Ultimate Compression After Impact Load Prediction in Graphite/Epoxy Coupons Using Neural Network and Multivariate Statistical Analyses

Alexandre David Grégoire
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/edt

Part of the Aerospace Engineering Commons

Scholarly Commons Citation
https://commons.erau.edu/edt/77

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
ULTIMATE COMPRESSION AFTER IMPACT LOAD PREDICTION IN GRAPHITE/EPOXY COUPONS USING NEURAL NETWORK AND MULTIVARIATE STATISTICAL ANALYSES

by

Alexandre David Grégoire

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Aerospace Engineering

Embry Riddle Aeronautical University
Daytona Beach, Florida
Spring 2011
ULTIMATE COMPRESSION AFTER IMPACT LOAD PREDICTION
IN GRAPHITE/EPOXY COUPONS USING NEURAL NETWORK AND
MULTIVARIATE STATISTICAL ANALYSES

by

Alexandre David Grégoire

This thesis was prepared under the direction of the candidate’s thesis committee chairman, Dr. Eric Hill, Department of Aerospace Engineering, and has been approved by the members of his thesis committee. It was submitted to the School of Graduate Studies and Research and was accepted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering.

THESIS COMMITTEE

Dr. Eric v. K. Hill
Chairman

Dr. Fady F. Barsoum
Member

Anthony M. Gunasekera
Member

Executive Vice President & Chief Academic Officer, ERAU

Graduate Program Coordinator, MSAE

Department Chair, Aerospace Engineering

4/6/2011
Date
In presenting this thesis in partial fulfillment of the requirements for a Master’s degree at Embry Riddle Aeronautical University, I agree that the library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with ‘fair use’ as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission.

Signature ________________________
Date ____________________________

Signature
Date 04/06/2011
ABSTRACT

Author: Alexandre David Grégoire
Title: Ultimate Compression After Impact Load Prediction in Graphite/Epoxy Coupons Using Neural Network and Multivariate Statistical Analyses
Institution: Embry Riddle Aeronautical University
Degree: Master of Science in Aerospace Engineering
Year: 2011

The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the ±15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.
ACKNOWLEDGMENTS

I would like to thank Dr. Eric v. K. Hill for the honor of working with him: for his guidance, confidence, rigorous mindset and support throughout my thesis at Embry-Riddle Aeronautical University. I acknowledge Anthony Michael Gunasekera for sharing his precious experience, time and data and also for his infallible support throughout the progress of this thesis. Acknowledgement should also go to Dr. Fady F. Barsoum for being on my thesis committee.

I especially thank all my family for all these years of true moral and financial support without which none of this would have been possible. I thank my father Philippe Grégoire, my mother Murielle Courtaud Grégoire, my sister Elodie Grégoire Gomez and her first baby, my niece, Cléa. I also thank Brigitte Terrier, Jean Pierre Courtaud and Bruno Gomez.

I should recognize Matthew Morlando Bailey for his several reviews of this thesis and for his undeniable friendship and support throughout the Embry-Riddle Aeronautical University/EPF École d’Ingénieurs Exchange Program. I also wish to thank all my close friends, too numerous to be all mentioned, for constantly believing in my ability to successfully complete my studies, their unconditional friendship and true support. Finally, I express my gratitude to all the amazing international people that I met during my studies for shaping another definition of the word globalization.
TABLE OF CONTENTS

ABSTRACT ... V
ACKNOWLEDGMENTS ... VI
TABLE OF CONTENTS .. 1
LIST OF TABLES .. 4
LIST OF EQUATIONS .. 5
CHAPTER 1 : INTRODUCTION ... 6
1.1. INDUSTRIAL CONTEXT .. 6
1.2. PREVIOUS RESEARCH .. 8
1.3. RESEARCH OBJECTIVE ... 10

CHAPTER 2 : THEORETICAL BACKGROUND ... 12
2.1. ACOUSTIC EMISSION ... 12
 2.1.1. Introduction .. 12
 2.1.2. Capturing technique ... 13
2.2. NEURAL NETWORKS ... 19
 2.2.1. Introduction .. 19
 2.2.2. Kohonen self organizing maps ... 23
2.3. MULTIVARIATE STATISTICAL REGRESSION ANALYSIS 31

CHAPTER 3 : COMPOSITE COUPONS MANUFACTURE AND TESTING 36
3.1. SPECIMEN MANUFACTURING .. 36
3.2. SPECIMEN IMPACTING .. 37
3.3. SPECIMEN COMPRESSION TESTING ... 38

CHAPTER 4 : DATA ANALYSIS PROCESS ... 40
4.1. OVERVIEW ... 40
 4.1.1. Data input .. 40
 4.1.2. Analysis parameters .. 41
 4.1.2.1. Percentage of recorded acoustic emission data 42
 4.1.2.2. Number of training coupons .. 42
 4.1.2.3. Type of multivariate statistical regression analysis 44
 4.1.2.4. Acoustic emission parameters for failure mechanism description . 45
 4.1.2.5. Type of Kohonen Self Organizing Map 45
 4.1.2.6. Kohonen SOM data classification parameters 45
 4.1.2.7. Number of Kohonen SOM output clusters 46
 4.1.3. Programming aspects ... 46
 4.1.3.1. Output results .. 47
 4.1.3.2. Visual results ... 47
 4.1.3.3. Results variables saving ... 49
4.2. NOISE REMOVAL PROCESSES ... 50
 4.2.1. Noise removal by boundaries filtration 50
4.3. DATA CLUSTERING .. 55
 4.3.1. Use of Kohonen self-organizing maps 55
 4.3.2. Failure mechanisms identification ... 58
 4.3.3. Clustering visualization ... 63
LIST OF FIGURES

Figure 1: Typical broadband piezoelectric transducer cross section [2] .. 14
Figure 2: Acoustic emission acquisition process ... 15
Figure 3: Pocket AE by Physical Acoustics Corporation® ... 16
Figure 4: Idealized acoustic emission waveform parameters ... 17
Figure 5: Energy measurement of typical acoustic emission waveform ... 17
Figure 6: Representation of a neural network typical organization ... 20
Figure 7: Artificial Neural Network processing element or neuron ... 21
Figure 8: Kohonen Self Organizing Maps typical architecture ... 24
Figure 9: Front view of a Kohonen SOM output map .. 25
Figure 10: Orthogonal type of Kohonen SOM output map .. 28
Figure 11: Hexagonal type of Kohonen SOM output map .. 28
Figure 12: Random type of Kohonen SOM output map .. 28
Figure 13: 4 by 6 in. laminated graphite/epoxy coupon [1] ... 36
Figure 14: Instron Dynatup 9200 calibrated impactor [1] ... 37
Figure 15: Compression after impact test setup [1] .. 38
Figure 16: Architecture of iterative analysis process .. 46
Figure 17: Energy boundaries definition ... 51
Figure 18: Average frequency boundaries definition .. 52
Figure 19: Static noise test result [1] .. 53
Figure 20: Number of minimum Kohonen SOM training iterations determination 57
Figure 21: Failure mechanisms distribution through loading .. 60
Figure 22: Duration vs counts before Kohonen SOM classification ... 64
Figure 23: Duration vs counts with 4 clusters Kohonen SOM classification ... 64
Figure 24: Duration vs counts with 9 clusters Kohonen SOM classification ... 65
Figure 25: Amplitude vs Energy vs Duration of non-classified AE data ... 66
Figure 26: Amplitude vs Energy vs Duration of AE data classified in 4 clusters .. 67
Figure 27: Amplitude vs Energy vs Duration of AE data classified in 9 clusters .. 67
Figure 28: Amplitude distribution of a coupon AE data before classification ... 68
Figure 29: Amplitude distribution of a coupon AE hits after classification into 4 clusters 69
Figure 30: Amplitude distribution of a coupon AE hits after classification into 9 clusters 69
Figure 31: Training coupons predicted loads distribution ... 77
Figure 32: Prediction coupons predicted loads distribution ... 78
Figure 33: B-basis allowables ... 80
Figure 34: Modified B-basis allowables ... 82
Figure 35: Lower average frequency boundary optimization .. 84
Figure 36: Number of Kohonen SOM output clusters influence study ... 85
Figure 37: Absolute value of training worst case error evolution ... 87
Figure 38: Training R^2 value evolution ... 88
Figure 39: Absolute value of prediction worst case error evolution ... 89
Figure 40: Prediction R^2 value evolution .. 91
LIST OF TABLES

Table 1: Acoustic emission waveform parameters ... 18
Table 2: Distance function definitions .. 29
Table 3: Kohonen SOM combinations .. 30
Table 4: Acoustic emission input data format (Coupon 2A example) 41
Table 5: Coupons repartition ... 43
Table 6: Visualization plots AE parameters couple axis ... 48
Table 7: Results plots axis ... 49
Table 8: Filter boundary values .. 54
Table 9: Failure mechanisms in composite materials .. 56
Table 10: Kohonen SOM 4 output clusters parameters: Energy (aJ) 59
Table 11: Kohonen SOM 4 output clusters parameters: Duration (μs) 59
Table 12: Kohonen SOM 4 output clusters parameters: Amplitude (dB) 59
Table 13: Kohonen SOM 4 output clusters parameters: Average frequency (KHz) 59
Table 14: Kohonen SOM 9 output clusters parameters: Energy (aJ) 61
Table 15: Kohonen SOM 9 output clusters parameters: Duration (μs) 61
Table 16: Kohonen SOM 9 output clusters parameters: Amplitude (dB) 62
Table 17: Kohonen SOM 9 output clusters parameters: Average frequency (KHz) 62
Table 18: Cluster identification in failure mechanisms .. 63
Table 19: Example of response variables matrix ... 71
Table 20: Example of predictor variables matrix ... 72
Table 21: \(\beta \) coefficients example set .. 75
Table 22: MSRA results example .. 76
Table 23: B-basis allowable calculations .. 79
Table 24: B-basis allowables percentage error ... 81
Table 25: Modified B-basis allowables calculation ... 82
Table 26: Modified B-basis allowables percentage error ... 83
Table 27: Worst case training error .. 87
Table 28: Worst case \(R^2 \) for training coupons .. 88
Table 29: Modified B-basis allowables compliance .. 90
Table 30: Minimum number of training coupons for above 50\% prediction \(R^2 \) value 91
Table 31: Prediction equation sensitivity to number of training coupons 94
Table 32: Training and prediction errors .. 96
Table 33: Training and prediction errors using a type 2 MSRA prediction equation 98
LIST OF EQUATIONS

Equation 1: Artificial neural network processing element output calculation ..21
Equation 2: Kohonen SOM winning neuron determination ...25
Equation 3: Kohonen SOM weight adaptation calculation ...26
Equation 4: Euclidean distance calculation ...29
Equation 5: Manhattan distance calculation ...29
Equation 6: MSRA equation of type 1 ...31
Equation 7: MSRA equation of type 2 ...31
Equation 8: Typical MSRA matrix system for equation of type 1 ...32
Equation 9: Typical MSRA matrix system for equation of type 2 ...33
Equation 10: Condition on the matrix system dimensions for MSRA equation of type 134
Equation 11: Condition on the matrix system dimensions for MSRA equation of type 234
Equation 12: β matrix calculation ...34
Equation 13: Residual error calculation ...35
Equation 14: MSRA equation of type 2 ...73
Equation 15: MSRA equation of type 2 ...74
Equation 16: MSRA equation of type 2 ...74
Equation 17: MSRA equation of type 2 ...79
Equation 18: Output format of a MSRA equation of type 1 ...92
Equation 19: Calculation example of a prediction failure load ...95
CHAPTER 1 : INTRODUCTION

1.1. INDUSTRIAL CONTEXT

Composite materials have been of growing interest in the transportation industry and more particularly the aerospace industry for several years. The idea of reinforcing a material by combining it with another in order to improve its overall mechanical properties has been used for decades in field of aerospace engineering. The recent intensive study and development of composites is essentially driven by the aerospace industry’s constant need to increase the strength-to-weight ratio of any material being used in aerospace structures, while conserving or improving upon its mechanical properties. Throughout the years, composite materials have been the primary answer for improving strength-to-weight ratios of structures. This is mainly accomplished through the use of materials such as carbon fiber that have a considerably lower density than all of the high strength metals. On the other hand, it has been proven that even when composite materials meet all of the aerospace industry requirements in terms of mechanical properties, they can be strongly degraded by environmental effects and especially impact damage [15].

The current absolute necessity of lighter materials pushed the aerospace industry towards the extensive use of composite materials on the new generation of both civil and military aircraft. Two famous examples, particularly highlighted for their high percentage of composite material use, are the Boeing 787 Dreamliner and the upcoming Airbus A350. By taking into consideration the fact that both these projects included more than 50% of composite materials in their structures, one can see the need for a thorough understanding of these materials. Hence, knowing the aforementioned sensitivities of these materials to their environment becomes crucial.
in order to be able to certify that any aircraft part made out of composite materials is able to sustain its maximum design load throughout its service life.

Solutions have been researched and developed in order to monitor material condition at any time during its service life without affecting the material itself. This set of non-intrusive monitoring solutions are known as nondestructive testing methods and have been of particular interest for the petroleum for pipeline integrity inspections and the aerospace industry for aircraft structural integrity inspections [2]. The nondestructive testing methods that have been developed are primarily based on the nature of the material to be inspected in order to be efficient. Even if efforts have been put into the development of nondestructive testing methods, the non-metallic nature of composite materials reduces the number of usable inspection methods. One of the most promising yet undeveloped methods for composite materials nondestructive inspection is based on the analysis of the acoustic emissions (AE) generated by loading the structure to be inspected.

Recently, efforts have also been made in the field of structural health monitoring. This type of live monitoring becomes feasible when the transducers are built into the structure, preferably during the manufacturing process. This evolution of nondestructive inspection methods could strongly redefine aerospace systems from regularly inspected, inert mechanical structures to constantly self-evaluated structures. This continuous evaluation would provide crucial information about the vehicle structural integrity and determine its maintenance needs in real time. The research presented in this thesis is designed to further this end.
1.2. PREVIOUS RESEARCH

Numerous research projects have been conducted in the past in order to gain knowledge about composite materials used in the aerospace industry. The mechanical behavior of composite materials during their mechanics of failure is still not well understood or described by any mathematical model. Thus, much effort was put into the study of the mechanics of failure of these materials from a molecular to a macro-mechanical scale. Artificial neural networks (ANNs) have also been investigated for their ability to analyze such highly complex problems.

The Department of Aerospace Engineering at Embry-Riddle Aeronautical University (ERAU) has successfully conducted several studies on the failure mechanisms associated with composite materials, including coupons, beams and pressure vessels, by combining the nondestructive monitoring technique of acoustic emission with the artificial neural network technology and multivariate statistical analysis as data analysis tools [1,3-4].

The present research is closely related to a previous research project conducted in 2009 by Gunasekera, an ERAU alumnus [1]. This research project consisted in predicting, within the B-basis allowables for composite materials, the ultimate load of graphite/epoxy coupons degraded by previous impact and subjected to compression loading until failure. A set of thirty-four 24-ply graphite/epoxy coupons were manufactured and impacted at various levels of impact energy varying from 8 to 20 Joules. These impacts were intentionally delivered in order to recreate barely visible impact damage (BVID) like that experienced by an aircraft skin panel when exposed to a tool drop during maintenance, runway debris impact, or small bird strikes during operation. The present research then focused on the mechanical behavior of these impacted coupons under a constantly increasing compressive load. While each coupon was undergoing
compression, the emitted acoustic emission data were captured and recorded by an AE analyzer system along with the concomitant ultimate failure load.

The study of composite materials undergoing compression is of particular interest with regard to the little knowledge available when compared to its behavior in tension. As opposed to a composite material undergoing tension, in which the load is mainly carried by the fibers, a composite material under compression will rely on both its fibers and matrix to sustain the load. It is now well understood that, due to unexpected manufacturing defects and unpredictable physical degradations of the material throughout its lifetime, any anticipation of the behavior of any real composite coupon or part approaching its failure will be difficult and, in any case, unique [5].

Further comprehensive data analysis has been conducted using the Kohonen self-organizing map (SOM) type of ANN for data classification and backpropagation neural networks (BPNNs) for ultimate load prediction [1]. The overall goal of Gunasekera’s research was to demonstrate the capability of accurately predicting the ultimate compressive loads in impact damaged coupons by only using the acoustic emissions emitted by the coupons loaded at levels well below their ultimate failure loads. This previous research project was successfully concluded by an ultimate load prediction worst case error of -11.53% using 24 coupons to train the BPNN and the remaining 10 coupons for ultimate load prediction.
1.3. RESEARCH OBJECTIVE

As with any new technique or technology, it is of primary interest to have a good understanding and knowledge prior to any industrial application. The problem of the present research project is to extend the physical understanding of the nondestructive acoustic emission technique by reproducing the real life service conditions in a laboratory. The presence of composite material skin panels being exposed to environmental aggressions and subjected to complex loading is increasing in aircraft structures. Thus, it is of interest to study the behavior of degraded composite coupons undergoing, at first, simple compression in order to determine if the use of acoustic emission is a viable technique that should be used in the future. This laboratory experiment could be easily compared to a real life situation, where a flat skin panel on the upper surface area of a wing was previously degraded by a tool drop during maintenance and then subjected to a constant compressive load during flight. The choice of the acoustic emission nondestructive method to acquire data in the laboratory stands to reason in this example since this technique has already been used for in-flight data acquisition for metal structures [2].

