \to 0 \) as \(|x| \to \infty \), uniformly in \(q \in \mathbb{R}^N \setminus \{0\} \).

In order to state the theorem, we need to outline the variational framework of the problem. Define functionals \(I_0, I \in C^2(W^{1,2}(\mathbb{R}^N, \mathbb{R}), \mathbb{R}) \) by

\[
I_0(u) = \frac{1}{2} \|u\|^2 - \int_{\mathbb{R}^N} F_0(u(x)) \, dx,
\]

\[
I(u) = \frac{1}{2} \|u\|^2 - \int_{\mathbb{R}^N} F(x, u(x)) \, dx,
\]

where \(\|u\| \) is the standard norm on \(W^{1,2}(\mathbb{R}^N, \mathbb{R}) \) given by

\[
\|u\|^2 = \int_{\mathbb{R}^N} |\nabla u(x)|^2 + u(x)^2 \, dx.
\]

Critical points of \(I_0 \) correspond exactly to solutions \(u \) of (1.2) with \(u(x) \to 0 \) as \(|x| \to \infty \), and critical points of \(I \) correspond exactly to solutions \(u \) of (1.1) with \(u(x) \to 0 \) as \(|x| \to \infty \).

By (f_4), \(F_0 \) and \(F \) are “superquadratic” functions of \(q \), with, for example, \(F(x, q)/q^2 \to 0 \) as \(q \to 0 \) and \(F(x, q)/q^2 \to \infty \) as \(|q| \to \infty \) for all \(x \in \mathbb{R}^N \), uniformly in \(x \). Therefore \(I(0) = I_0(0) = 0 \), and there exists \(r_0 > 0 \) with \(I(u) \geq \|u\|^2/3 \) and \(I_0(u) \geq \|u\|^2/3 \) for all \(u \in W^{1,2}(\mathbb{R}^N) \) with \(\|u\| < r_0 \), and there also exist \(u, u_0 \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \) with \(I_0(u_0) < 0 \) and \(I(u) < 0 \). So the sets of “mountain-pass curves” for \(I_0 \) and \(I \),

\[
\Gamma_0 = \{ \gamma \in C([0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I_0(\gamma(1)) < 0 \},
\]

\[
\Gamma = \{ \gamma \in C([0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I(\gamma(1)) < 0 \},
\]

are nonempty, and the mountain-pass values

\[
c_0 = \inf_{\gamma \in \Gamma_0} \max_{\theta \in [0,1]} I_0(\gamma(\theta))
\]

\[
c = \inf_{\gamma \in \Gamma} \max_{\theta \in [0,1]} I(\gamma(\theta))
\]

are positive.

We are now ready to state the theorem.

Theorem 1.1. If \(f_0 \) and \(f \) satisfy (f_1)-(f_4) and \(f \) satisfies (f_5), and if there exists \(\alpha > 0 \) such that

\[
I_0 \text{ has no critical values in the interval } [c_0, c_0 + \alpha)
\]

then there exists \(c_0 = c_0(f_0) > 0 \) with the following property: if \(f \) satisfies

\[
|f(x, q) - f_0(q)| < c_0|f_0(q)|
\]

for all \(x \in \mathbb{R}^N, q \in \mathbb{R} \), then (1.2) has a nontrivial solution \(u \neq 0 \) with \(u(x) \to 0 \) as \(|x| \to \infty \).

As shown in [9], (1.12) holds in a wide variety of situations.
The missing monotonicity assumption

One interesting aspect of Theorem 1.1 is a condition that is not assumed. We do not assume

\[F_0(q)/q^2 \text{ is a nondecreasing function of } q \text{ for } q > 0; \]
\[F_0(q)/q^2 \text{ is a nonincreasing function of } q \text{ for } q < 0; \]
\[F(x, q)/q^2 \text{ is a nondecreasing function of } q \text{ for } q > 0; \]
\[F(x, q)/q^2 \text{ is a nonincreasing function of } q \text{ for } q < 0. \] \hspace{1cm} (1.13)

This condition holds in the power case, \(F_0(q) = |q|^{\alpha}/\alpha, \alpha > 2 \). The condition is due to Nehari.

