A MECHANICAL MODEL FOR HIP REDUCTION VIA PAVLIK HARNESS IN NEWBORNS

INTRODUCTION
➢ Developmental dysplasia of the hip (DDH) is an abnormal condition in infants and commonly treated by the use of the Pavlik Harness.
➢ 1 out of every 20 babies has some hip instability.
➢ The effectiveness of the Pavlik Harness depends on physician’s expertise, experience and trial- and error procedures.
➢ A multi-physics computational approach was used for a better understanding of how to use the Pavlik Harness in the most effective way possible.
➢ To prove the results of the computational approach, a mechanical model is needed to provide physicians with a better understanding of the mechanics of DDH when using the Pavlik Harness.

OBJECTIVES
➢ Replicate an infant’s hip with DDH and the 7 muscles that play a role in the hip reduction.
➢ The mechanical model will be scaled proportionally to the size of an infant and passive muscle forces will be simulated.

METHOD
➢ Trial and error experiments will calibrate the pneumatic muscles to obtain the desired pressure for replicating each individual curve.
➢ The data for the path of reduction of the femoral head will be acquired by IMUs, and processed using MATLAB.

ABSTRACT
Developmental Dysplasia of the Hip (DDH) refers to an abnormal hip condition in infants characterized by anomalous development of the hip joint, in which hip joint dislocation, misalignment, and musculoskeletal instability are present.
Clinical reports and previous research show very low success rates for the Pavlik Harness for severe grades of hip dislocation. Statistically, it has been shown that for reduction rate for the International Hip Dysplasia Institute (IHDI) Grades I-III is 92% while only 2% for grade IV.

DDH is found responsible for 29% of primary hip replacements in people up to 60 years of age. The primary goal of this project is to assist in the improvement of the success rate on non-surgical interventions for patients with DDH, as well as the ensuing consequences in adulthood.
In order to experimentally verify the computational model of the hip reduction and abduction in severe cases of DDH, a mechanical bench-top model is to be designed, built and tested for the four grades of dislocation.
This approach will be repeated for three patient-specific infant’s musculoskeletal models, to corroborate the use of this experimental bench-top design in the validation of the patient-specific computational model.

RESULTS
➢ A scale of 4:1 was selected for the model to ensure an adequate size and weight practical for teaching and testing purposes.

REFERENCES

ACKNOWLEDGMENTS
Dr. Eduardo Divo , Associate Professor of Mechanical Engineering at ERAU
Dr. Victor Huayamave, Assistant Professor of Mechanical Engineering at ERAU
Dr. Charles T. Price, Professor of Orthopedic Surgery at UCF - School of Medicine