The present research project proposes to demonstrate the feasibility of an ultimate load prediction using the acoustic emission data recorded during the previously discussed research project. This prediction will be accomplished by using ANNs for data classification and a multivariate statistical analysis (in place of the backpropagation neural network [1]) for an accurate compressive failure load prediction. The prevalent aim of joining these two methods is the ability to generate a linear equation, which will mathematically define the relationship between the low proof load (≤30% \(P_{ult} \)) acoustic emission observed during a coupon compression and its ultimate failure load.
The main difficulty in combining the acoustic emission capturing technique and the multivariate statistical analysis is that these methods possess disadvantages that can be considered, at first blush, as incompatible. Indeed, the acoustic emission capturing technique is a noise sensitive technique, which captures noise as part of its output data. In order to produce accurate results, these captured AE data need to be almost noise free when introduced to the multivariate statistical analysis process. The analyzing process described hereinafter was designed by the author with the intention of being automatic and easily reproducible for any future composite aircraft parts. In order to do so, several subsequent requirements were defined and constantly sought:

- Be able to run an analysis starting uniquely with raw acoustic emission data directly after their capture on several specimens.
- Identify the analysis parameters.
- Evaluate the influence of each analysis parameter on the final prediction.
- Allow a physical interpretation of the data manipulation step by step by means of graphical representation understandable by any NDT engineer.
- Determine the optimized set of parameters allowing a prediction error within the B-basis allowables for the composite material.
- Obtain, in this particular case, a best fitting equation predicting the ultimate load as accurately as possible.
CHAPTER 2: THEORETICAL BACKGROUND

2.1. ACOUSTIC EMISSION

2.1.1. Introduction

Any material that is subjected to an external stress will react according to the laws of physics in order to reach an equilibrium state. An applied external load will create stress concentrations within the material that will be released by different means. The stress release mechanisms can manifest themselves in different variations of the materials physical properties. For example a stressed material can redistribute the energy it is subjected to by varying its temperature, deforming itself on a large scale, or even by failing at stress concentration points created within the material. In the last case, the sudden dislocation of material at those failure points will generate mechanical waves that will propagate within the material according to its mechanical properties. Thus, a correlation can be established between the observation of the stress releasing ultrasonic mechanical waves, known as acoustic emission, and the physical events occurring in the failing material [2].

Since this statement is valid regardless of the material type, a universal technique has been developed to accurately observe these stress releasing waves. This nondestructive technique is known as acoustic emission. Because the mechanical waves propagating throughout the material will reach the external surfaces of the material, it is feasible to observe them in a non-intrusive manner by the acoustic emission technique. Furthermore, in this technique, the stress that the failing material is subjected to is uniquely provided by the material loading environment.
Thus, the acoustic emission technique is a passive nondestructive technique that simply captures acoustic emissions that naturally occur in a material stressed by its loading environment.

Knowing the physical events occurring in a structure well before its failure can inform the trained NDT engineer of the physical state of the observed structure and with some analysis allow him to predict its point of failure and ultimate failure load. This has been successfully accomplished on a number of occasions in the past [1-4].

2.1.2. Capturing technique

The acoustic emission monitoring technique consists in capturing the mechanical waves propagating throughout a material, by sensing and measuring the vertical displacement of the aforementioned material’s surface. In order to do so, resonant piezoelectric transducers are placed on the surface of the specimen to observe mechanical waves that are travelling within the material. A typical acoustic emission resonant piezoelectric transducer is composed of a ceramic element that is extremely sensitive to any displacement. The transducer is coupled to the surface, here with hot melt glue. Any surface displacements are transformed by the piezoceramic element into an electrical signal that can be read by a computer or an electronic device. A typical broadband resonant piezoelectric transducer cross section is presented in Figure 1. Acoustic emission transducers typically do not include the damping material and are therefore allowed to resonate at frequencies consistent with the geometry of the piezoceramic element.
As with any measuring technique, the choice of the transducer most adapted to the considered application is of primary importance. The large spectrum of acoustic emission applications led to the design of several types of acoustic emission transducers specifically adapted to their respective purposes and environments. The numerous types of transducers that are available today vary in terms of size, shape, frequency spectrum and sensitivity. These transducers can be either wideband or resonant, depending upon the frequency range that is to be recorded. An enlightened selection requires an experience shared by both the manufacturer and the NDT engineer [6].

Another crucial parameter for an accurate measurement is the use of a wave conducting medium, known as a couplant, between the material surface and the sensitive surface of the acoustic emission transducer. This is done in order to reduce the impedance difference between the transducer and specimen materials. Couplants are often water based liquids or gels that replace an air interface. Indeed, the lack of couplant or the presence of too many air bubbles trapped in it would lower the overall interface impedance and ultimately degrade the measurement. In addition, the couplant can also be selected for its adhesive properties in order to
offer both an acceptable material/transducer interface and tightly maintain the transducer in place during testing, a common example being hot melt glue.

![Diagram of acoustic emission acquisition process]

Figure 2: Acoustic emission acquisition process

When a mechanical wave comes across the sensitive surface of the piezoelectric transducer and the tested specimen, the piezoelectric element vibrates with respect to the transducer case. This motion will then be converted into an electrical signal. This electrical signal is then directly treated by a pre-amplifier which can be integrated into the transducer case. The signal is then transmitted by means of a wire in order to be detected, measured and recorded for further analysis by an appropriate recording device. This acquisition process is presented in Figure 2.
The acoustic emission recording devices today are compact and transportable. As a practical example, the acoustic emission recording device used in the present case is the hand-held Pocket AE® designed and distributed by Physical Acoustics Corporation® [6] as shown in Figure 3.

Acoustic emission is the elastic energy spontaneously released by the material when it undergoes deformation. An acoustic emission hit is the individual signal burst produced by a localized material change. A captured acoustic emission hit can be represented by an idealized sinusoidal signal as shown in Figures 4 and 5 [2].
Figure 4: Idealized acoustic emission waveform parameters

This signal can be characterized by several waveform parameters that the recording device can measure directly on reception of the acoustic emission hit. These parameters, visually represented in Figures 4 and 5, are defined as described in Table 1.
Table 1: Acoustic emission waveform parameters

<table>
<thead>
<tr>
<th></th>
<th>Parameter</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Counts</td>
<td>N/A</td>
<td>Number of times the acoustic emission signal passes above a specified threshold amplitude level</td>
</tr>
<tr>
<td>2</td>
<td>Duration</td>
<td>Micro seconds (μs)</td>
<td>Time elapsed between the first and last threshold crossing of the acoustic emission signal</td>
</tr>
<tr>
<td>3</td>
<td>Energy</td>
<td>Atto Joules (aJ)</td>
<td>Defined as the Mean Area under the Rectified Signal Envelope (MARSE) from beginning to end and represents the energy delivered by the acoustic emission signal</td>
</tr>
<tr>
<td>4</td>
<td>Average Frequency</td>
<td>Hertz (Hz)</td>
<td>Defined as the ratio of counts over duration</td>
</tr>
<tr>
<td>5</td>
<td>Amplitude</td>
<td>Decibel (dB)</td>
<td>Amplitude of the maximum peak within the sinusoidal acoustic emission signal</td>
</tr>
<tr>
<td>6</td>
<td>Rise time</td>
<td>Micro seconds (μs)</td>
<td>Time elapsed between the first threshold crossing and the peak amplitude</td>
</tr>
</tbody>
</table>

The acoustic emission technique offers the advantage of being able to record the acoustic emission hits generated during the compression of a test specimen from the initial loading to ultimate compressive failure. Thus, particular attention should be paid to the transducer placement to ensure that it is consistent from specimen to specimen throughout the testing. Also, the correct bonding of the transducer through the testing process should be verified by inspecting the attachment of the transducer to the specimen both prior to and after testing. Hot melt glue is used in the present case to ensure correct bonding throughout the loading process.

This allows the NDT engineer to record the acoustic emission hits occurring within the material and to store the data for further comprehensive analysis. The main disadvantage of the acoustic emission technique resides in the fact that it does capture all the acoustic emission that occurs during a specimen testing, which typically includes a certain amount of unwanted acoustic emission hits due to mechanical and electromagnetic noises [2]. Even if the Pocket AE® allows the user to set bandpass filters on the data inputs, noise will still be part of the output data.
2.2. NEURAL NETWORKS

2.2.1. Introduction

The human brain massively interconnects neural cells capable of transmitting information that results in some action or decision making process. Models have been similarly developed in order to recreate this complex infrastructure with the final intention of being capable of executing either complex classifications or complex predictions [7,9]. Such computerized models, known as artificial neural networks (ANNs), are nowadays broadly used for many different types of applications. For example, in the image processing field, ANNs can be used for automatic target recognition, signature authentication and handwritten character recognition. In the signal processing industry, ANNs can be applied in many different fields from sonar signature recognition to seismic event prediction, from animal species classification to disease diagnostics, etc. [7-8].

ANNs can be easily seen as black boxes, in which the user enters a set of inputs and requires an output relative to their specific application. The given ANN will then be trained to produce a requested prediction result or classification. This fundamental phase of training confers to ANNs a high degree of adaptability and a certain universality in their applications. The training phase is essential in this process since it is the period wherein the neural network will be iteratively modified to produce the best relationship between the input data and the required output [7]. Notably, ANNs can be applied to nonlinear problems of prediction where no analytical solution can readily be found [7]. ANNs are also advantageous with regard to their ability to confer a less significant importance to input data that counterproductively affects the required output. Thus, a limited amount of noise can oftentimes be ignored by the ANN in prediction applications [7]. On the other hand, the use of an ANN requires a certain minimal
knowledge base concerning their operation in order to clean up input data and make adjustments to their training parameters in order to optimize their performance [1].

Neural networks are essentially composed of elementary input/output processing elements (PE), known as artificial neurons, which are usually organized into multiple layers. The typical neural network is composed of at least two layers: one layer of input neurons and one layer of output neurons. Depending upon the type of neural network, the presence of hidden layers of neurons, connecting layer by layer the input layer neurons to the output layer neurons, is typical. Each neuron of a layer is connected to all the neurons of the previous and following layers. Exceptions are made for both the input and output layer neurons that are respectively only connected to their following and previous layers’ neurons [7,9]. A typical three layer ANN architecture and its components are shown in Figure 6.

![Figure 6: Representation of a neural network typical organization](image)

An ANN neuron is a simple processing element with synaptic input connections and a single output. It allows only binary states of zeros or ones to operate under a discrete time
assumption and works in synchronization with the other neurons of the overall network [9]. A representation of a typical artificial neuron or processing is presented in Figure 7. The

![Figure 7: Artificial Neural Network processing element or neuron](image)

ANN neuron function is to produce a single output calculated from its input data and its weighted input links as shown in Equation 1.

Equation 1: Artificial neural network processing element output calculation

\[
Output = f \left(\sum_{i=1}^{n} w_i x_i \right)
\]

where
- \(f \) is the activation function
- \(w_i \) is the link weight
- \(x_i \) is the input value
- \(i \) is a subscript covering all the output neurons
- \(n \) is the number of neuron.

The function \(f \) is called the transfer or activation function, which determines the terms of the input data and weights and the state that the neuron output takes. Numerous activation functions are available, linear or nonlinear, unipolar or bipolar, and their interest is highly related to the type of ANN that is used [9].
The ANN can be classified according to its architecture, competitiveness and learning process. The type of architecture depends notably upon the number of layers and processing elements. The competitiveness is related to learning process mode, which can be cooperative or suppressive while adjusting the connection weights. As mentioned previously, the learning process of any ANN is crucial to its efficiency. During the learning or training phase, the ANN will iteratively modify the weight of each PE connection in order to reach the desired output. The learning process can be of two types: supervised and unsupervised.

In the case of a supervised learning, a set of training inputs and their known output are used to train the network. Iteration by iteration, the ANN calculates the output solely based upon the input and the current setting of the links’ weight, finds the output error by comparing it to the targeted or actual output, and finally, back propagates adjustments to the network weights based on the error for an improved output. The backpropagation of the error in terms of weight adjustments is mathematically accomplished by following a user adopted learning rule. This iterative optimization procedure is repeated until stability in the output variation is reached around the targeted output.

In the case of unsupervised learning, since the ANN is not given any output target, it cannot use any output error to adjust its set of PE connection weights. The ANN will then only use the set of input data to train. This explains why most of the unsupervised learning processes are used for classification problems. The ANN will try to find patterns or similarities between the input data in order to classify them into clusters or groups of data having similar characteristics. In both cases, the ANN is given an initial set of arbitrary weights, between 0 and 1, that the learning process will modify until stability in the output is reached [9].
There are mainly five different types of neural networks available today: perceptron classifiers, feedforward, backpropagation, associative memory and self-organizing networks [9]. These networks find their application in data filtering, data clustering and prediction tools [7-8]. The present research focuses on the data clustering type of neural network, the Kohonen self organizing map (SOM), which helps in the data filtering process to remove noise in preparation for multivariate statistical regression analysis (MRSA) ultimate load prediction.

2.2.2. Kohonen self organizing maps

The Kohonen self organizing map (SOM) is a data clustering algorithm developed by Teuvo Kohonen that is commonly used for data classification. While in the feedforward and backpropagation networks the set of inputs is transformed layer by layer into a set of outputs, in the Kohonen SOM, the neurons of the single output layer are organized in a map where each neuron can interact laterally with its neighboring neurons. This allows all output neurons to be in competition with their neighboring neurons and to turn themselves through a learning process into an input data pattern detector [7].

Kohonen SOMs are two layered, unsupervised and competitive ANNs. In terms of architecture, the Kohonen SOM is composed of an input layer in which every input neuron contains a data point to classify and an output layer in which the data points will be clustered based on their similarities. The number of input neurons is defined by the number of data parameters used to classify, in this case, the acoustic emission quantification parameters: amplitude, energy, duration, rise time and counts. The number of output neurons can be defined by the user and represents the number of clusters the data points will be classified into. Here these will be the failure mechanisms associated with compressive failure of composite structures. These two layers are then connected by weighted links that will be in competition during a
learning process in order to determine the appropriate cluster for each input data point. A typical Kohonen SOM can be represented as shown in Figure 8.

![Kohonen SOM Diagram](image)

Figure 8: Kohonen Self Organizing Maps typical architecture

Since a Kohonen SOM performs the simple task of classifying a complex set of data, it is implied that the output is unknown; thus, the Kohonen SOM learning process has to be unsupervised. Moreover, since each input data point (value contained in an input neuron) has to be classified into only one cluster (contained in one output neuron), the learning process will use competition to determine, iteration by iteration, the weight that should be associated with each connecting link.

The peculiarity of the Kohonen SOM resides in the fact that it produces an output layer that can be seen as a spatially organized map that divides the input data points into clusters. The spatial proximity of these clusters implies a higher similarity between the data points. A front view of the Kohonen SOM output map presented in Figure 8, as the output layer is presented in Figure 9.
Figure 9: Front view of a Kohonen SOM output map

The typical learning process for a Kohonen SOM will be described in the following paragraph. First, the SOM is initialized with a random set of weights (0 to 1), connecting the input layer neurons to the output layer neurons. Then, every time an input data point is presented to the SOM, it is presented to all the output neurons. The best matching neuron is determined based on the configuration of the current connection weights, and the input data/output neuron proximity that is determined from Equation 2 [9].

Equation 2: Kohonen SOM winning neuron determination

\[\| x - w_m \| = \min_i \{ \| x - w_i \| \} \]

where

- \(x \) represents the data input
- \(w \) represents the link weight
- \(i \) is a subscript covering all the output neurons
- \(m \) is the subscript of the winning output neuron.
The Kohonen neuron having the minimum distance from the input data point becomes the winning neuron. Once the winning neuron of the input data is determined, its weight and its neighbors’ weights will be updated to react to the same type of input [9]. The weight adaptation that is applied to the winning neuron and its neighbors is calculated according to Equation 3 [9].

Equation 3: Kohonen SOM weight adaptation calculation

\[
\Delta w_j(t) = \alpha(N_j, t) \left[x(t) - w_j(t) \right]
\]

where:
- \(w \) represents the link weight
- \(x \) represents the data input
- \(\alpha \) is a learning function comprised between 0 and 1 that decreases as the number of learning iteration increases. Its values depend notably on the winning neuron and the currently calculated neighboring neuron positions.
- \(t \) represents the current iteration
- \(j \) is a subscript covering all the neighborhood included neuron.

The notion of neighboring neurons in a Kohonen SOM is crucial and evolves throughout the learning process iterations. Using Figure 9 as a quick example: one could imagine that the center neuron as being the winning neuron for a given data point. At this learning iteration, the neighborhood is defined as the winning neuron itself and its first degree neighbors (connected by, at most, 1 weighted link). Thus, the connection weights update will here involve all the neurons of the map. During the next iteration, if the neighborhood definition is narrowed down to the winning neuron alone, and the winning neuron ends up once again being the center neuron, the weighted link that needs to be updated is the center neuron’s alone. Throughout the learning process, the definition of the winning neuron’s neighbors logically decreases from broad to limited in order to refine the classification step by step. Once the weights of the concerned
neurons have been updated, and all the data inputs presented, an iteration is concluded. This process is repeated over and over again until stability in the classification is reached.

In the present case, twelve different SOM configurations were identified to be of interest in the classification process of the acoustic emission data. These twelve configurations combine three different types of map organization and four different distance functions [10]. The three possible Kohonen SOM output maps architectures are thus presented in Figures 10, 11 and 12 [10].
Figure 10: Orthogonal type of Kohonen SOM output map

Figure 11: Hexagonal type of Kohonen SOM output map

Figure 12: Random type of Kohonen SOM output map
The distance functions are used to determine if a neuron is considered to be the winning neuron. A neuron is in the neighborhood of the winning neuron if its distance to the winning neuron is less than a certain value. This maximum distance value decreases throughout the learning process [10]. The four identified distance functions employed herein are described in Table 2.

Table 2: Distance function definitions

<table>
<thead>
<tr>
<th>Distance function</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Euclidean distance | **Equation 4: Euclidean distance calculation**
\[
\text{dist}(p, q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}
\]
where
\(p \) and \(q \) are two points
\(i \) is the dimension subscript
\(n \) is the number of dimensions. |
| Link distance | The degree of neighborhood is defined by the minimum number of links connecting a neighboring neuron to the winning neuron. |
| Manhattan distance | **Equation 5: Manhattan distance calculation**
\[
\text{dist}(p, q) = \sum_{i=1}^{n} |p_i - q_i|
\]
where
\(p \) and \(q \) are two points
\(i \) is the dimension subscript
\(n \) is the number of dimensions. |
| Box distance | The degree of neighborhood is defined by a box including all neurons surrounding the winning neurons (in line, column and diagonal). |
Table 3 presents the twelve possible combinations of map architecture and distance functions employed in this research to classify the acoustic emission data.