If (1.13) were case, then for any \(u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \), the mapping \(s \mapsto I(su) \) would begin at \(s = 0 \), increase to a positive maximum, then decrease to \(-\infty\) as \(s \to \infty \). Defining

\[
S = \{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \mid I'(u)u = 0 \},
\] \hspace{1cm} (1.14)

\(S \) would be a codimension-one submanifold of \(E \), homeomorphic to the unit sphere in \(W^{1,2}(\mathbb{R}^N, \mathbb{R}) \) via radial projection. \(S \) is known as the Nehari manifold in the literature. Any ray of the form \(\{ su \mid s > 0 \} \) (\(u \neq 0 \)) intersects \(S \) exactly once. All nonzero critical points of \(I \) are on \(S \). Conversely, under suitable smoothness assumptions on \(F \), any critical point of \(I \) constrained to \(S \) would be a critical point of \(I \) (in the large) (see [17]). Therefore, one could work with \(S \) instead of \(W^{1,2}(\mathbb{R}^N, \mathbb{R}) \), and look for, say, a local minimum of \(I \) constrained to \(S \) (which may be easier than looking for a saddle point of \(I \)). There is another way to use (1.13): for any \(u \in S \), the ray from 0 passing through \(u \) can be used (after rescaling in \(\theta \)) as a mountain-pass curve along which the maximum value of \(I \) is \(I(u) \). Conversely, any mountain-pass curve \(\gamma \in \Gamma \) intersects \(S \) at least once [6]. Therefore, one may work with points on \(S \) instead of paths in \(\Gamma \). Since assumption (1.13) is so helpful, it is found in many papers, such as [1,5,20], and [18].

In the paper [17], a result similar to Theorem 1.1 was proven for the \(N = 1 \) (ODE) case. The proof of Theorem 1.1 is similar except that a simple connectivity argument must be replaced by a degree theory argument [18]. proves a version of Theorem 1.1 under the assumption (1.13). Without 1.13, the manifold \(S \) must be replaced by a set with similar properties.

Define \(B_1(0) = \{ x \in \mathbb{R}^N \mid |x| < 1 \} \), and \(\overline{\Omega} \) and \(\partial \Omega \) to be, respectively, the topological closure and topological boundary of \(\Omega \). It is a simple consequence of the Brouwer degree [7] that for any continuous function \(h : B_1(0) \to \mathbb{R}^N \) with \(h(x) = x \) for all \(x \in \partial B_1(0) \), there exists \(x \in B_1(0) \) with \(h(x) = 0 \). We will need the following generalization:

Lemma 1.2. Let \(h \in C(\overline{B_1(0)} \times [0,1], \mathbb{R}^N) \) with, for all \(x \in \overline{B_1(0)} \) and \(t \in [0,1] \),

\((i) \) \(h(x, 0) = x = h(x, 1) \).
\((ii) \) \(x \in \partial B_1(0) \Rightarrow h(x, t) = x \).

Then there exists a connected subset \(C_0 \subset \overline{B_1(0)} \times [0,1] \) with \((0,0), (0,1) \in C_0 \) and \(h(x, t) = 0 \) for all \((x, t) \in C_0 \).

Using the Brouwer degree, it is clear that under the hypotheses of Lemma 1.2, for each “horizontal slice” \(\overline{B_1(0)} \times \{t\} \) of the cylinder \(\overline{B_1(0)} \times [0,1] \), there exists \(x \in B_1(0) \) with \(h(x, t) = 0 \). The conclusion of Lemma 1.2 does not follow from this observation. A generalization of Lemma 1.2 is known [16]: however, the reference may be difficult to find, so a proof is given here.

This paper is organized as follows: Section 2 contains the proof of Theorem 1.1. The proof of Lemma 1.2 is deferred until Section 3.
2. Proof of Theorem 1.1

It is fairly easy to show that
\[c \leq c_0, \]
where \(c \) and \(c_0 \) are from (1.9)–(1.10): it is proven in [11] that there exists \(\gamma_1 \in \Gamma_0 \) with \(\max_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0 \). Define the translation operator \(\tau \) as follows: for a function \(u \) on \(\mathbb{R}^N \) and \(a \in \mathbb{R}^N \), define \(\tau u(x) = u(x - a) \). Let \(\epsilon > 0 \). Let \(\epsilon_1 = 1, 0, 0, \ldots, 0 > 0 \in \mathbb{R}^N \) and define \(\tau_\epsilon, \gamma_1 \) by \((\tau_\epsilon, \gamma_1)(\theta) = \tau(\gamma_1(\theta)) \). Then for large \(R > 0 \), by \((f_5) \), \(\tau_\epsilon, \gamma_1 \in \Gamma_0 \) and \(\max_{\theta \in [0,1]} I((\tau_\epsilon, \gamma_1(\theta)) < c_0 + \epsilon \). Since \(\epsilon > 0 \) was arbitrary, \(c \leq c_0 \).