<table>
<thead>
<tr>
<th>Type of SOM number</th>
<th>Map architecture</th>
<th>Distance function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orthogonal grid</td>
<td>Euclidean distance</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Link distance</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Manhattan distance</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Box distance</td>
</tr>
<tr>
<td>5</td>
<td>Hexagonal grid</td>
<td>Euclidean distance</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Link distance</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Manhattan distance</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Box distance</td>
</tr>
<tr>
<td>9</td>
<td>Random grid</td>
<td>Euclidean distance</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Link distance</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Manhattan distance</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Box distance</td>
</tr>
</tbody>
</table>

In the present case, the Kohonen SOMs have been used in order to classify the large amount of acoustic emission data acquired after compression testing of the graphite/epoxy coupons. Each data point represents an acoustic emission hit that possesses a value for each of the six acoustic emission waveform quantification parameters presented in Table 1. This complex set of data has to be classified into clusters representative of the composite failure mechanisms from the compression after impact specimens in order to be able to generate an ultimate load equation using multivariate statistical regression analysis.
2.3. MULTIVARIATE STATISTICAL REGRESSION ANALYSIS

Multivariate statistical regression analysis (MSRA) is a statistical tool that, as implied in its name, establishes the relationship between several variables based on a statistical regression. The variables enrolled in a MSRA are of two types. The first type is called the independent variables or predictors. There are, logically, in a MSRA, several of them. The second type of variable is called the dependent variable or response variable [12-13].

It is assumed that a response variable can be written in terms of a combination of the predictors as presented in Equation 6. This will be denoted as a MSRA equation of type 1.

Equation 6: MSRA equation of type 1

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \ldots + \beta_n X_n + \epsilon \]

where
- \(Y \) is the dependent response variable
- \(\beta_i \) are constant terms
- \(X_i \) are the independent predictor variables
- \(n \) is the number of independent predictor variables
- \(\epsilon \) is a random error.

Another form of such a combination includes the cross product terms of each pair of two predictors. This will be further denoted as a MSRA equation of type 2.

Equation 7: MSRA equation of type 2

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \ldots + \beta_n X_n + \]

\[\beta_{n+1} X_1 X_2 + \beta_{n+2} X_1 X_3 + \ldots + \beta_{n+m} X_{m-1} X_m + \epsilon \]

where
- \(Y \) is the dependent response variable
- \(\beta_i \) are constant terms
- \(X_i \) are the independent predictor variables
- \(n \) is the number of independent predictor variables
- \(m \) is the number of independent predictor variables cross products of two:
- \(\binom{n}{2} = \frac{n!}{2!(n-2)!} \)
- \(\epsilon \) is the residual prediction error.
This second type of equation will take into account the correlation or interdependency that exists between the predictor variables. In the present research, where the independent variables are the failure mechanisms of the composite material (matrix cracking, delamination, fiber breaks, etc.), the cross product terms could take into account the coupling that exists between the various failure mechanisms.

MSRA is applied in problems where the dependency between multiple response variables and a set of predictor variables is to be found by a unique set of β_i constant coefficients in order to evaluate the overall impact of each predictor on the response. This is, for example, the case in social, physical, atmospheric, ancient civilization and species survival types of problems where the effects of different parameters are to be studied to understand a phenomenon [11-12]. The domains of application are unlimited as long as a sufficient number of measurements are available.

When the number of response variables is larger than one, the problem can be seen as the following matrix system. This system is valid for a MSRA equation of type 1.

Equation 8: Typical MSRA matrix system for equation of type 1

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\vdots \\
Y_k
\end{pmatrix} =
\begin{pmatrix}
1 & X_{11} & \ldots & X_{1n} \\
1 & X_{21} & \ldots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & X_{k1} & \ldots & X_{kn}
\end{pmatrix}
\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_n
\end{pmatrix} +
\begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\vdots \\
\varepsilon_k
\end{pmatrix}
\]

where

- Y_i are the known response dependent variables
- X_{ij} are the known predictor variables
- β_i are the constant coefficients to be determined
- ε_i are the residual prediction errors
- n is the number of independent predictor variables
- m is the number of independent predictor variables cross products of two:

\[
\binom{n}{2} = \frac{n!}{2!(n-2)!}.
\]
For a MSRA equation of type 2 the previous system becomes

\[
\begin{pmatrix}
 Y_1 \\
 Y_2 \\
 Y_3 \\
 \vdots \\
 Y_k
\end{pmatrix} =
\begin{bmatrix}
 1 & X_{11} & \ldots & X_{1n} & X_{11}X_{12} & X_{11}X_{13} & \ldots & X_{1n-1}X_{1n} \\
 1 & X_{21} & \ldots & X_{2n} & X_{21}X_{22} & X_{21}X_{23} & \ldots & X_{2n-1}X_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & X_{k1} & \ldots & X_{kn} & X_{k1}X_{k2} & X_{k1}X_{k3} & \ldots & X_{k n-1}X_{k n}
\end{bmatrix}
\begin{pmatrix}
 \beta_0 \\
 \beta_1 \\
 \beta_2 \\
 \vdots \\
 \beta_{n+m}
\end{pmatrix} +
\begin{pmatrix}
 \varepsilon_1 \\
 \varepsilon_2 \\
 \varepsilon_3 \\
 \vdots \\
 \varepsilon_k
\end{pmatrix}
\]

\text{Equation 9: Typical MSRA matrix system for equation of type 2}

where
- \(Y_i\) are the known response dependent variables
- \(X_{ij}\) are the known predictor variables
- \(\beta_i\) are the constant coefficients to be determined
- \(\varepsilon_i\) are the residual prediction errors
- \(n\) is the number of independent predictor variables
- \(m\) is the number of independent predictor variables cross products of two:

\[
{n \choose 2} = \frac{n!}{2!(n-2)!}
\]

In these two systems, the matrices of response variables \(Y_i\) and predictor variables \(X_{ij}\) are known. The MSRA solves the system by determining the unique set of constant coefficients \(\beta_i\) that best fit all the system equations. The residual error \(\varepsilon_i\) due to this unique best fitting set of coefficients \(\beta_i\) is then determined for each single equation of the system. It should be noted that the presence of a first column of ones in the predictor variables matrix is mandatory to obtain a first constant coefficient \(\beta_0\), as shown in Equations 6 and 7. It is also important to understand that the solving of a system of \(k\) equations, containing \(n+1\) unknown constant coefficients \(\beta_i\) for a MSRA equation of type 1 and \(n+m+1\) unknown constant coefficients \(\beta_i\) for a MSRA equation of type 2, creates a condition on the minimum number of equations \(k\) required as shown in Equations 10 and 11. In order to run a MSRA, this condition can be simply expressed as shown in Equation 10.
Equation 10: Condition on the matrix system dimensions for MSRA equation of type 1

\[k = n + 2 \]

where
- \(k \) is the number of equations in the system
- \(n \) is the number predictor variables.

Equation 11: Condition on the matrix system dimensions for MSRA equation of type 2

\[k = n + m + 2 \]

where
- \(k \) is the number of equations in the system
- \(n \) is the number predictor variables
- \(m \) is the number of independent predictor variables cross products of two:

\[\binom{n}{2} = \frac{n!}{2!(n-2)!} \]

The condition on the number of lines \(k \) of the system means that in order to run a MSRA analysis, one should have two more cases providing a set of predictors and response variables than the number of predictors, or the number of predictors plus the number of predictors cross products, for respectively an equation of type 1 or 2.

Once the matrices of predictors and response variables are provided, the MSRA determines the \(\beta \) matrix by solving the system as shown in Equation 12 [12-13]

Equation 12: \(\beta \) matrix calculation

\[\beta = (X'X)^{-1}X'Y \]

where
- \(\beta \) is the matrix of the constant coefficients \(\beta_i \)
- \(X \) is the matrix of predictor coefficients \(X_{ij} \)
- \(Y \) is the matrix of response coefficients \(Y_i \).

The residual error is then determined by calculating the actual response variables values and the calculated responses variables’ values as presented in Equation 13 [12-13]
Equation 13: Residual error calculation

\[\varepsilon = Y - \beta X \]

where
- \(\varepsilon \) is the matrix of residual errors \(\varepsilon_i \)
- \(\beta \) is the matrix of the constant coefficients \(\beta_i \)
- \(X \) is the matrix of predictor coefficients \(X_{ij} \)
- \(Y \) is the matrix of response coefficients \(Y_i \).

One of the goals of the present research was to efficiently determine the \(X \) matrix of predictor variables in order to minimize the values contained in the residual matrix \(\varepsilon \). The use of the MSRA and its specific application in the present project will be presented later on.
CHAPTER 3 : COMPOSITE COUPONS MANUFACTURE AND TESTING

3.1. SPECIMEN MANUFACTURING

Thirty-four graphite/epoxy laminated coupons were fabricated, impacted and compressed while recording acoustic emissions by Gunasekera for a previous research project [1]. The coupons were fabricated following the ASTM standard D7137/D 7137M-07, defining the specimen coupons for compression after impact testing. A Cycom ® (Cytec, Woodland Park, New Jersey) 985 GF3070PW bidirectional woven prepeg cloth was used to fabricate the entire set of coupons. Nine 14 x 9 inch laminates were fabricated, out of which thirty-four 4 x 6 inch coupons were cut out. The ASTM standard requires the compression coupons to be of a thickness of 0.20 inch, which in this case required 24 prepeg layers per laminate. The nine laminates were then manufactured by laying 24 layers of prepeg woven cloth onto a wooden plate, clamping them between two aluminum caul plates by C clamps, and finally, curing the laminate in an oven at 355°F for two hours in conformance with the prepeg curing specifications. The oven was then turned off, and the laminates were allowed to gradually cool to ambient temperature. Each of the nine laminates were then cut into four 4 x 6 inch coupons using a diamond tip wet saw.

![Image](image-url)
Figure 13: 4 by 6 in. laminated graphite/epoxy coupon [1]
3.2. SPECIMEN IMPACTING

Each of the thirty-four coupons was then impacted in their center by an Instron (Norwood, MA) Dynatup 9200 calibrated impactor. The equipment was set up to deliver an impact energy ranging from 8 to 20 Joules. The impactor tip used was a blunt 0.5 inch diameter hemispherical tup. This was done with the intent of creating barely visible impact damage (BVID) in the coupons [1]. These BVIDs could be comparable to the damage that a tool dropping during maintenance, a small runway debris impact or a small bird strike could create on an aircraft skin panel.

Even if the impact damage could not be seen by the naked eye, C-scan ultrasonics and X ray scanning were performed in order to highlight the damage created in the coupons. It was concluded that longitudinal and transverse cracking could already be seen along the woven fibers [1].

![Instron Dynatup 9200 calibrated impactor](image-url)
3.3. SPECIMEN COMPRESSION TESTING

Once all the specimens have been manufactured and impacted, each of them was mounted on a Tinius-Olsen (Willow Grove, PA) model 290 Lo Cap testing machine for compression until failure. A representation of the test setup is presented in Figure 15 [1].

![Figure 15: Compression after impact test setup [1]](image)

This Boeing compression after impact testing machine was used in order to conform to the same ASTM standard D7137/D 7137M-07 used previously for the coupon manufacture. The tested graphite/epoxy coupon was then equipped with two 150 kHz transducers (R15α A157 and A158) placed on the coupon centerline at 1.5 inches from the bottom and top edges. The two transducers were then connected to an Enviroacoustics (Physical Acoustics Cooperation, Princeton Junction, New Jersey) Pocket AE-1 (Figure 3) for acoustic emission data acquisition.
The interface between the transducers and the specimen was made of a thin layer of hot melt glue, ensuring both a role of couplant and bonding to maintain the transducers in place during the testing. In order to prevent any unwanted disbonding during the specimen failure, the transducers were also taped to the specimen. A compressive load was then applied at a rate of 4,000 lb/min until failure. It should be noted that the Pocket AE allowed the continuous recording of the Tinius-Olsen compressive load at each instant on an input channel matching the current acoustic emission data recording to the current compressive load. The maximum applied load was then recorded [1].
CHAPTER 4: DATA ANALYSIS PROCESS

4.1. OVERVIEW

The purpose of the current research was to demonstrate the feasibility of an automated treatment of raw acoustic emission data from their capture until development of a failure load prediction equation. Matlab R2009b® was used herein to develop a code that automatically analysed the acoustic emission data and generated an ultimate compression after impact load equation based on the amount of the various failure mechanisms that occurred at a low proof load.

4.1.1. Data input

It has been defined as a requirement that the analysis process of the acoustic emission data set should start with raw data directly extracted from the Pocket AE acquisition instrument. After impacting the coupons, the Pocket AE was set to record the following list of AE parameters: counts, duration, energy, amplitude and rise time for each signal waveform or hit. The ratio of counts over duration or average frequency was then calculated for each acoustic emission hit. Finally, the compressive load was also recorded for each acoustic emission hit.

After each compression test, the recorded acoustic emission data were exported in a single file for further analysis. A total of 34 files were generated. Each of these files was formatted as shown in Table 4.
Table 4: Acoustic emission input data format (Coupon 2A example)

<table>
<thead>
<tr>
<th>Acoustic emission hit number</th>
<th>Counts</th>
<th>Duration (μs)</th>
<th>Energy (aJ)</th>
<th>Load (lb)</th>
<th>Average Frequency (KHz)</th>
<th>Amplitude (dB)</th>
<th>Rise time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>180</td>
<td>1</td>
<td>169</td>
<td>133</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>284</td>
<td>1</td>
<td>169</td>
<td>60</td>
<td>49</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>629</td>
<td>1</td>
<td>178</td>
<td>38</td>
<td>38</td>
<td>67</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3804</td>
<td>217</td>
<td>2956</td>
<td>12</td>
<td>24676</td>
<td>73</td>
<td>50</td>
<td>701</td>
</tr>
</tbody>
</table>

These acoustic emission data were classified in a chronological order with respect to their occurrence during the compression test. This can be seen in the load values that continue to increase throughout the specimen compression. The spreadsheets logically contain the AE data occurring at the beginning of the compression in the first rows up to the AE data occurring in the vicinity of the failure in the last rows. For the purpose of this research, the totality of the acoustic emission hits from compression initiation up to failure were saved in the data processing environment even though, as it will be explained later on, only a small percentage of these data were used for ultimate load prediction.

4.1.2. Analysis parameters

Several analysis parameters have been identified as potentially impacting the prediction results.
4.1.2.1. Percentage of recorded acoustic emission data

Since the purpose of this research was to produce an accurate prediction of the failure load of a specimen compressed well below its ultimate load, the first analysis parameter of interest was the percentage of acoustic emission data recorded that should be used in the prediction. In other words, the compression testing output file made available for each of the compressed coupon contained the entire acoustic emission data set occurring before the coupon failure, or 100% of the recorded data, but only a certain percentage of these data were used for ultimate compression after impact load prediction. The existence of a minimum recorded data percentage that should be used for accurate results was then researched.

4.1.2.2. Number of training coupons

Since the acoustic emission data of thirty-four coupons were available, it was decided to divide the tested coupons into two groups. On one hand, a group of coupons were used as training coupons. Only the acoustic emission from these coupons were used to train the Kohonen SOM and to determine the set of β constant coefficients in the MSRA equation. On the other hand, the remaining coupons were used as test or prediction coupons. The acoustic emission from these prediction coupons was used to predict their failure loads by applying them to the optimized set of β coefficients in the trained MSRA ultimate load equation.

The second identified analysis parameter was thus the number of training coupons used. The repartition of the coupons throughout the impact energy levels are presented in Table 5 and will help to understand how the minimum number of training coupons was determined.
When a multivariate statistical regression analysis is used as a prediction tool, it is essential to train on at least the maximum and minimum ultimate loads within the set of available data points. In the present case the 34 available coupons were divided into nine groups of

<table>
<thead>
<tr>
<th>Impact Energy (J)</th>
<th>Coupon Number</th>
<th>Coupon Identification Code</th>
<th>Failure Load (lbf)</th>
<th>Mean Failure Load (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1A</td>
<td>22583</td>
<td>23541</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2A</td>
<td>24498</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5A</td>
<td>19916</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4A</td>
<td>20162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>25A</td>
<td>21815</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>26A</td>
<td>22190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>23C</td>
<td>22470</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>24A</td>
<td>24195</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>25D</td>
<td>17249</td>
<td>20008</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>24B</td>
<td>19782</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>7A</td>
<td>20434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8A</td>
<td>20827</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25B</td>
<td>21749</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11A</td>
<td>17226</td>
<td>17695</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10A</td>
<td>18163</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>13A</td>
<td>18660</td>
<td>19818</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>14A</td>
<td>20975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>17A</td>
<td>16685</td>
<td>17048</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16A</td>
<td>17410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19A</td>
<td>15805</td>
<td>18147</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>20A</td>
<td>16734</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>24C</td>
<td>17944</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>27D</td>
<td>18742</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>27B</td>
<td>18825</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>26B</td>
<td>20833</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>23A</td>
<td>17322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>27C</td>
<td>18986</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>22A</td>
<td>19503</td>
<td>19468</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25C</td>
<td>20010</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>27A</td>
<td>20255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>26C</td>
<td>20729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>24D</td>
<td>17250</td>
<td>18816</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4B</td>
<td>19175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26D</td>
<td>20024</td>
<td></td>
</tr>
</tbody>
</table>
different impact energy levels, the most restrictive training set naturally contains the coupons of maximum and minimum failure loads in each of these groups. As such, the minimum number of training coupons was determined to be 18 coupons and contained those coupons colored in green (minimum value) or red (maximum value) in Table 5. The maximum number of training coupons of thirty-four was determined by the necessity of having at least one prediction coupon for each impact energy level. In between these two boundaries, a variation in the number of training coupons was possible.

The number of training coupons could then vary in between these two boundaries. In order to be comprehensive, for a certain number of training coupons, all the combinations of training coupons (and their associated remaining prediction coupons set) were analyzed. This was done in order to prevent any fortuitous result due to some “randomly good” selection of training coupons.

4.1.2.3 Type of multivariate statistical regression analysis equation

The MSRA method provides a relationship between multiple predictors and a response variable in terms of an equation. Two types of equations were considered in the present research, Equations 6 and 7. However, the use of the second type of equation influences the minimum number of training coupons to be used and the maximum number of failure mechanisms into which the data can be divided. The second type of equation will become unusable with only 34 coupons if a large number of failure mechanisms have been identified.
4.1.2.4. Acoustic emission parameters for failure mechanism description

An important emphasis has been put onto the research of the best representation of the failure mechanisms of the composite specimens through the recorded acoustic emission data. Indeed, six AE parameters being available, each of them was subjected to investigation. Each of them was thus used to feed the MSRA, making those AE parameters used as input to the SOM an important analysis parameter.

4.1.2.5. Type of Kohonen Self Organizing Map

Another important analysis parameter is found in the type of Kohonen SOM that is used to classify the acoustic emission data. The twelve different types of Kohonen SOM have been previously presented in Table 2. It was thought that the type of Kohonen SOM classifying the acoustic emission data might influence the AE hits classification and therefore the failure load prediction.

4.1.2.6. Kohonen SOM data classification parameters

The Kohonen SOM classification process is based on similarities between data input. In the present case, the input data are acoustic emission hits comprised of six AE parameter values. The Kohonen SOM allows the use of multidimensional input per data point in order to appropriately classify the data point. In the present case, the Kohonen SOM offers the possibility of evaluating the impact of the AE parameters used to classify the AE hits. An optimization of the AE classification parameters to be used has been done.
4.1.2.7. Number of Kohonen SOM output clusters

The last analysis parameter is the number of Kohonen SOM output clusters. As will be further explained, the number of Kohonen SOM parameters to use depends, in this research, on the purpose of the Kohonen SOM. The number of Kohonen SOM output clusters can be directly set by the user but is subjected to a particular caution. Indeed, the number of Kohonen SOM output clusters directly affects the MSRA output equation format by defining the number of predictor variables. As such, it also directly affects the minimum number of training coupons to use.

4.1.3. Programming aspects

Since numerous parameters have been identified as potentially affecting the prediction error, a rigorous methodology has been developed in order to investigate the influence of each of these aforementioned parameters.

![Figure 16: Architecture of iterative analysis process](image-url)
Three of the analysis parameters have been investigated by a trial and error method in order to determine their best combination. These three analysis parameters are denoted in Figure 16 as analysis predetermined input parameters. The remaining four analysis parameters were investigated by means of an iterative process, testing all the possible different combinations. As it can be seen in Figure 16, a system of loops within each other allowed the coverage of all the possible values of each of the parameters, and all the combinations were developed. Once the complete study of all the parameters variation is done, the results are directly exploitable.

4.1.3.1. Output results

Particular attention was focused on the analysis results format to make it easily understandable by any NDT engineer who would run such an analysis. Indeed, the amount of acoustic emission hits being so large, correct visualization is necessary in order to perform the analysis.

4.1.3.2. Visual results

Many acoustic emission data plots are automatically generated throughout the analysis in order to allow the NDT engineer to understand the manipulation performed on the data and determine the physical meaning connecting the AE hits to the failure of the specimens. These visual outputs were saved in independent files and are consultable after an analysis has been run. One typical example of each of the subsequently mentioned plots is presented in Appendix B. The large number of AE data representations made available can be decomposed into four groups.

The first group allowed the visualization of the six AE parameter distributions for all the specimens. These plots are made available before and after a first degree noise filtration and also after a certain percentage of filtered AE data have been extracted from the totality of filtered AE
data set. These plots are useful since it allows the NDT engineer to define the filtration boundaries of the first degree filtration as subsequently explained. Each of these plots is a three-dimensional histogram spreading on their X axis the thirty-four specimens, on their Y axis the AE parameter range and finally on the Z axis the number of AE hits at each AE parameter.

The second group of plots allows the visualization of AE data parameters with respect to each other for four interesting AE parameters couples. These four couples are summarized in Table 6 and are frequently used for a physical understanding of the AE hits.

<table>
<thead>
<tr>
<th>Table 6: Visualization plots AE parameters couple axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE parameter on X axis</td>
</tr>
<tr>
<td>Counts</td>
</tr>
<tr>
<td>Average Frequency</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Amplitude</td>
</tr>
</tbody>
</table>

The third group helps to visualize the AE hits once the classification in composite material failure mechanisms by the Kohonen SOM has been done. The plot of duration versus counts with classified AE data is helpful to understand the Kohonen SOM classification process. The amplitude, duration and frequency distributions per failure mechanism are also made available.

The remaining group displays the training and prediction errors of ultimate loads, respectively, in the groups of training coupons and prediction coupons. Three types of plots are made available as summarized in Table 7.
Table 7: Results plots axis

<table>
<thead>
<tr>
<th>X axis parameter</th>
<th>Y axis parameter</th>
<th>Z axis parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Kohonen SOM</td>
<td>vs Number of training coupons</td>
<td>vs Training percentage error</td>
</tr>
<tr>
<td>Type of Kohonen SOM</td>
<td>vs Number of training coupons</td>
<td>vs Prediction percentage error</td>
</tr>
<tr>
<td>AE parameters</td>
<td>vs Number of training coupons</td>
<td>vs Prediction percentage error</td>
</tr>
</tbody>
</table>

4.1.3.3. Results variables saving

The analysis process generates results at each iteration from filtered AE data to a prediction equation. All the subsequent results have been identified as being necessary for further analysis and thus are being saved in a results output file. The output results to be saved at each iteration are as follows:

- The trained Kohonen SOM
- The mean amplitude value in each cluster for failure mechanism identification
- The set of β constant coefficients
- The X matrix of predictors used to find the set of β constant coefficients
- The X matrix of predictors used to calculate the prediction error on prediction coupons
- The AE parameter giving the lowest prediction error
- The ultimate load training error (also known as residual error in MSRA theory)
- The ultimate load prediction error

These multidimensional matrices of results allow the further understanding of a specific result.
4.2. **NOISE REMOVAL PROCESSES**

The joint use of the acoustic emission technique and MSRA presupposes an almost entire elimination of the AE data noise.

4.2.1. **Noise removal by boundaries filtration**

The data filtration process consists in a simple filtration by boundaries. This filtration is applied before the AE data classification process begins. Practically, the AE data distribution with respect to each AE parameter is visualized with all the coupons at once. The limits under/above which the data points are really sparse and seem to be irrelevant with respect to the specimen failure mechanisms are then determined. Determination of typical boundaries can be seen on Figure 17. This figure is a three-dimensional plot where the energy distribution is presented on the Y and Z axis while each X axis position contains AE hits of a single coupon, thus creating a simultaneous visualization of all the coupons. A two dimensional view of such a plot shows the data overlaps, allowing the user to define the domains of consistent AE data versus the domains of noise.
A similar boundary determination process was applied to each of the six AE parameters.

In the case of average frequency, a first lower boundary of 5 kHz was defined by the previous process as seen in Figure 18. The best of the two possible 2D views is presented herein which explains the reversed X axis gradation.
However, as it can be seen on Figure 18 a lower boundary of 5 kHz would leave a large amount of noise still embedded in the useful data. Thus, further analysis was done in order to determine precisely the lower average frequency boundary between noise and useful data.

A static noise test, where a coupon test was set up and acoustic emission recorded without applying any compressive load, was performed previously [1]. The results of this static test are presented in Figure 19.
Figure 19: Static noise test result [1]

It can be seen that the AE hits from the static noise due to the naturally noisy laboratory environment (hydraulic machines, electromagnetic interference, external vibrations, etc.) were captured when no compressive load was applied. This static noise can be identified by its characteristic low average frequency (low counts and long durations). This test suggests that any data point having an average frequency below 18 kHz is probably noise.

However, as can be seen in Figure 18, a lower limit of 18 kHz would still leave a part of the noise data in the resulting data set. This extra noise may be due to either the friction between the clamping edges of the compression machines and the specimen or the hydraulic pistons in the actuator. A higher value of average frequency lower limit of 45 kHz was determined to improve the prediction results, as will be explained later on.
The lower and upper limits under and above which the AE hits are considered to be noise are summarized in Table 8. Only those AE hits that have all their AE parameter values between all the boundaries at the same time were retained for the rest of the analysis.

Table 8: Filter boundary values

<table>
<thead>
<tr>
<th>AE parameter</th>
<th>Before filtration</th>
<th>After filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower limit</td>
<td>Upper limit</td>
</tr>
<tr>
<td>Counts</td>
<td>1</td>
<td>1301</td>
</tr>
<tr>
<td>Duration (μs)</td>
<td>1</td>
<td>9800</td>
</tr>
<tr>
<td>Energy (aJ)</td>
<td>1</td>
<td>5935</td>
</tr>
<tr>
<td>Average frequency (KHz)</td>
<td>1</td>
<td>226</td>
</tr>
<tr>
<td>Amplitude (dB)</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Rise time (μs)</td>
<td>1</td>
<td>9431</td>
</tr>
</tbody>
</table>

This filtration process removes all irrelevant AE hits such as zero energy, zero duration, zero counts and multiple hit (long duration) data. Indeed, a data hit having a 0 value for any of its AE parameter denotes either a capture failure or a data point at the threshold limit, which is therefore unusable. Au contraire, parameter values above the upper limits denote multiple hit data where two or more AE hits were captured in the same hit due to nearly simultaneous arrival times. Defining boundaries on all the AE parameters is conservative and therefore ensures a maximum of noise data removal. This type of noise filtration mainly removes the noises due to incorrect data recording and the static noise from the laboratory environment.
4.3. DATA CLUSTERING

4.3.1. Use of Kohonen self-organizing maps

The heterogeneous and brittle nature of a composite materials leads to a complex process of progressive failure of the material when subjected to an external compressive load. Moreover, the type of material considered in the present application has been damaged by low velocity impacts. A certain failure process has thus been initiated by suddenly compressing the fiber layers and inevitably breaking some of the fibers in the impact area. Furthermore, it is known that in composite materials under compression, the material’s response will be due both to the matrix and the fiber mechanical properties. In tension, the material properties will mainly appeal to the fiber’s properties. Several failure mechanisms are nowadays known from the extensive study of the composite material failure that has been conducted for years [14-16]. These failure mechanisms are based, on one hand, on the failure of the matrix itself, particularly present in a case of material compression and, on another hand, on the failure of the fibrous phase present in the material. Also, failure occurs at the fiber/matrix interface. A nonexhaustive list of the principal failure mechanisms appearing in composite materials subjected to an external load is presented in Table 9 [1, 14-17].

The presence of such failure mechanisms and their magnitude is believed to be strongly related to the ultimate failure of the compressed specimens. In other words, if the presence and magnitude of such failure mechanisms could be extracted from the collected AE data, their individual influence on the failure load of the specimen would be reflected by the coefficients of the MSRA ultimate load prediction equation.
Table 9: Failure mechanisms in composite materials

<table>
<thead>
<tr>
<th>Domain</th>
<th>Failure mechanism</th>
<th>Sources</th>
<th>AE Hit Characteristics [1, 17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>Fiber breaks</td>
<td>Localized stress concentration around fibers</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brittleness of the fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load redistribution from adjacent broken fibers</td>
<td>Short</td>
</tr>
<tr>
<td></td>
<td>Matrix longitudinal cracking</td>
<td>Stress concentration between the fibers</td>
<td>Low</td>
</tr>
<tr>
<td>Matrix</td>
<td></td>
<td>Matrix brittleness</td>
<td>Long</td>
</tr>
<tr>
<td></td>
<td>Matrix transverse cracking</td>
<td>Stress concentration</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrix brittleness</td>
<td>Short</td>
</tr>
<tr>
<td>Fiber-Matrix Interface</td>
<td>Delamination</td>
<td>Inter laminar tension</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inter laminar shear</td>
<td>Medium Long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transverse and longitudinal matrix cracks joining</td>
<td>Medium-High</td>
</tr>
<tr>
<td></td>
<td>Fiber pullout</td>
<td>Matrix / fiber disbonding</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short</td>
</tr>
</tbody>
</table>

The Kohonen SOM is used in the present case to classify the AE data collected from the specimen testing into the various failure mechanisms present. As has been previously explained, a Kohonen SOM has to be trained in order to be an effective classification tool. The specimens are divided into two groups: a group of training coupons and a group of prediction coupons. The training coupons’ AE data are used to train the Kohonen SOM by presenting them all at once to iteratively train the network until convergence of the classifications. The convergence of a Kohonen SOM can be set as a maximum number of iterations, a time limit, or a maximum weight change criterion.
The training process of the Kohonen SOM was evaluated in order to minimize the training time. Here a time limit, being intrinsically related to the computer processing power, was not a consideration. The weight change criterion was also seen as ineffective, since the Kohonen SOM does not converge to a unique solution. As a matter of fact, there were a few acoustic emission hits that were on the borderline between clusters that led the Kohonen SOM to constantly reclassify them, thus leading to a quasi-infinite oscillation between a few similar solutions. A limit on the number of training iterations was therefore chosen. Before 500 training iterations, major data classification re-arrangement can be seen in Figure 20. Experimentation has proven that after the 500 iterations limit, the Kohonen SOM reaches a point where oscillations occur between similar solutions only.

Figure 20: Number of minimum Kohonen SOM training iterations determination
The state of the classification can be visually followed while the data were being classified into 9 different clusters, the colored square dimensions in each cluster being proportional to the number of AE data points it contained. (Example parameters: 9 Kohonen SOM output clusters, 40% of recorded data, 18 training coupons.)

The best combination of AE parameters to be used as input parameters for the Kohonen SOM was researched through numerous trials. It was found that the AE parameters amplitude, duration, and energy gave the best results when used in combination. Also, in order to ensure no domination of one classification parameter over the other ones, the order of the AE classification parameters inputs were changed. As had been hoped, changing the order yielded the same classification results. Once the Kohonen SOM was trained to classify AE data using the training coupon data, each training and prediction coupon were then presented to the network individually for classification.

4.3.2. Failure mechanisms identification

The goal of the previously detailed classification process was to neatly separate the AE hits generated by several failure mechanisms of the material based on their acoustic emission parameter signatures. The following four tables present the characteristics of each Kohonen SOM using 4 output clusters for respectively the energy, duration, amplitude and average frequency of the contained data points. The said data points are the data points of the training coupons used to train the Kohonen SOM.
Table 10: Kohonen SOM 4 output clusters parameters: Energy (aJ)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>18</td>
<td>1.60</td>
<td>1.08</td>
<td>28794</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>61</td>
<td>5.28</td>
<td>4.35</td>
<td>11007</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>149</td>
<td>14.68</td>
<td>14.97</td>
<td>3240</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>148</td>
<td>26.78</td>
<td>22.03</td>
<td>1323</td>
</tr>
</tbody>
</table>

Table 11: Kohonen SOM 4 output clusters parameters: Duration (μs)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>124</td>
<td>581</td>
<td>370.37</td>
<td>102.89</td>
<td>28794</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>582</td>
<td>1186</td>
<td>792.86</td>
<td>163.15</td>
<td>11007</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1187</td>
<td>2264</td>
<td>1580.70</td>
<td>291.70</td>
<td>3240</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2266</td>
<td>3999</td>
<td>2951.54</td>
<td>489.04</td>
<td>1323</td>
</tr>
</tbody>
</table>

Table 12: Kohonen SOM 4 output clusters parameters: Amplitude (dB)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>34</td>
<td>68</td>
<td>46.41</td>
<td>4.52</td>
<td>28794</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>33</td>
<td>78</td>
<td>51.28</td>
<td>6.56</td>
<td>11007</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>33</td>
<td>87</td>
<td>56.05</td>
<td>7.83</td>
<td>3240</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>33</td>
<td>85</td>
<td>59.01</td>
<td>8.12</td>
<td>1323</td>
</tr>
</tbody>
</table>

Table 13: Kohonen SOM 4 output clusters parameters: Average frequency (KHz)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>45</td>
<td>160</td>
<td>72.63</td>
<td>17.62</td>
<td>28794</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>45</td>
<td>151</td>
<td>63.85</td>
<td>12.91</td>
<td>11007</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>45</td>
<td>138</td>
<td>63.54</td>
<td>12.64</td>
<td>3240</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>45</td>
<td>156</td>
<td>63.88</td>
<td>11.98</td>
<td>1323</td>
</tr>
</tbody>
</table>

According to the cluster characteristics presented in Table 11, the Kohonen SOM classifies the AE hits in layers of duration. As seen in Tables 10 and 12, this classification separated these AE hits into clusters that ranged from low to high values of energy and amplitude. In order to identify the failure mechanism associated with these groups of AE data, two approaches were used. The first one was to analyze the level of energy of the AE hits contained in each cluster. Using Table 9, it is understood that an increasing level of energy
classifies the failure mechanisms in the following order: matrix cracking, crack coupling, delamination and fiber breaks. A second approach to identify the nature of the AE hits contained in the four clusters was to observe their distribution as a function of loading [18]. Figure 21 presents the normalized evolution of the number of AE hits contained in each cluster with respect to the percentage of data recording, where failure occurs at 100%.

![Failure mechanisms distribution during loading](image.png)

Figure 21: Failure mechanisms distribution through loading

The failure mechanism distributions presented above clearly show two different trends. The failure mechanism 1 presence increases throughout the loading until 70% of the failure load is reached and then decreases past this point until failure. The behavior of these low energy AE hits can be identified as matrix cracking. Failure mechanisms 2, 3 and 4 show an opposite trend. These mechanisms decrease constantly after an abrupt initial jump until 60-70% of loading is
reached; after that, these mechanisms tend to become more active as failure progresses to complete coupon failure. The behavior of these medium to high energy AE hits is associated with the remaining three failure mechanisms: crack coupling, delamination and fiber breaks. It can also be seen that the two main failure mechanisms that drastically increase at the approach of failure (and therefore are responsible for failure) are delamination and fiber breaks.

Tables 14 through 17 present the Kohonen SOM output cluster characteristics with respect to energy, duration, amplitude and average frequency when a classification into 9 clusters is made.