A Palais-Smale sequence for \(I \) is a sequence \((u_m) \subset W^{1,2}(\mathbb{R}^N, \mathbb{R}) \) with \(I(u_m) \) convergent and \(\|I'(u_m)\| \to 0 \) as \(m \to \infty \). It is well-known that \(I \) fails the “Palais-Smale condition”. That is, a Palais-Smale sequence need not converge. However, the following proposition states that a Palais-Smale sequence “splits” into the sum of a critical point of \(I \) and translates of critical points of \(I_0(\theta) \).

Proposition 2.1. If \((u_m) \subset W^{1,2}(\mathbb{R}^N, \mathbb{R}) \) with \(I'(u_m) \to 0 \) and \(I(u_m) \to a > 0 \), then there exist \(k \geq 0, v_0, v_1, \ldots, v_k \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \), and sequences \((t_m^k)_{m \geq 1} \subset \mathbb{R}^N \), such that

\begin{itemize}
 \item[(i)] \(I'(v_0) = 0 \);
 \item[(ii)] \(I'(v_i) = 0 \) for all \(i = 1, \ldots, k \),
 \item[(iii)] \(\|u_m - (v_0 + \sum_{i=1}^{k} t_m^k v_i)\| \to 0 \) as \(m \to \infty \);
 \item[(iv)] \(|x_m^i| \to \infty \) as \(m \to \infty \) for \(i = 1, \ldots, k \);
 \item[(v)] \(|x_m^i - x_m^j| \to \infty \) as \(m \to \infty \) for all \(i \neq j \);
 \item[(vi)] \(I(t_0) + \sum_{i=1}^{k} I_0(v_i) = a \).
\end{itemize}

A proof for the case of \(x \)-periodic \(F \) is found in [6], and essentially the same proof works here. Similar propositions for nonperiodic coefficient functions, for both ODE and PDE, are found in [1,5], and [19], for example. All are inspired by the “concentration-compactness” theorems of P.-L. Lions [12].

If \(c < c_0 \), then by standard deformation arguments [15], there exists a Palais-Smale sequence \((u_m) \) with \(I(u_m) \to c \). By [11], the smallest nonzero critical value of \(I_0 \) is \(c_0 \). Applying Proposition 2.1, we obtain \(k = 0 \), and \((u_m) \) has a convergent subsequence, proving Theorem 1.1. So assume from now on that
\[c = c_0. \]
(2.2)

For \(u \in L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \) and \(i \in \{1, \ldots, N\} \), define \(L_i \), the \(i \)th component of the “location” of \(u \), by
\[\int_{\mathbb{R}^N} u^2 \tan^{-1}(x_i - L_i(u)) \, dx = 0 \]
(2.3)
and the “location” of \(u \) by
\[L(u) = (L_1(u), \ldots, L_N(u)) \in \mathbb{R}^N. \]
(2.4)
The following lemma establishes the existence and continuity of \(L \).

Lemma 2.2. \(L \) is well-defined and continuous on \(L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \).

Proof. It suffices to show that \(L_1 \) is well-defined and continuous on \(L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \). Let \(u \in L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\} \). By Leibniz’s Theorem, the mapping \(\phi : s \mapsto \int_{\mathbb{R}^N} u^2 \tan^{-1}(x_1 - s) \, dx \) is continuous, differentiable, and strictly decreasing, with
\[\phi'(s) = -\int_{\mathbb{R}^N} u^2(x)/((x_1 - s)^2 + 1) \, dx < 0. \]
(2.5)
\(\phi(s) \to -\infty \) as \(s \to \pm \infty \). Therefore \(L_1(u) \) is unique and well-defined. Let \(\epsilon > 0 \) and \(u_m \to u \). Now \(\int_{\mathbb{R}^N} u^2 \tan^{-1}(x_1 - (L_1(u) + \epsilon)) \, dx < 0 \). Since \(u_m^2 \to u^2 \) in \(L^1(\mathbb{R}^N, \mathbb{R}) \), \(\int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (L(u) + \epsilon)) \, dx < 0 \) for
large m, so for large m, $\mathcal{L}_1(u_m) < \mathcal{L}_1(u) + \epsilon$. Similarly, for large m, $\mathcal{L}_1(u_m) > \mathcal{L}_1(u) - \epsilon$. Since ϵ is arbitrary, $\mathcal{L}_1(u_m) \to \mathcal{L}_1(u)$.