Table 14: Kohonen SOM 9 output clusters parameters: Energy (aJ)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1.13</td>
<td>0.38</td>
<td>13280</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>1.76</td>
<td>1.05</td>
<td>11674</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>24</td>
<td>3.17</td>
<td>2.12</td>
<td>7986</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1</td>
<td>52</td>
<td>5.39</td>
<td>3.95</td>
<td>4643</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>61</td>
<td>8.57</td>
<td>6.62</td>
<td>2766</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>105</td>
<td>13.04</td>
<td>12.29</td>
<td>1663</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>149</td>
<td>19.84</td>
<td>19.65</td>
<td>1045</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>148</td>
<td>24.12</td>
<td>21.30</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>148</td>
<td>30.60</td>
<td>22.59</td>
<td>536</td>
</tr>
</tbody>
</table>

Table 15: Kohonen SOM 9 output clusters parameters: Duration (μs)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>124</td>
<td>348</td>
<td>278.30</td>
<td>45.89</td>
<td>13280</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>349</td>
<td>504</td>
<td>418.98</td>
<td>44.42</td>
<td>11674</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>505</td>
<td>699</td>
<td>590.17</td>
<td>55.55</td>
<td>7986</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>700</td>
<td>948</td>
<td>808.50</td>
<td>70.57</td>
<td>4643</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>949</td>
<td>1279</td>
<td>1089.28</td>
<td>95.05</td>
<td>2766</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1280</td>
<td>1711</td>
<td>1469.01</td>
<td>123.08</td>
<td>1663</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1711</td>
<td>2279</td>
<td>1951.44</td>
<td>160.99</td>
<td>1045</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2281</td>
<td>3035</td>
<td>2607.94</td>
<td>219.04</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3039</td>
<td>3999</td>
<td>3466.05</td>
<td>269.78</td>
<td>536</td>
</tr>
</tbody>
</table>
Table 16: Kohonen SOM 9 output clusters parameters: Amplitude (dB)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>34</td>
<td>62</td>
<td>45.67</td>
<td>3.51</td>
<td>13280</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>34</td>
<td>67</td>
<td>46.57</td>
<td>4.88</td>
<td>11674</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34</td>
<td>72</td>
<td>49.16</td>
<td>5.85</td>
<td>7986</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>33</td>
<td>78</td>
<td>51.51</td>
<td>6.49</td>
<td>4643</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>33</td>
<td>77</td>
<td>53.80</td>
<td>7.00</td>
<td>2766</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40</td>
<td>81</td>
<td>55.56</td>
<td>7.65</td>
<td>1663</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>37</td>
<td>87</td>
<td>57.66</td>
<td>8.31</td>
<td>1045</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>33</td>
<td>83</td>
<td>58.60</td>
<td>8.09</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>33</td>
<td>85</td>
<td>59.57</td>
<td>8.11</td>
<td>536</td>
</tr>
</tbody>
</table>

Table 17: Kohonen SOM 9 output clusters parameters: Average frequency (KHz)

<table>
<thead>
<tr>
<th>Mechanism #</th>
<th>Cluster #</th>
<th>Min value</th>
<th>Max value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th># of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>45</td>
<td>159</td>
<td>79.43</td>
<td>18.20</td>
<td>13280</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>45</td>
<td>160</td>
<td>67.30</td>
<td>14.94</td>
<td>11674</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>45</td>
<td>151</td>
<td>64.78</td>
<td>13.77</td>
<td>7986</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>45</td>
<td>131</td>
<td>63.61</td>
<td>12.71</td>
<td>4643</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>45</td>
<td>110</td>
<td>63.73</td>
<td>12.76</td>
<td>2766</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>45</td>
<td>138</td>
<td>63.07</td>
<td>12.53</td>
<td>1663</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>132</td>
<td>63.79</td>
<td>12.51</td>
<td>1045</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>45</td>
<td>108</td>
<td>63.77</td>
<td>11.78</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>45</td>
<td>156</td>
<td>63.89</td>
<td>12.06</td>
<td>536</td>
</tr>
</tbody>
</table>

According to the maximum and minimum energy, duration, and amplitude values of the 9 clusters, it can be seen that increasing the number of output clusters appears to subdivide the previously presented 4 clusters in subgroups. An association of the output clusters with their appropriate failure mechanism can thus be determined. This cluster identification is summarized in Table 18.
Table 18: Cluster identification in failure mechanisms

<table>
<thead>
<tr>
<th>4 Kohonen SOM output clusters</th>
<th>Failure mechanism</th>
<th>9 Kohonen SOM output clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Hits</td>
<td>Cluster #</td>
<td># of Hits</td>
</tr>
<tr>
<td>28794</td>
<td>2</td>
<td>Matrix cracking</td>
</tr>
<tr>
<td>11007</td>
<td>4</td>
<td>Crack coupling</td>
</tr>
<tr>
<td>3240</td>
<td>3</td>
<td>Fiber breaks</td>
</tr>
<tr>
<td>1323</td>
<td>1</td>
<td>Delamination</td>
</tr>
<tr>
<td>44364</td>
<td>Total</td>
<td>44364</td>
</tr>
</tbody>
</table>

4.3.3. Clustering visualization

Energy, duration and amplitude are the three AE parameters used to classify the acoustic emission hits into the various clusters. As can be seen in Tables 11 through 15, the duration is the prevalent parameter in this classification process. Indeed, the different Kohonen SOM output clusters do not overlap with respect to this parameter. Figures 22 to 24 show the AE data points of a particular coupon both before and after SOM classification into 4 and 9 clusters.
Figure 22: Duration vs counts before Kohonen SOM classification

Figure 23: Duration vs counts with 4 clusters Kohonen SOM classification
As can be seen in Figures 22 through 24, the AE data are divided in layers of duration from shortest to longest. The limits between these different clusters are then determined by the other two classification parameters, amplitude and energy. Figures 25 to 27 show more clearly how the AE data are separated between the classification parameters in a three dimensional space.
Figure 25: Amplitude vs Energy vs Duration of non-classified AE data

Figures 26 and 27 show how the AE data are separated in clusters ranging gradually from low amplitude, low energy and short duration to high amplitude, high energy and long duration. This can also be seen in Tables 10 to 12 and 14 to 16 where the clusters are sorted according to their ascending mean value of energy, amplitude and duration, respectively. The constant order of the clusters seen in the first column of these tables indicates that the classification process generates groups of AE data neatly separated from each other, which is what is seen in the figures as well.
Figure 26: Amplitude vs Energy vs Duration of AE data classified in 4 clusters

Figure 27: Amplitude vs Energy vs Duration of AE data classified in 9 clusters
Figure 28 presents a typical amplitude distribution of the AE data acquired from the same compression specimen before classification of the AE hits.

![Figure 28: Amplitude distribution of a coupon AE data before classification](image)

Figures 29 and 30 show the same amplitude distribution of the AE hits as Figure 28 but now classified into 4 and 9 clusters according to their Kohonen SOM input parameter characteristics.
Figure 29: Amplitude distribution of a coupon AE hits after classification into 4 clusters

Figure 30: Amplitude distribution of a coupon AE hits after classification into 9 clusters
In these two representations (Figures 29 and 30) the overlap between the failure mechanism clusters becomes obvious, which reinforces the idea that AE data classification without using a multi-input Kohonen SOM is impractical as the number of AE hits becomes large. It should be brought to the reader’s attention that the cluster data coloration is an automatic feature in the software; thus, the color coding for the various failure mechanisms is not consistent between Figures 29 and 30. It is also important to understand that the random weight initialization of the Kohonen SOM converges to equivalent final classifications, where clusters containing similar data points are adjacent, but due to output map vertical and horizontal symmetry, four different AE data cluster/physical cluster associations are possible. In practice this leads to similar solutions with different cluster numbering when a Kohonen SOM is repeatedly used. Tracking of the cluster number and the type of data contained therein must then be employed.
4.4. APPLIED MULTIVARIATE STATISTICAL REGRESSION ANALYSIS

As has been mentioned before, the MSRA is a statistical tool that is highly sensitive to noisy data. Its use is then recommended when the acoustic emission hits due to noise have been completely removed. After the previously described filtration process, the AE data are considered to be cleaned of the noise recorded during the data acquisition process.

The matrices used to feed the MSRA process are generated at this point. The first type of matrix to be generated is the matrix of response variables denoted as Y in Equation 6. Two matrices are generated, one containing the training coupons’ ultimate failure loads and a second one containing the prediction coupons’ ultimate failure loads according to the current groups of training and prediction coupons. An example of this first type of matrix is presented in Table 14 for a set of 18 training coupons.

<table>
<thead>
<tr>
<th>Coupon Number</th>
<th>Coupon identification number</th>
<th>Impact energy (J)</th>
<th>Ultimate failure load (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1A</td>
<td>8</td>
<td>22583</td>
</tr>
<tr>
<td>2</td>
<td>2A</td>
<td>8</td>
<td>24498</td>
</tr>
<tr>
<td>5</td>
<td>5A</td>
<td>10</td>
<td>19916</td>
</tr>
<tr>
<td>8</td>
<td>10A</td>
<td>13</td>
<td>18163</td>
</tr>
<tr>
<td>9</td>
<td>11A</td>
<td>13</td>
<td>17226</td>
</tr>
<tr>
<td>10</td>
<td>13A</td>
<td>14</td>
<td>18660</td>
</tr>
<tr>
<td>11</td>
<td>14A</td>
<td>14</td>
<td>20975</td>
</tr>
<tr>
<td>12</td>
<td>16A</td>
<td>15</td>
<td>17410</td>
</tr>
<tr>
<td>13</td>
<td>17A</td>
<td>15</td>
<td>16685</td>
</tr>
<tr>
<td>14</td>
<td>19A</td>
<td>16</td>
<td>15805</td>
</tr>
<tr>
<td>17</td>
<td>23A</td>
<td>18</td>
<td>17322</td>
</tr>
<tr>
<td>19</td>
<td>24A</td>
<td>10</td>
<td>24195</td>
</tr>
<tr>
<td>22</td>
<td>24D</td>
<td>20</td>
<td>17250</td>
</tr>
<tr>
<td>24</td>
<td>25B</td>
<td>12</td>
<td>21749</td>
</tr>
<tr>
<td>26</td>
<td>25D</td>
<td>12</td>
<td>17249</td>
</tr>
<tr>
<td>28</td>
<td>26B</td>
<td>16</td>
<td>20833</td>
</tr>
<tr>
<td>29</td>
<td>26C</td>
<td>18</td>
<td>20729</td>
</tr>
<tr>
<td>30</td>
<td>26D</td>
<td>20</td>
<td>20024</td>
</tr>
</tbody>
</table>

Table 19: Example of response variables matrix
The second type of matrix to be generated is the matrix of predictors denoted by X in Equation 6. Two matrices are generated, one for the training coupons group and a second one for the prediction coupons group in a similar fashion as previously. An example of this type of matrix is presented in Table 15 for the previous set of training coupons for an equation of type 1.

Table 20: Example of predictor variables matrix

<table>
<thead>
<tr>
<th>Coupon Number</th>
<th>Const. Term</th>
<th>Cluster 3</th>
<th>Cluster 6</th>
<th>Cluster 2</th>
<th>Cluster 9</th>
<th>Cluster 5</th>
<th>Cluster 1</th>
<th>Cluster 8</th>
<th>Cluster 4</th>
<th>Cluster 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.10</td>
<td>1.58</td>
<td>2.64</td>
<td>4.75</td>
<td>8.09</td>
<td>14.03</td>
<td>20.78</td>
<td>25.46</td>
<td>25.30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.06</td>
<td>1.58</td>
<td>3.02</td>
<td>5.00</td>
<td>7.93</td>
<td>14.76</td>
<td>28.17</td>
<td>20.27</td>
<td>42.57</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.11</td>
<td>1.62</td>
<td>3.03</td>
<td>5.24</td>
<td>9.01</td>
<td>13.80</td>
<td>19.21</td>
<td>13.82</td>
<td>33.50</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.09</td>
<td>1.54</td>
<td>3.59</td>
<td>6.06</td>
<td>6.00</td>
<td>8.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.07</td>
<td>1.14</td>
<td>2.50</td>
<td>4.75</td>
<td>6.36</td>
<td>10.25</td>
<td>23.20</td>
<td>13.18</td>
<td>18.00</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.10</td>
<td>1.69</td>
<td>3.09</td>
<td>4.73</td>
<td>7.78</td>
<td>17.73</td>
<td>29.00</td>
<td>14.17</td>
<td>18.33</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1.09</td>
<td>1.79</td>
<td>2.89</td>
<td>4.46</td>
<td>5.68</td>
<td>8.86</td>
<td>17.90</td>
<td>8.22</td>
<td>13.55</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.08</td>
<td>1.65</td>
<td>3.16</td>
<td>4.63</td>
<td>8.03</td>
<td>13.38</td>
<td>13.40</td>
<td>13.83</td>
<td>26.50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1.04</td>
<td>1.39</td>
<td>2.94</td>
<td>7.09</td>
<td>11.48</td>
<td>9.91</td>
<td>11.00</td>
<td>10.67</td>
<td>17.00</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1.20</td>
<td>1.78</td>
<td>2.66</td>
<td>5.15</td>
<td>7.19</td>
<td>9.80</td>
<td>17.00</td>
<td>17.14</td>
<td>21.50</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1.08</td>
<td>1.80</td>
<td>3.11</td>
<td>5.59</td>
<td>7.67</td>
<td>17.20</td>
<td>22.00</td>
<td>35.57</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1.13</td>
<td>1.71</td>
<td>3.41</td>
<td>5.48</td>
<td>8.90</td>
<td>17.38</td>
<td>16.25</td>
<td>24.75</td>
<td>42.50</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1.13</td>
<td>1.78</td>
<td>3.31</td>
<td>6.73</td>
<td>11.46</td>
<td>20.71</td>
<td>21.20</td>
<td>22.38</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>1.14</td>
<td>1.73</td>
<td>3.31</td>
<td>5.86</td>
<td>10.61</td>
<td>13.89</td>
<td>29.17</td>
<td>27.00</td>
<td>25.50</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1.07</td>
<td>1.57</td>
<td>2.95</td>
<td>5.47</td>
<td>6.85</td>
<td>13.53</td>
<td>25.00</td>
<td>17.38</td>
<td>32.50</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1.11</td>
<td>1.74</td>
<td>3.41</td>
<td>5.10</td>
<td>9.15</td>
<td>11.30</td>
<td>28.17</td>
<td>19.64</td>
<td>28.00</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1.12</td>
<td>1.90</td>
<td>3.28</td>
<td>5.69</td>
<td>7.63</td>
<td>14.56</td>
<td>18.64</td>
<td>21.12</td>
<td>49.67</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.06</td>
<td>1.54</td>
<td>2.64</td>
<td>4.73</td>
<td>6.52</td>
<td>9.77</td>
<td>17.75</td>
<td>15.19</td>
<td>27.33</td>
</tr>
</tbody>
</table>

These matrices are composed of a first column of ones, allowing the presence of a constant term β_0 in the output equation. Each of the remaining columns is dedicated to a Failure mechanism representative value (FMRV) generated from the AE hits present in the associated failure mechanism cluster and denoted as X_i in Equations 6 and 7. In the case of an equation of type 2, one would note the presence of extra columns containing, respectively, each of the possible cross products of two FMRVs. Each row of these matrices of predictors contains the
FMRV of one training/prediction coupon and their cross products if an equation of type 2 is desired.

An investigation has been conducted in order to determine the best manner to represent the presence of the failure mechanism through its FMRV. It is understood that these values are to be calculated from the available AE data in the failure mechanisms clusters. Three possibilities have been attempted. The first possibility was to simply sum up the values of the considered AE parameters from the AE hits present in a failure mechanism. For example, in the case where the energy is studied, the FMRV would be the summation of the energies released by all the AE hits present in a specific failure mechanism. This calculation of FMRV is described by Equation 14.

Equation 14: MSRA equation of type 2

\[
FMRV_{ij} = \sum_{k=1}^{n} X_{nij}
\]

where
- \(FMRV \) is the Failure Mechanism Representative Variable
- \(i \) is the current failure mechanism
- \(j \) is the current coupon
- \(n \) is the number of AE data points in the mechanism \(i \) of the coupon \(j \)
- \(X \) is the value of the used AE parameter for the current AE hit.

Unfortunately, this method suffered from the fact that the amount and level of captured AE data varies widely for the different coupons. The data feeding the MSRA were therefore too scattered.

A second possibility was to attenuate the data dispersion by normalizing the FMRV within each coupon. This was done by dividing the aforementioned FMRV of each cluster by the summation of the FMRV throughout all the failure mechanisms. Following the previous example, in the case where the energy is studied, the FMRV of a particular mechanism would be the total amount of energy released in the failure mechanism divided by the total amount of
energy released by the coupon through all its failure mechanisms. This calculation of FMRV is described by Equation 15.

Equation 15: MSRA equation of type 2

\[FMRV_{ij} = \frac{\sum_{k=1}^{n} X_{n_{ij}}}{\sum_{i=1}^{m} \sum_{k=1}^{n} X_{n_{ij}}} \]

where
- \(FMRV \) is the Failure Mechanism Representative Variable
- \(i \) is the current failure mechanism
- \(j \) is the current coupon
- \(n \) is the number of AE data points in the mechanism \(i \) of the coupon \(j \)
- \(m \) is the number of failure mechanisms
- \(X \) is the value of the used AE parameter for the current AE hit.

This method generated FMRVs between 0 and 1, thus damping the difference of acoustic emissions captured throughout the coupons. However, having values very close to each other proved to be confusing to the MSRA.

A third solution was then adopted. This last solution consisted in taking the average value of the AE hits in each of the failure mechanisms. Following the same example as before, the mean energy of the AE hits contained in a failure mechanism was used as the FMRV. This calculation of FMRV is described by Equation 16.

Equation 16: MSRA equation of type 2

\[FMRV_{ij} = \frac{\sum_{k=1}^{n} X_{n_{ij}}}{n} \]

where
- \(FMRV \) is the Failure Mechanism Representative Variable
- \(i \) is the current failure mechanism
- \(j \) is the current coupon
- \(n \) is the number of AE data points in the mechanism \(i \) of the coupon \(j \)
- \(X \) is the value of the used AE parameter for the current AE hit.
This last solution has the advantage of damping the differences in the level of acoustic emission captured (i.e., the number of AE hits) without bringing the FMRVs too close to each other such that the MSRA analysis was still applicable.

Once the required matrices were generated, the pair of response and predictor training matrices were used to feed a MSRA which generated the set of β coefficients following Equation 12. Table 16 presents the set of β coefficients calculated using the MSRA on the particular example previously presented through the predictor and response variables matrices.

<table>
<thead>
<tr>
<th>β coefficients example set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
</tr>
<tr>
<td>Cluster 3 coefficient</td>
</tr>
<tr>
<td>Cluster 6 coefficient</td>
</tr>
<tr>
<td>Cluster 2 coefficient</td>
</tr>
<tr>
<td>Cluster 9 coefficient</td>
</tr>
<tr>
<td>Cluster 5 coefficient</td>
</tr>
<tr>
<td>Cluster 1 coefficient</td>
</tr>
<tr>
<td>Cluster 8 coefficient</td>
</tr>
<tr>
<td>Cluster 4 coefficient</td>
</tr>
<tr>
<td>Cluster 7 coefficient</td>
</tr>
</tbody>
</table>

The residual training errors (or residual errors) were then calculated using the training matrices and following Equation 13. Similarly, prediction errors were determined using the prediction matrices. This error is representative of the error between the predicted ultimate loads and the actual ultimate loads of the prediction coupons and will be known as prediction errors. The worst case error will be observed in both the training and the prediction errors. The goal of this research was to determine the conditions to obtain a worst case prediction error within the B-basis allowables for composite materials. The errors were expressed as signed percentage errors in order to know if the prediction overestimated or underestimated the failure load.
It is also important to note that during this analysis process the prediction coupon AE data were only used to evaluate the prediction error and were not involved at any point in the training of the Kohonen SOM or in the determination of the βi coefficients in the prediction equation. Table 17 summarizes the results that were obtained once the MSRA was applied in the given example.

Table 22: MSRA results example

<table>
<thead>
<tr>
<th>Coupon number</th>
<th>Actual failure load (lbf)</th>
<th>Predicted failure load (lbf)</th>
<th>Percentage of training error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22583</td>
<td>19933</td>
<td>-11.74</td>
</tr>
<tr>
<td>2</td>
<td>24498</td>
<td>21937</td>
<td>-10.45</td>
</tr>
<tr>
<td>5</td>
<td>19916</td>
<td>20173</td>
<td>1.29</td>
</tr>
<tr>
<td>8</td>
<td>18163</td>
<td>16937</td>
<td>-6.75</td>
</tr>
<tr>
<td>9</td>
<td>17226</td>
<td>17980</td>
<td>4.38</td>
</tr>
<tr>
<td>10</td>
<td>18660</td>
<td>19212</td>
<td>2.96</td>
</tr>
<tr>
<td>11</td>
<td>20975</td>
<td>18365</td>
<td>-12.44</td>
</tr>
<tr>
<td>12</td>
<td>17410</td>
<td>21301</td>
<td>22.35</td>
</tr>
<tr>
<td>13</td>
<td>16685</td>
<td>17150</td>
<td>2.79</td>
</tr>
<tr>
<td>14</td>
<td>15805</td>
<td>17186</td>
<td>8.74</td>
</tr>
<tr>
<td>17</td>
<td>17322</td>
<td>18723</td>
<td>8.09</td>
</tr>
<tr>
<td>19</td>
<td>24195</td>
<td>22493</td>
<td>-7.04</td>
</tr>
<tr>
<td>22</td>
<td>17250</td>
<td>16500</td>
<td>-4.35</td>
</tr>
<tr>
<td>24</td>
<td>21749</td>
<td>20741</td>
<td>-4.64</td>
</tr>
<tr>
<td>26</td>
<td>17249</td>
<td>19448</td>
<td>12.75</td>
</tr>
<tr>
<td>28</td>
<td>20833</td>
<td>22041</td>
<td>5.80</td>
</tr>
<tr>
<td>29</td>
<td>20729</td>
<td>21634</td>
<td>4.37</td>
</tr>
<tr>
<td>30</td>
<td>20024</td>
<td>19522</td>
<td>-2.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon number</th>
<th>Actual failure load (lbf)</th>
<th>Predicted failure load (lbf)</th>
<th>Percentage of prediction error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20162</td>
<td>19098</td>
<td>-5.28</td>
</tr>
<tr>
<td>4</td>
<td>19175</td>
<td>23557</td>
<td>22.86</td>
</tr>
<tr>
<td>6</td>
<td>20434</td>
<td>19796</td>
<td>-3.12</td>
</tr>
<tr>
<td>7</td>
<td>20827</td>
<td>22720</td>
<td>9.09</td>
</tr>
<tr>
<td>15</td>
<td>16734</td>
<td>19688</td>
<td>17.65</td>
</tr>
<tr>
<td>16</td>
<td>19503</td>
<td>17536</td>
<td>-10.08</td>
</tr>
<tr>
<td>18</td>
<td>22470</td>
<td>21620</td>
<td>-3.78</td>
</tr>
<tr>
<td>20</td>
<td>19782</td>
<td>20115</td>
<td>1.69</td>
</tr>
<tr>
<td>21</td>
<td>17944</td>
<td>17543</td>
<td>-2.24</td>
</tr>
<tr>
<td>23</td>
<td>21815</td>
<td>20070</td>
<td>-8.00</td>
</tr>
<tr>
<td>25</td>
<td>20010</td>
<td>16693</td>
<td>-16.58</td>
</tr>
<tr>
<td>27</td>
<td>22190</td>
<td>20797</td>
<td>-6.28</td>
</tr>
<tr>
<td>31</td>
<td>20255</td>
<td>19298</td>
<td>-4.72</td>
</tr>
<tr>
<td>32</td>
<td>18825</td>
<td>18991</td>
<td>0.88</td>
</tr>
<tr>
<td>33</td>
<td>18986</td>
<td>21125</td>
<td>11.27</td>
</tr>
<tr>
<td>34</td>
<td>18742</td>
<td>20385</td>
<td>8.77</td>
</tr>
</tbody>
</table>

\[R^2 = 0.5352 \]

\[R^2 = 0.0751 \]
Figures 27 and 28 help to visualize the distribution of actual and predicted failure loads of the training and prediction coupons sets, respectively.

Figure 31: Training coupons predicted loads distribution
After testing of each of the six AE hit parameters, it was determined that the average energy released in each failure mechanisms was the best FMRV to use for ultimate load prediction. Also, it should be mentioned that an equation of type 2 (where cross products of FMRV appears) is not suitable when a high number of Kohonen SOM output cluster is used. For example, when the recorded AE data are classified into 9 clusters, the number of β_i coefficients would increase from 10 to 46. The minimum number of training coupons required to apply MSRA would, in that case, be 48, which is greater than the available number of coupons.
CHAPTER 5 : RESULTS

5.1. B-basis allowables

The B-basis allowables are defined for a composite as being the interval within which 90% of the population of specimens will fall with a confidence level of 95%. This interval is dependent upon the number of specimens and the standard deviation of the failure loads in a test group (i.e., impact energy group) and can be determined using Equation 17.

Equation 17: MSRA equation of type 2

\[\text{Interval} = \pm K(N, P, C) S_x \]

where

- **Interval** is the failure load allowable interval
- **P** is the fraction of population
- **C** is the confidence level
- **N** is the number of samples in the considered group
- **S_x** is the standard deviation of the considered group
- **K factor** is a tabulated value dependent upon the **N, P and C** parameters.

The allowable interval is calculated separately for each of the energy impact groups. Given the low number of coupons available per energy group, the B-basis allowables will be large. Table 18 presents the results of the B-basis allowable calculations.

Table 23: B-basis allowable calculations

<table>
<thead>
<tr>
<th>Impact Energy (J)</th>
<th>Number of coupons</th>
<th>Mean failure load (lb)</th>
<th>Standard deviation S_x</th>
<th>K factor</th>
<th>B-basis allowable (lb)</th>
<th>Upper limit (lb)</th>
<th>Lower limit (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>23540.50</td>
<td>1354.11</td>
<td>18.80</td>
<td>± 25457.26</td>
<td>48997.76</td>
<td>-1916.76</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>21791.33</td>
<td>1585.52</td>
<td>3.72</td>
<td>± 5902.87</td>
<td>27694.21</td>
<td>15888.46</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>20008.20</td>
<td>1699.01</td>
<td>4.15</td>
<td>± 7054.27</td>
<td>27062.47</td>
<td>12953.93</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>17694.50</td>
<td>662.56</td>
<td>18.80</td>
<td>± 12456.11</td>
<td>30150.61</td>
<td>5238.39</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>19817.50</td>
<td>1636.95</td>
<td>18.80</td>
<td>± 30774.70</td>
<td>50592.20</td>
<td>-10957.20</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>17047.50</td>
<td>512.65</td>
<td>18.80</td>
<td>± 9637.87</td>
<td>26685.37</td>
<td>7409.63</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>18147.17</td>
<td>1763.58</td>
<td>3.72</td>
<td>± 6565.80</td>
<td>24712.97</td>
<td>11581.36</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>19467.50</td>
<td>1211.79</td>
<td>3.72</td>
<td>± 4511.48</td>
<td>23978.98</td>
<td>14956.02</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>18816.33</td>
<td>1421.36</td>
<td>6.92</td>
<td>± 9834.36</td>
<td>28650.69</td>
<td>8981.98</td>
</tr>
</tbody>
</table>
The 14 Joules impact group associates a low number of coupons and a high standard deviation. The B-basis interval at this point is consequently abnormally large, thus deforming the B-basis allowables overall curves. This group, as an outlier, highly deforms the B-basis curves and is thus disregarded in the B-basis allowables drawing of Figure 29.

![Failure loads vs Impact energy](image)

Figure 33: B-basis allowables

As one can see, the allowable prediction range interpolations (upper and lower 2nd degree polynomial curves) are relatively symmetric around the mean failure value interpolation
polynomial. A minimum interval is found at the 16 Joules impact group. Table 19 presents the percentage interval error between the various mean failure loads and the B-basis interpolations.

Table 24: B-basis allowables percentage error

<table>
<thead>
<tr>
<th>Impact energy (J)</th>
<th>Mean failure value interpolation (lb_t)</th>
<th>Upper limit interpolation value (lb_t)</th>
<th>Lower limit interpolation value (lb_t)</th>
<th>Percentage error upper limit (%)</th>
<th>Percentage error lower limit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23715.456</td>
<td>44497.96</td>
<td>3133.24</td>
<td>87.63</td>
<td>-86.79</td>
</tr>
<tr>
<td>10</td>
<td>21339.4</td>
<td>35404</td>
<td>6999</td>
<td>65.91</td>
<td>-67.20</td>
</tr>
<tr>
<td>12</td>
<td>19618.976</td>
<td>28929.16</td>
<td>9747.24</td>
<td>47.45</td>
<td>-50.32</td>
</tr>
<tr>
<td>13</td>
<td>19004.626</td>
<td>26673.91</td>
<td>10702.29</td>
<td>40.35</td>
<td>-43.69</td>
</tr>
<tr>
<td>14</td>
<td>18554.184</td>
<td>25073.44</td>
<td>11377.96</td>
<td>35.14</td>
<td>-38.68</td>
</tr>
<tr>
<td>15</td>
<td>18267.65</td>
<td>24127.75</td>
<td>11774.25</td>
<td>32.08</td>
<td>-35.55</td>
</tr>
<tr>
<td>16</td>
<td>18145.024</td>
<td>23836.84</td>
<td>11891.16</td>
<td>31.37</td>
<td>-34.47</td>
</tr>
<tr>
<td>18</td>
<td>18391.496</td>
<td>25219.36</td>
<td>11286.84</td>
<td>37.13</td>
<td>-38.63</td>
</tr>
<tr>
<td>20</td>
<td>19293.6</td>
<td>29221</td>
<td>9565</td>
<td>51.45</td>
<td>-50.42</td>
</tr>
</tbody>
</table>

| Average | | | | 47.61 | -49.53 |

Due to a really low number of coupons available in each of the impact energy groups, the B-basis allowables determined here are quite broad. Indeed, the interval of allowable prediction error is close to ±48% on average. Since an accurate prediction of the ultimate failure load is sought in this research project, the B-basis allowables were artificially narrowed to a more restrictive interval error by assuming that the number of coupons available in each of the impact energy groups was 30 instead of the actual number available. It has to be noted that the allowables converge with a high number of coupons through the convergence of the K factor.

The modified B-basis allowables were then determined following the previous process. Table 20, Figure 30 and Table 21 present the modified B-basis calculations where 30 coupons per impact energy group were assumed.
Table 25: Modified B-basis allowables calculation

<table>
<thead>
<tr>
<th>Impact Energy (J)</th>
<th>Number of coupons</th>
<th>Mean failure load (lb)</th>
<th>Standard deviation S_X</th>
<th>K factor</th>
<th>B-basis allowables (lb)</th>
<th>Upper limit (lb)</th>
<th>Lower limit (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>30</td>
<td>23540.50</td>
<td>1354.11</td>
<td>2.413</td>
<td>±3267.47</td>
<td>26807.97</td>
<td>20273.03</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>21791.33</td>
<td>1585.52</td>
<td>2.413</td>
<td>±3825.85</td>
<td>25617.18</td>
<td>17965.48</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>20008.20</td>
<td>1699.01</td>
<td>2.413</td>
<td>±4099.70</td>
<td>24107.90</td>
<td>15908.50</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>17694.50</td>
<td>662.56</td>
<td>2.413</td>
<td>±1598.75</td>
<td>19293.25</td>
<td>16095.75</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>19817.50</td>
<td>1636.95</td>
<td>2.413</td>
<td>±3949.97</td>
<td>23767.47</td>
<td>15867.53</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>17047.50</td>
<td>512.65</td>
<td>2.413</td>
<td>±1237.03</td>
<td>18284.53</td>
<td>15810.47</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>18147.17</td>
<td>1763.58</td>
<td>2.413</td>
<td>±4255.52</td>
<td>22402.68</td>
<td>13891.65</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>19467.50</td>
<td>1211.79</td>
<td>2.413</td>
<td>±2924.04</td>
<td>22391.54</td>
<td>16543.46</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>18816.33</td>
<td>1421.36</td>
<td>2.413</td>
<td>±3429.73</td>
<td>22246.06</td>
<td>15386.60</td>
</tr>
</tbody>
</table>

Figure 34: Modified B-basis allowables
Table 26: Modified B-basis allowables percentage error

<table>
<thead>
<tr>
<th>Impact energy (J)</th>
<th>Mean failure value interpolation (lb_i)</th>
<th>Upper limit interpolation value (lb_u)</th>
<th>Lower limit interpolation value (lb_l)</th>
<th>Percentage error upper limit (%)</th>
<th>Percentage error lower limit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23715.456</td>
<td>27530.56</td>
<td>20103.37</td>
<td>16.09</td>
<td>-15.23</td>
</tr>
<tr>
<td>10</td>
<td>21339.4</td>
<td>24417</td>
<td>17989.20</td>
<td>14.42</td>
<td>-15.70</td>
</tr>
<tr>
<td>12</td>
<td>19618.976</td>
<td>22235.36</td>
<td>16444.73</td>
<td>13.34</td>
<td>-16.18</td>
</tr>
<tr>
<td>13</td>
<td>19004.626</td>
<td>21494.01</td>
<td>15886.13</td>
<td>13.10</td>
<td>-16.41</td>
</tr>
<tr>
<td>14</td>
<td>18554.184</td>
<td>20985.64</td>
<td>15469.95</td>
<td>13.10</td>
<td>-16.62</td>
</tr>
<tr>
<td>15</td>
<td>18267.65</td>
<td>20710.25</td>
<td>15196.20</td>
<td>13.37</td>
<td>-16.81</td>
</tr>
<tr>
<td>16</td>
<td>18145.024</td>
<td>20667.84</td>
<td>15064.87</td>
<td>13.90</td>
<td>-16.98</td>
</tr>
<tr>
<td>18</td>
<td>18391.496</td>
<td>21281.96</td>
<td>15229.49</td>
<td>15.72</td>
<td>-17.19</td>
</tr>
<tr>
<td>20</td>
<td>19293.6</td>
<td>22828</td>
<td>15963.80</td>
<td>18.32</td>
<td>-17.26</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>14.60</td>
<td>-16.49</td>
</tr>
</tbody>
</table>

The modification of the targeted B-basis allowables drastically reduces the interval of acceptable prediction errors down to around ±15%, which is approximately the same interval predicted using the BPNN. Efforts have been put into the optimization of the analysis parameters in order to reach this more restrictive error interval with the low number of coupons available for this research.

5.2. Average frequency filtration optimization

As previously mentioned, an optimization of the filtration process had to be done in order to remove a maximum amount of noise data. This optimization concerns more specifically the precise definition of the lower average frequency value. In order to determine the value under which it will be considered to be only noise data, it was decided to vary the boundary value between 40 and 70 kHz. This range of average frequencies seems to contain the limit between noise data and useful data according to the average frequency distribution previously presented in Figure 18. In order to evaluate the impact of this filtering value, the coefficient of determination R² of the training process was monitored using different percentages of data while recording and
training on the minimum of 18 training coupons. The study of this influence is presented in Figure 35.

![Influence of lower average frequency boundary](image)

Figure 35: Lower average frequency boundary optimization

It can first be concluded from these results that the lower average frequency boundary value greatly affects the training efficiency. Indeed, the training coefficient of determination, calculated between the actual and predicted failure loads of the training coupons, varies by 20% over the average frequency range covered. As shown in Figure 31, 45 kHz was retained as the value giving the maximum R^2 training value most consistently throughout the percentage of data recording used. This value of 45 kHz was then updated in the filtration process of the AE data as previously shown in Table 8.
5.3. Number of Kohonen SOM clusters optimization

The number of Kohonen SOM output clusters also proved to be a crucial parameter that significantly affected the prediction results. Great attention was brought to its optimization in order to determine a value that both made physical sense and produced good results. Only four main failure mechanisms are historically used: matrix cracking, crack coupling, delaminations and fibers breaks. This led to the usual classification of the AE data into four Kohonen SOM output clusters. Figure 32 presents the influence of the number of Kohonen SOM output clusters on the training coefficient of determination or R^2 value.

![Number of Kohonen SOM output clusters influence](image)

Figure 36: Number of Kohonen SOM output clusters influence study

A clear tendency can be observed in Figure 36: the higher the number of Kohonen SOM output clusters, the higher the training R^2 value. It can be surmised from the previous figure that a number of clusters of 16, giving an R^2 value close to one, is advantageous. However, this high training R^2 value suggests that the prediction equation is too tightly trained to predict the training
coupons failure loads using their AE data. This overtraining results in a drastic increase of the prediction error when the previous equation is applied to the prediction coupons AE data. Thus a lower number of Kohonen SOM output cluster was sought in order to give a maximum degree of freedom between the training and the prediction AE data to decrease the prediction error. The value of 9 Kohonen SOM output clusters was retained. This value corresponds to the minimum number of clusters of the stabilized R² region of the curve before overtraining began to occur.

5.4. B-basis allowables minimum conditions

The major goal of this research was to determine the minimum conditions required on each of the identified variables affecting the results in order to reach a prediction precision within the B-basis allowables which are typically applied to composites. The targeted B-basis allowables for the prediction error was a ±15% error. The number of training coupons and the type of Kohonen SOM were studied in order to determine the minimum conditions with respect to each of these parameters to obtain a prediction error within the targeted B-basis allowables. The absolute value of training and prediction worst case errors were followed with respect to these parameters as well as the training and prediction R² values. These R² value give an estimation of the goodness of fit between the actual and predicted failure loads of the training and prediction coupons sets.

5.4.1. Surface errors and R² value trends

Constant trends were seen throughout the percentage of data recording used. The following example presents the evolution of training and prediction errors and their associated R² values when 50% of the data were used. Figures 37 and 38 present the training evolution with respect to the type of Kohonen SOM used and the number of training coupons, while Figures 39 and 40 present the prediction evolution.
As it can be seen in Figure 37, as the number of training coupons increases, the absolute value of training error increases until stability is reached. This stabilization is visible when 27 training coupons or more are used; however, the absolute value of the training error remains under 22% in the presented case. Table 27 presents the absolute value of the worst case training error with respect to the percentage of recorded data used.