We are ready to begin the minimax argument. First we construct a mountain-pass curve γ_0 with some special properties:

Lemma 2.3. There exists $\gamma_0 \in \Gamma_0$ such that for all $\theta \in [0,1]$,

(i) $I_0(\gamma_0(\theta)) \leq c_0$.
(ii) $\theta > 0 \Rightarrow \gamma_0(\theta) \neq 0$.
(iii) $\theta \leq 1/2 \Rightarrow I_0(\gamma_0(\theta)) \leq c_0/2$.
(iv) $\theta > 0 \Rightarrow L(\gamma(\theta)) = 0$.

Proof. By [10], there exists $\gamma_1 \in \Gamma_0$ with $\max_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0$. Assume without loss of generality that $\gamma_1(\theta) \neq 0$ for $\theta > 0$. By rescaling in θ if necessary, assume that $I_0(\gamma_1(\theta)) \leq c_0/2$ for $\theta \leq 1/2$. Finally, define γ_0 by $\gamma_0(0) = 0$, $\gamma_0(\theta) = \tau_{-L(\gamma_1(\theta))} \gamma_1(\theta)$ for $\theta > 0$.

Assume ϵ_0 in (1.12) is small enough so that for all $x \in \mathbb{R}^N$ and $\theta \in [0,1]$,

$$I(\tau_x(\gamma_0(\theta))) < \min(2c_0, c_0 + \alpha) \text{ and } I(\tau_x(\gamma_0(1))) < 0,$$

where α is from (1.11).

A substitute for S

Using the mountain-pass geometry of I and the fact that Palais-Smale sequences of I are bounded in norm [6], we construct a set which has similar properties to \mathcal{S}, described in Section 1. Let ∇I denote the gradient of I, that is, $(\nabla I(u), w) = I'(u)w$ for all $u, w \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$. Here, (\cdot, \cdot) is the usual inner product defined by $(u, w) = \int_{\mathbb{R}^N} \nabla u \cdot \nabla w + uw \, dx$. Let $\varphi : W^{1,2}(\mathbb{R}^N, \mathbb{R}) \to \mathbb{R}$ be locally Lipschitz, with $I(u) \geq -1 \Rightarrow \varphi(u) = 1$ and $I(u) \leq -2 \Rightarrow \varphi(u) = 0$. Let η be the solution of the initial value problem

$$\frac{d\eta}{ds} = -\varphi(\eta) \nabla I(u), \quad \eta(0, u) = u. \quad (2.7)$$

In [19] it is proven that η is well-defined on $\mathbb{R}^+ \times W^{1,2}(\mathbb{R}^N)$. Let \mathcal{B} be the basin of attraction of 0 under the flow η, that is,

$$\mathcal{B} = \left\{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \mid \eta(s, u) \to 0 \text{ as } s \to \infty \right\} \quad (2.8)$$

\mathcal{B} is an open neighborhood of 0 [19]. Let $\partial \mathcal{B}$ be the topological boundary of \mathcal{B} in $W^{1,2}(\mathbb{R}^N, \mathbb{R})$. $\partial \mathcal{B}$ has some properties in common with \mathcal{S}. For example, for any $\gamma \in \Gamma$, $\gamma([0,1])$ intersects $\partial \mathcal{B}$ at least once.

A pseudo-gradient vector field for I' may be used in place of ∇I, in which case \mathcal{B} and $\partial \mathcal{B}$ would be different, but the ensuing arguments would be the same.

Let

$$c^+ = \inf \{ I(u) \mid u \in \partial \mathcal{B}, \, |\mathcal{L}(u)| \leq 1 \}. \quad (2.9)$$

The reason for the label "c^+" will become apparent in a moment. From now on, let us assume

$$I \text{ has no critical values in } (0, c_0] = (0, c]. \quad (2.10)$$

This will lead to the conclusion that I has a critical value greater than c_0.

We claim that under assumptions (2.2) and (2.10),

$$c^+ > c_0. \quad (2.11)$$

We use arguments that are sketched here and found in more detail in [19] and [5].
To prove the claim, suppose first that \(c^+ < c_0 \). Then there exists \(u_0 \in \partial B \) with \(I(u_0) < c_0 \). By arguments in [19], there exists a large positive constant \(P \) with
\[
I(u) \leq c_0 \text{ and } \|u\| \geq 2P \Rightarrow I(\eta(s, u)) < 0 \text{ for some } s > 0, \text{ and } \|\eta(s, u)\| > P
\] (2.12)
for all \(s > 0 \). Suppose \(a > 0 \) and \(\|I'(\eta(s_m, U_0))\| \geq a \) for some sequence \((s_m) \) with \(s_m \to \infty \). Since \(u_0 \in \partial B \), \(\|\eta(U_0)\| < 2P \) for all \(s > 0 \). \(I'' \) is bounded on bounded subsets of \(W^{1,2}(\mathbb{R}) \), so \(I' \) is Lipschitz on bounded subsets of \(W^{1,2}(\mathbb{R}) \). Therefore \(I(\eta(s, u_0)) < 0 \) for some \(s > 0 \). This is impossible since \(u_0 \in \partial B \). Therefore \(I'(\eta(s, u_0)) \to 0 \) as \(s \to \infty \).

Define \(u_n = \eta(n, u_0) \). Since \(I'(u_n) \to 0 \) and \(u_n \in \partial B \), there exists \(b \in (0, c_0) \) with \(I(u_n) \to b \). By [11], \(I_0 \) has no critical values between 0 and \(c_0 \). Therefore, Proposition 2.1, with \(k = 0 \), implies that \((u_n) \) converges along a subsequence to a critical point \(w \) of \(I \) with \(0 < I(w) < c_0 \). This contradicts assumption (2.10).

Next, suppose that \(c^+ = c_0 \). Then there exists a sequence \((u_n) \subset \partial B \) with \(\|L(u_n)\| \leq 1 \) for all \(n \) and \(I(u_n) \to c_0 \) as \(n \to \infty \). As above, \(I'(u_n) \to 0 \) as \(n \to \infty \); to prove, suppose otherwise. Then there exist \(a > 0 \) and a subsequence of \((u_n) \) (also called \((u_n) \)) along which \(\|I'(u_n)\| > a \). Since \(\partial B \) is forward-\(\eta \)-invariant [19], \(\eta(1, u_n) \in \partial B \) for all \(n \). Since \((\eta(1, u_n))_{n \geq 1} \) is bounded and \(I' \) is Lipschitz on bounded subsets of \(W^{1,2}(\mathbb{R}^N, \mathbb{R}) \), for large \(n \), \(\eta(1, u_n) \in \partial B \) with \(I'(\eta(1, u_n)) < c_0 \). By the argument above, this implies that \(I \) has a critical value in \((0, c_0)\), contradicting assumption (2.2). Thus \(I'(u_n) \to 0 \) as \(n \to \infty \). Applying Proposition 2.1 and using the fact that \(|L(u_n)| \leq 1 \) for all \(n \), \((u_n) \) converges along a subsequence to a critical point of \(I \), contradicting assumption (2.10). (2.11) is proven.

Let \(R > 0 \) be big enough so that for all \(x \in \partial B_R(0) \subset \mathbb{R}^N \) and \(\theta \in [0, 1] \),
\[
I(\tau_x \gamma_0(\theta)) < c^+.
\] (2.13)
This is possible by (1.12), (2.11), and Lemma 2.3(i). Define the minimax class
\[
\mathcal{H} = \{ h \in C(B_R(0) \times [0, 1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \text{ for all } x \in \overline{B_R(0)} \text{ and } t \in [0, 1], \\
t > 0 \Rightarrow h(x, t) \neq 0 \\
0 \leq t \leq 1/2 \Rightarrow h(x, t) = \tau_x \gamma_0(t) \\
x \in \partial B_R(0) \Rightarrow h(x, t) = \tau_x \gamma_0(t) \\
h(x, 1) = \tau_x \gamma_0(1) \}
\]
and the minimax value
\[
h_0 = \inf_{h \in \mathcal{H}} \max_{(x, t) \in \overline{B_R(0) \times [0, 1]}} I(h(x, t)).
\] (2.14)
We claim
\[
c_0 < c^+ \leq h_0 < \min(2c_0, c_0 + \alpha).
\] (2.15)