<table>
<thead>
<tr>
<th>Percentage of AE data recording used</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute value of worst case training error</td>
<td>28.49%</td>
<td>23.55%</td>
<td>21.59%</td>
<td>22.4%</td>
<td>24.58%</td>
</tr>
<tr>
<td>Type of SOM</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Number of training coupons</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

From Table 27 it can be seen that starting as early as 30% of data recording, the training error remains within a ±25% range.
As one would expect, an increasing number of training coupons inevitably leads to a decrease in \(R^2 \) value between the predicted and the actual failure loads of the training coupons. However, it is noticeable that stability is consistently reached with respect to this parameter for an increasing number of training coupons. Table 28 summarizes the minimum \(R^2 \) values throughout and their points of occurrence.

<table>
<thead>
<tr>
<th>Percentage of AE data recording used</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst case training (R^2)</td>
<td>24.07%</td>
<td>32.12%</td>
<td>25.13%</td>
<td>18.57%</td>
<td>21.02%</td>
</tr>
<tr>
<td>Type of SOM</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Number of training coupons</td>
<td>26</td>
<td>33</td>
<td>27</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

The largest of the worst case training \(R^2 \) value occurs at 30% of data recording. Therefore, a low percentage of data recording as low as 30% is suitable for ultimate load prediction.
Figure 39 presents the prediction error trend clearly identifiable throughout the use of an increasing percentage recorded data.

Figure 39: Absolute value of prediction worst case error evolution

It has been constantly seen that the more training coupons used, the less the prediction error. Also, the prediction error always decreases sufficiently to fall within the targeted prediction error B-basis allowables of ±15%. Table 29 presents the minimum number of training coupons necessary to predict within the modified B-basis allowables with respect to the percentage of recorded data and the type of Kohonen SOM used.
Table 29: Modified B-basis allowables compliance

<table>
<thead>
<tr>
<th>Type of equation</th>
<th>Number of Kohonen SOM output clusters</th>
<th>Minimum number of training coupons</th>
<th>Percentage of data recording</th>
<th>Acoustic emission parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
<td>Types of Kohonen SOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Two conclusions can be drawn from the previous table. First, the type of Kohonen SOM used to classify the AE data does not drastically improve the prediction results. Their impact should then be considered as negligible, and any of type of Kohonen SOM can be used for AE data classification as long as it is correctly trained. Secondly, the targeted B-basis allowables are reached with a lower number of training coupons when a lower percentage of recorded data is used. Based on the previous conclusions, the use of only 30% of the recorded AE data should be considered as sufficient for a good prediction.

Figure 40 presents a typical prediction R^2 value evolution with respect to the number of trained coupons and the type of Kohonen SOM used. Unlike the training coupons’ R^2 values, the prediction coupons’ R^2 values increase when the number of training coupons increases. This trend has been constantly identified when the percentage of recorded AE data is increased.
Table 30 presents the minimum number of training coupons to be used in order to reach a prediction R^2 value of 50% or more.

Table 30: Minimum number of training coupons for above 50% prediction R^2 value

<table>
<thead>
<tr>
<th>Percentage of data recording</th>
<th>Acoustic emission parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Types of Kohonen SOM</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10%</td>
<td>26</td>
</tr>
<tr>
<td>30%</td>
<td>24</td>
</tr>
<tr>
<td>50%</td>
<td>27</td>
</tr>
<tr>
<td>70%</td>
<td>26</td>
</tr>
<tr>
<td>90%</td>
<td>32</td>
</tr>
</tbody>
</table>

![Figure 40: Prediction R^2 value evolution](image)
As one can see, using only 30% of recorded AE data will allow a respectable prediction R^2 for a minimum number of training coupons and should be considered as the optimum percentage of recorded AE data to use.

5.5. Optimized prediction equation

When the MSRA is applied to classified acoustic emission data, a certain physical meaning is expected from the prediction equation coefficients. It has to be kept in mind that this establishes the relationship between the representative values of a failure mechanism presence and the ultimate load as recalled by Equation 18.

Equation 18: Output format of a MSRA equation of type 1

$$F_{ult} = \beta_0 + \beta_1 M_1 + \beta_2 M_2 + \beta_3 M_3 + \ldots + \beta_9 M_9$$

where
- F_{ult} is the compressive failure load
- β_i are constant terms determined by the MSRA
- M_i are the failure mechanisms representative values (average energy of the AE hits contained in the cluster)

The first constant coefficient β_0 is an independent value setting a baseline value of the failure load being subsequently affected by the presence of failure mechanisms increasing or decreasing the failure load. It is then expected to obtain a set of β_i either positive or negative with respect to their influence on the failure load by respectively increasing it or decreasing each. Also, the magnitude of the β_i coefficients with respect to each other reflects the influence of the associated failure mechanism on the failure load variation.

It has been previously determined that a prediction equation is optimized when only 30% of the recorded AE data are classified into 9 clusters. Since impact of the type of Kohonen SOM used to classify the recorded AE data is negligible, the Kohonen SOM of type 1 (orthogonal map, Euclidian distance function) will be used in the following example.
Table 31 presents the prediction equations with respect to the number of training coupons. The minimum number of training coupon presented is 21 which is the starting point of predictions falling in the modified B-basis allowables of ±15%.
Table 31: Prediction equation sensitivity to number of training coupons

<table>
<thead>
<tr>
<th>Number of training coupons</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of prediction coupons</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>β_0</td>
<td>34065</td>
<td>35468</td>
<td>36249</td>
<td>42522</td>
<td>42949</td>
<td>30948</td>
<td>35822</td>
</tr>
<tr>
<td>β_3</td>
<td>-24026</td>
<td>-24997</td>
<td>-24866</td>
<td>-32039</td>
<td>-32407</td>
<td>-20197</td>
<td>-25096</td>
</tr>
<tr>
<td>β_6</td>
<td>6247</td>
<td>6329</td>
<td>8550</td>
<td>9205</td>
<td>9416</td>
<td>7031</td>
<td>8944</td>
</tr>
<tr>
<td>β_2</td>
<td>839</td>
<td>550</td>
<td>-1227</td>
<td>-717</td>
<td>-775</td>
<td>-185</td>
<td>-1107</td>
</tr>
<tr>
<td>β_9</td>
<td>-716</td>
<td>-953</td>
<td>-854</td>
<td>-810</td>
<td>-924</td>
<td>-615</td>
<td>-682</td>
</tr>
<tr>
<td>β_3</td>
<td>208</td>
<td>486</td>
<td>339</td>
<td>392</td>
<td>460</td>
<td>165</td>
<td>294</td>
</tr>
<tr>
<td>β_1</td>
<td>-9</td>
<td>-88</td>
<td>73</td>
<td>-88</td>
<td>-100</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>β_8</td>
<td>-25</td>
<td>-27</td>
<td>0</td>
<td>34</td>
<td>8</td>
<td>1</td>
<td>-10</td>
</tr>
<tr>
<td>β_4</td>
<td>41</td>
<td>70</td>
<td>-7</td>
<td>14</td>
<td>44</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>β_7</td>
<td>66</td>
<td>64</td>
<td>63</td>
<td>35</td>
<td>35</td>
<td>63</td>
<td>48</td>
</tr>
</tbody>
</table>

Worst case training error (%) | 17.66 | 18.53 | 23.27 | **16.17** | 17.24 | 19.78 | 21.69 |
R² training value (%) | 41.29 | 42.29 | 44.36 | **40.15** | 41.34 | 35.8 | 38.78 |

Worst case prediction error (%) | 12.55 | 11.33 | -11.25 | **-7.64** | -6.78 | 8.33 | 6.11 |
R² prediction value (%) | 16.72 | 11.33 | 18.27 | **58.25** | 54.49 | 20.05 | 62.71 |

<table>
<thead>
<tr>
<th>Number of training coupons</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>Failure Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of prediction coupons</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>34334</td>
<td>32496</td>
<td>34820</td>
<td>33487</td>
<td>33591</td>
<td>34854</td>
<td>Constant coeff.</td>
</tr>
<tr>
<td>β_3</td>
<td>-22712</td>
<td>-21489</td>
<td>-22760</td>
<td>-21634</td>
<td>-21880</td>
<td>-23145</td>
<td>Matrix cracking coeff.</td>
</tr>
<tr>
<td>β_6</td>
<td>7075</td>
<td>7483</td>
<td>5928</td>
<td>5875</td>
<td>5998</td>
<td>6742</td>
<td></td>
</tr>
<tr>
<td>β_2</td>
<td>-217</td>
<td>-369</td>
<td>865</td>
<td>984</td>
<td>779</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>β_9</td>
<td>-794</td>
<td>-664</td>
<td>-1046</td>
<td>-998</td>
<td>-929</td>
<td>-829</td>
<td></td>
</tr>
<tr>
<td>β_3</td>
<td>255</td>
<td>231</td>
<td>342</td>
<td>287</td>
<td>277</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>24</td>
<td>9</td>
<td>-106</td>
<td>-109</td>
<td>-80</td>
<td>-3</td>
<td>Fiber breaks coeff.</td>
</tr>
<tr>
<td>β_8</td>
<td>-24</td>
<td>-4</td>
<td>-21</td>
<td>-15</td>
<td>-14</td>
<td>-21</td>
<td></td>
</tr>
<tr>
<td>β_4</td>
<td>21</td>
<td>9</td>
<td>61</td>
<td>62</td>
<td>55</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>β_7</td>
<td>60</td>
<td>56</td>
<td>59</td>
<td>56</td>
<td>57</td>
<td>47</td>
<td>Delamination coeff.</td>
</tr>
</tbody>
</table>

Worst case prediction error (%) | 19.77 | 18.42 | 19.34 | 18.82 | 18.38 | 18.95 |
R² training value (%) | 35.13 | 35.33 | 34.5 | 34.46 | 33.86 | 34.77 |

Worst case prediction error (%) | -5.72 | -5.37 | -3.96 | -2.71 | -1.49 | -1.55 |
R² prediction value (%) | 88.85 | 0.04 | 79.66 | 97.3 | N/A | N/A |
Based on Table 31, it can be determined that using 24 training coupons is sufficient to achieve low training and prediction errors while preserving relatively high training and prediction R^2 values. The worst case prediction error out of the remaining 10 prediction coupons will be at that point of -7.64%, well within the targeted B-basis allowables.

The prediction tool can be considered optimized for the following conditions:

- 24 training coupons (10 remaining prediction coupons)
- Recorded AE data clustered into 9 clusters
- Use of only the first 30% of recorded AE data
- Type 1 prediction equation
- Average energy of AE hits contained in the cluster as the FMRV

Once the optimum set of equation coefficients have been determined, it is possible for each coupon to calculate a prediction failure load. Indeed, each coupon released AE events that have been filtered of the noise data and then classified by the optimized Kohonen SOM in 9 different clusters. Multiplying the 9 FMRV of a particular coupon by the set of equation coefficients will give a prediction failure load. Equation 18 recalls the format of the prediction equation while equation 19 shows such a calculation for the prediction coupon 4A.

Equation 19: Calculation example of a prediction failure load

\[
19450.72 \text{ (lbf)} = 42522\left(\frac{\text{lbfs}}{a_j}\right) - 32039\left(\frac{\text{lbfs}}{a_j}\right) \times 1.1076(aJ) \\
+ 9205\left(\frac{\text{lbfs}}{a_j}\right) \times 1.6744(aJ) - 717\left(\frac{\text{lbfs}}{a_j}\right) \times 3.0787(aJ) \\
- 810\left(\frac{\text{lbfs}}{a_j}\right) \times 5.03(aJ) + 392\left(\frac{\text{lbfs}}{a_j}\right) \times 7.6739(aJ) \\
- 88\left(\frac{\text{lbfs}}{a_j}\right) \times 15(aJ) + 34\left(\frac{\text{lbfs}}{a_j}\right) \times 18.4091(aJ) \\
+ 14\left(\frac{\text{lbfs}}{a_j}\right) \times 17.3(aJ) + 35\left(\frac{\text{lbfs}}{a_j}\right) \times 21(aJ)
\]
Table 32 presents the actual and predicted failure loads of the training and predictions coupon batches.

Table 32: Training and prediction errors

<table>
<thead>
<tr>
<th>Training coupon name</th>
<th>Actual failure load (lb)</th>
<th>Predicted failure load (lb)</th>
<th>Training error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>22583</td>
<td>20097</td>
<td>-11.01</td>
</tr>
<tr>
<td>2A</td>
<td>24498</td>
<td>21711</td>
<td>-11.37</td>
</tr>
<tr>
<td>5A</td>
<td>19916</td>
<td>19607</td>
<td>-1.55</td>
</tr>
<tr>
<td>10A</td>
<td>18163</td>
<td>17571</td>
<td>-3.26</td>
</tr>
<tr>
<td>11A</td>
<td>17226</td>
<td>16676</td>
<td>-3.20</td>
</tr>
<tr>
<td>13A</td>
<td>18660</td>
<td>20602</td>
<td>10.41</td>
</tr>
<tr>
<td>14A</td>
<td>20975</td>
<td>20564</td>
<td>-1.96</td>
</tr>
<tr>
<td>16A</td>
<td>17410</td>
<td>18824</td>
<td>8.12</td>
</tr>
<tr>
<td>17A</td>
<td>16685</td>
<td>18653</td>
<td>11.80</td>
</tr>
<tr>
<td>19A</td>
<td>15805</td>
<td>16770</td>
<td>6.11</td>
</tr>
<tr>
<td>20A</td>
<td>16734</td>
<td>19362</td>
<td>15.70</td>
</tr>
<tr>
<td>23A</td>
<td>17322</td>
<td>19015</td>
<td>9.77</td>
</tr>
<tr>
<td>23C</td>
<td>22470</td>
<td>19763</td>
<td>-12.05</td>
</tr>
<tr>
<td>24A</td>
<td>24195</td>
<td>20312</td>
<td>-16.05</td>
</tr>
<tr>
<td>24D</td>
<td>17250</td>
<td>17297</td>
<td>0.27</td>
</tr>
<tr>
<td>25A</td>
<td>21815</td>
<td>19161</td>
<td>-12.17</td>
</tr>
<tr>
<td>25B</td>
<td>21749</td>
<td>20810</td>
<td>-4.32</td>
</tr>
<tr>
<td>25D</td>
<td>17249</td>
<td>17559</td>
<td>1.80</td>
</tr>
<tr>
<td>26B</td>
<td>20833</td>
<td>21334</td>
<td>2.41</td>
</tr>
<tr>
<td>26C</td>
<td>20729</td>
<td>21767</td>
<td>5.01</td>
</tr>
<tr>
<td>26D</td>
<td>20024</td>
<td>18613</td>
<td>-7.05</td>
</tr>
<tr>
<td>27B</td>
<td>18825</td>
<td>20372</td>
<td>8.22</td>
</tr>
<tr>
<td>27C</td>
<td>18986</td>
<td>20631</td>
<td>8.66</td>
</tr>
<tr>
<td>27D</td>
<td>18742</td>
<td>21773</td>
<td>16.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prediction coupon name</th>
<th>Actual failure load (lb)</th>
<th>Predicted failure load (lb)</th>
<th>Prediction error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>20162</td>
<td>19451</td>
<td>-3.53</td>
</tr>
<tr>
<td>4B</td>
<td>19175</td>
<td>19518</td>
<td>1.79</td>
</tr>
<tr>
<td>7A</td>
<td>20434</td>
<td>19046</td>
<td>-6.79</td>
</tr>
<tr>
<td>8A</td>
<td>20827</td>
<td>21150</td>
<td>1.55</td>
</tr>
<tr>
<td>22A</td>
<td>19503</td>
<td>18520</td>
<td>-5.04</td>
</tr>
<tr>
<td>24B</td>
<td>19782</td>
<td>19812</td>
<td>0.15</td>
</tr>
<tr>
<td>24C</td>
<td>17944</td>
<td>17968</td>
<td>0.14</td>
</tr>
<tr>
<td>25C</td>
<td>20010</td>
<td>19049</td>
<td>-4.80</td>
</tr>
<tr>
<td>26A</td>
<td>22190</td>
<td>20495</td>
<td>-7.64</td>
</tr>
<tr>
<td>27A</td>
<td>20255</td>
<td>19653</td>
<td>-2.97</td>
</tr>
</tbody>
</table>

| Average error (%) | 0.85 |
| Maximum error (%) | 16.17 |
5.6. Type of MSRA equation influence

The influence of the two types of MSRA equations on the prediction accuracy can be determined by comparing the prediction results at the optimized point. The two different types of equation available when the MSRA method is applied have been presented as Equations 6 and 7. The main difference is the presence or absence of the cross product of FMRV in the prediction equation manifesting the physical correlation of the material failure mechanisms.

A large number of Kohonen SOM output cluster leads to a very high number of FMRV cross products. If the MSRA is to be applied with 9 Kohonen SOM output clusters and a type of MSRA prediction equation of type 2 (with presence of FMRV cross products), the required number of training coupons will be of 47 as described by Equation 11. This number of required training coupons exceeds the number of 34 available coupons and comparing the two types of MSRA equations with the optimized number of Kohonen SOM output cluster of 9 is, in the present case, impossible.