Proof of Claim. Define \(h \in \mathcal{H} \) by \(h(x, t) = \tau_x (\gamma_0(t)) \). Then \(h \in \mathcal{H} \) and by (2.6),
\[
\max_{(x, t) \in \overline{B_R(0) \times [0, 1]}} \beta(h(x, t)) < \min(2c_0, c_0 + \alpha).
\]
Therefore \(h_0 < \min(2c_0, c_0 + \alpha) \).

Next, let \(h \in \mathcal{H} \). By Lemma 1.2, and a suitable rescaling of \(x \) and \(t \), there exists a connected set \(C_2 \subset B_R(0) \times [1/2, 1] \) with \((0, 1/2), (0, 1) \in C_2 \) and along which for all \((x, t) \in C_2 \),
\[
\mathcal{L}(h(x, t)) = 0.
\] (2.16)
Joining \(C_2 \) with the segment \(\{0\} \times [0, 1/2] \), we obtain a connected set \(C_3 \subset B_R(0) \times [0, 1] \) such that \((0, 0), (0, 1) \in C_3 \) and for all \((x, t) \in C_3 \), \(\mathcal{L}(h(x, t)) = 0 \). \(C_3 \) is not necessarily path-connected, so let \(r > 0 \) be small enough so
that for all
\[(x, t) \in N_r(C_3) \equiv \{(y, s) \in B_R(0) \times [0, 1] | \exists (x', t') \in B_R(0) \times [0, 1] \text{ with } |y - x'|^2 + |s - t'|^2 < r^2\}, \]
(2.17)
\[|\mathcal{L}(h(x, t))| < 1. \]

\(N_r(C_3)\) is path-connected [21], so there exists a path \(g \in C([0, 1], N_r(C_3))\) with \(g(0) = (0, 0), g(1) = (0, 1),\) and
\[g(\theta) \in N_r(C_3) \text{ for all } \theta \in [0, 1].\]
If we define \(\gamma \in \Gamma\) by \(\gamma(\theta) = h(g(\theta)),\) then \(|\mathcal{L}(\gamma(\theta))| < 1\) for all \(\theta \in [0, 1].\) Since \(\gamma(0) = 0\) and \(I(\gamma(1)) < 0,\) there exists \(\theta^* \in [0, 1] \text{ with } \gamma(\theta^*) \in \partial B.\) By the definition of \(c^+ (2.9), I(\gamma(\theta^*)) \geq c^+.\)

Since \(h\) was an arbitrary element of \(\mathcal{H}, h_0 \geq c^+.\)

By standard deformation arguments, such as described in [15], there exists a Palais-Smale sequence \((u_n) \subset W^{1,2}(\mathbb{R}^N, \mathbb{R})\) with \(I'(u_n) \to 0\) and \(I(u_n) \to h_0\) as \(n \to \infty, c_0 < h_0 < \min(2c_0, c_0 + \alpha).\) Apply Proposition 2.1 to \((u_n).\) Since \(I_0\) has no positive critical values smaller than \(c_0 [11], k \leq 1.\) By (2.10), \((u_n)\) converges along a subsequence to a critical point \(z\) of \(I, \text{ with } I(z) = h_0.\) Theorem 1.1 is proven.

3. A DEGREE-THEORETIC LEMMA

Here, we prove Lemma 1.2. Let \(h\) be as in the hypotheses of the lemma. For \(l > 0,\) define \(A_l \subset \overline{B_1(0)} \times [0, 1]\) by
\[A_l = \{(x, t) \in \overline{B_1(0)} \times [0, 1] | |f(x, t)| < l\}. \]
(3.1)
\(A_l\) is an open neighborhood of \((0, 0).\) Let \(C_l\) be the component of \(A_l\) containing \((0, 0).\) We will prove the following claim:

For all \(\epsilon > 0, (0, 1) \in C_\epsilon\).
(3.2)

Then we will use the \(C_\epsilon's\) to construct \(C_0.\) For \(l > 0,\) define
\[C_l = \{x \in \overline{B_1(0)} | (x, t) \in C_l\}. \]
(3.3)

Fix \(\epsilon \in (0, 1).\) Define \(\phi: [0, 1] \to \mathbb{Z}\) by
\[\phi(t) = d(h(\cdot, t), C_l^\epsilon, 0), \]
(3.4)
where \(d\) is the topological Brouwer degree [7]. We will prove \(\phi(t) = 1\) for all \(t \in [0, 1],\) in particular \(\phi(1) = 1,\) so (3.2) is satisfied.

\(f\) is continuous on a compact domain, so \(f\) is uniformly continuous. Let \(\rho > 0\) be small enough so that for all \(x \in \overline{B_1(0)}\) and \(t_1, t_2 \in [0, 1],\)
\[|t_1 - t_2| < \rho \Rightarrow |h(x, t_1) - h(x, t_2)| < \epsilon/4. \]
(3.5)

Clearly
\[\phi(0) = d(id, B_1(0), 0) = 1. \]
(3.6)

Let \(0 \leq t_1 < t_2 \leq 1\) with \(t_2 - t_1 < \rho.\) We will show \(\phi(t_1) = \phi(t_2),\) proving that \(\phi\) is constant, which by (3.6), implies (3.2).

\(\Omega\) is nonempty. For all \(x \in \partial C^\epsilon_{t_1}, |h(x, t_1)| = \epsilon,\) so by (3.5),
\[x \in \partial C^\epsilon_{t_1} \Rightarrow |h(x, t_1)| \geq \frac{3}{4} \epsilon. \]
(3.7)

By the additivity property of \(d [7],\)
\[\phi(t_2) \equiv d(f(\cdot, t_2), C^\epsilon_{t_2}, 0) \]
\[= d(f(\cdot, t_2), C^\epsilon_{t_2} \setminus C^\epsilon_{t_1}, 0) + d(f(\cdot, t_2), C^\epsilon_{t_1} \cap C^\epsilon_{t_2}, 0). \]
(3.8)
We will show:

There does not exist $x \in C_t^{2} \setminus \overline{C_t^{1}}$ with $h(x,t_2) = 0$. (3.9)

Suppose such an x exists. Then by (3.5), $|h| < \epsilon/4$ on the set $\{x\} \times [t_1, t_2]$. $x \in C_t^{2}$, so $(x,t_2) \in C_t$, and by the definition of C_t, $(x,t_1) \in C_t$, and $x \in C_t^{1}$, contradicting $x \in C_t^{2} \setminus \overline{C_t^{1}}$. So (3.9) is true. Therefore by (3.8),

$$\phi(t_2) = d(f(\cdot, t_2), C_t^{1} \cap C_t^{2}, 0).$$

By the same argument, switching the roles of t_1 and t_2,

$$\phi(t_1) = d(f(\cdot, t_1), C_t^{1} \cap C_t^{2}, 0).$$

For all $t \in [t_1, t_2]$ and $x \in \partial C_t^{1} \cup \partial C_t^{2}$, (3.5) gives $|h(x, t_1)| > 3\epsilon/4$ and $|h(x, t) - h(x, t_1)| < \epsilon/4$. Therefore by the homotopy invariance property of the degree [7],

$$\phi(t_1) = d(f(\cdot, t_1), C_t^{1} \cap C_t^{2}, 0) = d(f(\cdot, t_2), C_t^{1} \cap C_t^{2}, 0) = \phi(t_2).$$

$\phi(0) = 1$ and $\phi(t_1) = \phi(t_2)$ for any $t_1 < t_2$ with $t_1, t_2 \in [0, 1]$ and $t_2 - t_1 < \rho$. Therefore ϕ is constant, and $\phi(1) = 1$. Therefore $(0, 1) \in C_t$.

Now let

$$C_0 = \bigcap_{\epsilon > 0} C_{\epsilon}. \quad (3.13)$$

Each C_t is a connected set containing $(0, 0)$ and $(0, 1)$, so it is easy to show that C_0 is a connected set containing $(0, 0)$ and $(0, 1)$, and clearly for all $(x, t) \in C_0$, $h(x,t) = 0$.

References