Thus, the comparison between the two types of MSRA prediction equations is done between an MSRA equation of type 1 with 9 Kohonen SOM output clusters and an MSRA equation of type 2 with 4 Kohonen SOM output clusters. The remaining analysis parameters are kept at their respective optimum points. Table 33 presents the actual and predicted failure loads of the training and predictions coupon batches when the second type of MSRA equation is used with 4 Kohonen SOM output clusters.
Table 33: Training and prediction errors using a type 2 MSRA prediction equation

<table>
<thead>
<tr>
<th>Training coupon name</th>
<th>Training coupon identification number</th>
<th>Actual failure load (lb)</th>
<th>Predicted failure load (lb)</th>
<th>Training error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1</td>
<td>22583</td>
<td>21096</td>
<td>-6.58</td>
</tr>
<tr>
<td>2A</td>
<td>2</td>
<td>24498</td>
<td>21081</td>
<td>-13.95</td>
</tr>
<tr>
<td>5A</td>
<td>5</td>
<td>19916</td>
<td>19013</td>
<td>-4.53</td>
</tr>
<tr>
<td>7A</td>
<td>6</td>
<td>20434</td>
<td>17406</td>
<td>-14.82</td>
</tr>
<tr>
<td>10A</td>
<td>8</td>
<td>18163</td>
<td>17292</td>
<td>-4.80</td>
</tr>
<tr>
<td>11A</td>
<td>9</td>
<td>17226</td>
<td>17741</td>
<td>2.99</td>
</tr>
<tr>
<td>13A</td>
<td>10</td>
<td>18660</td>
<td>20062</td>
<td>7.51</td>
</tr>
<tr>
<td>14A</td>
<td>11</td>
<td>20975</td>
<td>19490</td>
<td>-7.08</td>
</tr>
<tr>
<td>16A</td>
<td>12</td>
<td>17410</td>
<td>19426</td>
<td>11.58</td>
</tr>
<tr>
<td>17A</td>
<td>13</td>
<td>16685</td>
<td>16822</td>
<td>0.82</td>
</tr>
<tr>
<td>19A</td>
<td>14</td>
<td>15805</td>
<td>19245</td>
<td>21.77</td>
</tr>
<tr>
<td>22A</td>
<td>16</td>
<td>19503</td>
<td>19018</td>
<td>-2.49</td>
</tr>
<tr>
<td>23A</td>
<td>17</td>
<td>17322</td>
<td>19665</td>
<td>13.53</td>
</tr>
<tr>
<td>24A</td>
<td>19</td>
<td>24195</td>
<td>22872</td>
<td>-5.47</td>
</tr>
<tr>
<td>24B</td>
<td>20</td>
<td>19782</td>
<td>19785</td>
<td>0.01</td>
</tr>
<tr>
<td>24D</td>
<td>22</td>
<td>17250</td>
<td>19224</td>
<td>11.45</td>
</tr>
<tr>
<td>25A</td>
<td>23</td>
<td>21815</td>
<td>20042</td>
<td>-8.13</td>
</tr>
<tr>
<td>25B</td>
<td>24</td>
<td>21749</td>
<td>21950</td>
<td>0.92</td>
</tr>
<tr>
<td>25D</td>
<td>26</td>
<td>17249</td>
<td>19704</td>
<td>14.23</td>
</tr>
<tr>
<td>26B</td>
<td>28</td>
<td>20833</td>
<td>20416</td>
<td>-2.00</td>
</tr>
<tr>
<td>26C</td>
<td>29</td>
<td>20729</td>
<td>21919</td>
<td>5.74</td>
</tr>
<tr>
<td>26D</td>
<td>30</td>
<td>20024</td>
<td>19090</td>
<td>-4.66</td>
</tr>
<tr>
<td>27A</td>
<td>31</td>
<td>20255</td>
<td>19075</td>
<td>-5.82</td>
</tr>
<tr>
<td>27B</td>
<td>32</td>
<td>18825</td>
<td>20450</td>
<td>8.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prediction coupon name</th>
<th>Prediction coupon identification number</th>
<th>Actual failure load (lb)</th>
<th>Predicted failure load (lb)</th>
<th>Prediction error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>3</td>
<td>20162</td>
<td>19903</td>
<td>-1.28</td>
</tr>
<tr>
<td>4B</td>
<td>4</td>
<td>19175</td>
<td>18166</td>
<td>-5.26</td>
</tr>
<tr>
<td>8A</td>
<td>7</td>
<td>20827</td>
<td>18059</td>
<td>-13.29</td>
</tr>
<tr>
<td>20A</td>
<td>15</td>
<td>16734</td>
<td>19252</td>
<td>15.05</td>
</tr>
<tr>
<td>23C</td>
<td>18</td>
<td>22470</td>
<td>19088</td>
<td>-15.05</td>
</tr>
<tr>
<td>24C</td>
<td>21</td>
<td>17944</td>
<td>20365</td>
<td>13.49</td>
</tr>
<tr>
<td>25C</td>
<td>25</td>
<td>20010</td>
<td>19096</td>
<td>-4.57</td>
</tr>
<tr>
<td>26A</td>
<td>27</td>
<td>22190</td>
<td>20189</td>
<td>-9.02</td>
</tr>
<tr>
<td>27C</td>
<td>33</td>
<td>18986</td>
<td>21808</td>
<td>14.87</td>
</tr>
<tr>
<td>27D</td>
<td>34</td>
<td>18742</td>
<td>21562</td>
<td>15.05</td>
</tr>
</tbody>
</table>

| Average error (%) | 0.79 |
| Maximum error (%) | 21.77 |

Average error (%) | 1
Maximum error (%) | ±15.05
The use of the second type of MSRA equation leads to larger training and prediction worst case errors than previously. Thus, it can be concluded that it is preferable to use an MSRA equation of type 1 with a higher number (9) of Kohonen SOM output clusters than an MSRA equation of type 2 with a fewer number (4) of Kohonen SOM output clusters.
CHAPTER 6 : CONCLUSIONS

6.1. SUMMARY

The goal of this research project was to prove the feasibility of combining the acoustic emission technique and multivariate statistical regression analysis in order to accurately predict the ultimate compressive failure load of impacted graphite/epoxy specimens. It was proven that the combination of this nondestructive monitoring method and the developed data treatment technique can lead to an accurate prediction of the ultimate failure load of the testing specimens just outside the defined B-basis allowables for composite materials (±15% error). Here the worst case prediction error of was found to be 16.17%.

The association of these two techniques remains subject to an important work on noise elimination from the acoustic emission data. Indeed, the acoustic emission technique allows the NDT engineer to record all the acoustic emission hits released by the loaded structure including a large amount of noise. On the other hand, the multivariate statistical regression analysis technique is highly sensitive to noise. Thus, emphasis was put on the optimization of the noise filtration process in order to make feasible the joint use of these two techniques.

Furthermore, several parameters were identified as influencing greatly the prediction results, and they should always be taken into consideration. The percentage of acoustic emission data used, the number of training coupons, the AE parameters used as input to the Kohonen SOM for failure mechanism classification, and the number of failure mechanism clusters used to determine the ultimate load prediction equation are all crucial in the development of an accurate prediction tool.
An optimum of 30% of the total amount of AE data collected until failure was determined to be necessary for an accurate prediction. The duration, energy and the amplitude are the acoustic emission parameters that are most likely to be used to successfully train the Kohonen self-organizing maps to correctly classify the acoustic emission hits into the various failure mechanisms. Also, the prediction accuracy is largely dependent upon the number of training coupons used but not the type of Kohonen self organizing map neural network used. The mean energy released throughout the AE hits of a failure mechanism cluster proved to be the best failure mechanism representative value to be used in order to feed the multivariate statistical regression analysis and establish an ultimate failure load prediction equation. In summary, the overall analysis process described in the present research from the AE data capture until the actual ultimate load prediction seems to provide a practical procedure leading to accurate prediction results that should consequently be followed in the future.
6.2. PERSPECTIVES

It is thought that further research should be focusing on the ultimate load prediction of parts of more complicated shapes. Since the MSRA process uses the similarities among the AE patterns generated by similar loaded structures, it is believed that the ultimate loads should be predicted as accurately as in the present research independently of the specimen geometrical shape.

It is also believed that a next step in the analysis could be to detect outliers based on their low level of acoustic emission and remove them from the batch of training coupon. If justified, this outlier removal would have an effect of reducing the prediction error by removing directly the worst cases. However, it was considered in this research that in order to test the robustness of the method against the outlier data point, these particular low acoustic emission specimens should be left in the batch of training and prediction coupons. Finally, it is desirable for further research to produce a larger amount of test coupons in order to proof test the method on an industrial scale.

6.3. RECOMMENDATIONS

The current data filtration process consists in removing any AE data having one of their AE parameters outside of the defined boundaries. The limit between noise data and actual material failure AE data being ambiguous particularly in terms of average frequency, it is possible to improve the noise removal process by adding a second layer of data filtration. This second layer of data filtration could involve a pre-classification of AE data using a Kohonen SOM with a noise cluster identification and removal procedure. Once the optimization of this filtration layer is done, the remaining noise free data could be used to feed the developed ultimate load prediction process.
REFERENCES

APPENDIX

A. Failure Loads

<table>
<thead>
<tr>
<th>Coupon name</th>
<th>Coupon identification number</th>
<th>Ultimate compressive failure load (lbf)</th>
<th>Impact energies (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1</td>
<td>22583</td>
<td>8</td>
</tr>
<tr>
<td>2A</td>
<td>2</td>
<td>24498</td>
<td>8</td>
</tr>
<tr>
<td>4A</td>
<td>3</td>
<td>20162</td>
<td>10</td>
</tr>
<tr>
<td>4B</td>
<td>4</td>
<td>19175</td>
<td>20</td>
</tr>
<tr>
<td>5A</td>
<td>5</td>
<td>19916</td>
<td>10</td>
</tr>
<tr>
<td>7A</td>
<td>6</td>
<td>20434</td>
<td>12</td>
</tr>
<tr>
<td>8A</td>
<td>7</td>
<td>20827</td>
<td>12</td>
</tr>
<tr>
<td>10A</td>
<td>8</td>
<td>18163</td>
<td>13</td>
</tr>
<tr>
<td>11A</td>
<td>9</td>
<td>17226</td>
<td>13</td>
</tr>
<tr>
<td>13A</td>
<td>10</td>
<td>18660</td>
<td>14</td>
</tr>
<tr>
<td>14A</td>
<td>11</td>
<td>20975</td>
<td>14</td>
</tr>
<tr>
<td>16A</td>
<td>12</td>
<td>17410</td>
<td>15</td>
</tr>
<tr>
<td>17A</td>
<td>13</td>
<td>16685</td>
<td>15</td>
</tr>
<tr>
<td>19A</td>
<td>14</td>
<td>15805</td>
<td>16</td>
</tr>
<tr>
<td>20A</td>
<td>15</td>
<td>16734</td>
<td>16</td>
</tr>
<tr>
<td>22A</td>
<td>16</td>
<td>19503</td>
<td>18</td>
</tr>
<tr>
<td>23A</td>
<td>17</td>
<td>17322</td>
<td>18</td>
</tr>
<tr>
<td>23C</td>
<td>18</td>
<td>22470</td>
<td>10</td>
</tr>
<tr>
<td>24A</td>
<td>19</td>
<td>24195</td>
<td>10</td>
</tr>
<tr>
<td>24B</td>
<td>20</td>
<td>19782</td>
<td>12</td>
</tr>
<tr>
<td>24C</td>
<td>21</td>
<td>17944</td>
<td>16</td>
</tr>
<tr>
<td>24D</td>
<td>22</td>
<td>17250</td>
<td>20</td>
</tr>
<tr>
<td>25A</td>
<td>23</td>
<td>21815</td>
<td>10</td>
</tr>
<tr>
<td>25B</td>
<td>24</td>
<td>21749</td>
<td>12</td>
</tr>
<tr>
<td>25C</td>
<td>25</td>
<td>20010</td>
<td>18</td>
</tr>
<tr>
<td>25D</td>
<td>26</td>
<td>17249</td>
<td>12</td>
</tr>
<tr>
<td>26A</td>
<td>27</td>
<td>22190</td>
<td>10</td>
</tr>
<tr>
<td>26B</td>
<td>28</td>
<td>20833</td>
<td>16</td>
</tr>
<tr>
<td>26C</td>
<td>29</td>
<td>20729</td>
<td>18</td>
</tr>
<tr>
<td>26D</td>
<td>30</td>
<td>20024</td>
<td>20</td>
</tr>
<tr>
<td>27A</td>
<td>31</td>
<td>20255</td>
<td>18</td>
</tr>
<tr>
<td>27B</td>
<td>32</td>
<td>18825</td>
<td>16</td>
</tr>
<tr>
<td>27C</td>
<td>33</td>
<td>18986</td>
<td>18</td>
</tr>
<tr>
<td>27D</td>
<td>34</td>
<td>18742</td>
<td>16</td>
</tr>
</tbody>
</table>

AVERAGE FAILURE LOAD 19680
B. Code visual outputs

In this appendix are presented the typical visual outputs that are automatically generated by the analysis code available in Appendix D: Analysis source code. One should note that these plots are interactive and come with a set of visualization tools such as a zoom, data cursor and 3D rotation for the multidimensional plots.

The next six plots present the six AE parameters distributions throughout all the 34 coupons. The x axis presents the 34 coupons, the y axis the current AE parameter gradation and the Z axis the associated number of AE hits. For better visualization, the plots where zoomed in with respect to the Y axis.

These plots are available at 100% of data recording before and after the first filter application. Plots are also available after the first filter application with only a certain percentage of recorded data below the 100%. The following six plots present the first set of plots at 100% of recorded data and before the noise filter application.

![Counts distribution all coupons at 100 percent of data recording with noise](chart.png)
The next four plots give representations of the AE data remaining after the noise filter has been applied and only a certain percent of recorded data taken out of the complete AE data. These plots are available for all the training and prediction coupons and help the NDT engineer to understand the AE data.
Duration vs counts of coupon8A at 40 percent of data recording

Amplitude vs Average frequency of coupon8A at 40 percent of data recording
The next five plots help to visualize the AE data for each coupon once the classification by Kohonen SOM has been done. It helps to understand where each cluster is in terms of the AE parameters. These plots are available after the noise filtration and Kohonen SOM classification processes.
The following five plots are the visual output results of the analysis. These plots present by a surface the absolute training and prediction errors as well as the R^2 fitting coefficients evolution with respect to the type of Kohonen SOM used, the number of training coupons and lastly the AE parameter used in the MSRA.
C. Results exploitation example
In order to research a precise result press 1
(you will have to define the percentage of data recording, the type of SOM, the number
of training coupons and the AE parameter that you seek)
If one of these parameters is a function of your analysis press 2

Enter your choice 1 or 2 :1

The available percentages of data recording are:

ans =

30

How many percent of data recording do you want to use? 1/../1 :1

The available types of SOM are:

Tested_type_of_SOM =

1 2 3 4 5 6 7 8 9 10 11 12

Which type of SOM do you want to use? 1
The possible number of training coupon is between :18 and :33

How many training coupons do you want to use? 24

The AE parameters are:
1= Counts
2= Duration (µs)
3= Energy (atto Joules)
4= Frequency (KHz)
5= Amplitude (dB)
6= Risetime (µs)
7= Average Frequency (ms^-1)

The best AE parameter for the number of coupons and the type of SOM you entered is the number :1
The results of you request are:

The matrix of mechanisms and its associated matrix of hits used to define the equation are :

ans =

25.8889 5.1317
1.0000 16.0488 3.0064 1.0682 25.6154 8.7403 1.6262 46.3333
ans =

 0 50 238 123 15 90 242 15 27 167
 0 41 157 132 13 77 206 6 15 113
Where each line correspond to the following training coupons:

ans =

1
2
5
8
9
10
11
12
13
14
15
17
18
19
22
23
24
26
28
29
30
32
33
34
The actual failure load of training coupons are:

```
actual_failure_loads_training =
```
```
22583
24498
19916
18163
17226
18660
20975
17410
16685
15805
16734
17322
22470
24195
17250
21815
21749
17249
20833
20729
20024
18825
18986
18742
```

Their predicted load are:

```
predicted_failure_load_training =
```
```
1.0e+004 *
```
```
2.0097
2.1711
1.9607
1.7571
1.6676
2.0602
2.0564
1.8824
1.8653
1.6770
1.9362
1.9015
1.9763
2.0312
1.7297
```
Percentage of training error is:

```
ans =
-11.0074
-11.3748
-1.5510
-3.2569
-3.1951
10.4083
-1.9589
8.1198
11.7966
6.1083
15.7040
9.7708
-12.0489
-16.0470
0.2696
-12.1670
-4.3155
1.7956
2.4065
5.0056
-7.0472
8.2186
8.6630
16.1723
```

The fitting coefficient R^2 is:

```
ans =
0.4015
```

The matrix of mechanisms and its associated matrix of hits used to predict with the equation are:

```
ans =
1.0000  15.0000   3.0787  1.1076  17.3000  7.6739  1.6744  21.0000
```
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4091</td>
<td>5.0390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>9.4545</td>
<td>3.6698</td>
<td>1.1742</td>
<td>19.3333</td>
<td>10.3000</td>
<td>1.8797</td>
<td>20.4000</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.1250</td>
<td>6.1358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>16.2500</td>
<td>3.9014</td>
<td>1.1111</td>
<td>18.5000</td>
<td>10.0154</td>
<td>1.8333</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.8462</td>
<td>6.7865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>7.0000</td>
<td>2.4667</td>
<td>1.0000</td>
<td>16.5000</td>
<td>16.1667</td>
<td>1.1500</td>
<td>12.0000</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.5833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>10.1842</td>
<td>2.4745</td>
<td>1.1343</td>
<td>34.2500</td>
<td>8.3235</td>
<td>1.5201</td>
<td>14.5000</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.6000</td>
<td>4.7278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>16.3600</td>
<td>3.6119</td>
<td>1.1259</td>
<td>12.0000</td>
<td>10.2698</td>
<td>1.8397</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.4000</td>
<td>6.2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>9.7619</td>
<td>3.4155</td>
<td>1.1523</td>
<td>40.3333</td>
<td>8.9104</td>
<td>1.7636</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.2143</td>
<td>6.3828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>10.5455</td>
<td>3.2606</td>
<td>1.1193</td>
<td>16.0000</td>
<td>8.3784</td>
<td>1.7709</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6000</td>
<td>5.9186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>13.5000</td>
<td>2.9517</td>
<td>1.1283</td>
<td>19.6667</td>
<td>9.2619</td>
<td>1.7153</td>
<td>31.3636</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.9063</td>
<td>5.0388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>13.5000</td>
<td>3.0800</td>
<td>1.0663</td>
<td>20.4000</td>
<td>7.6667</td>
<td>1.6000</td>
<td>24.0000</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1429</td>
<td>5.8705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ans =

0	27	127	158	10	46	215	5		
0	11	106	155	3	40	158	5	8	81
0	32	284	315	4	65	414	0	13	178
0	5	15	6	2	6	20	1	0	12
0	38	196	201	4	68	273	2	25	169
0	25	268	278	2	63	368	0	5	109
0	21	207	197	3	67	275	0	14	128
0	22	142	243	2	37	275	0	5	86
0	38	207	265	9	84	288	11	32	129
0	28	200	181	5	72	285	1	7	139

Where each line correspond to the following prediction coupons:

ans =

3
4
6
7
16
20
21
25
27
31

The best fitting equation coefficients are:
ans =

1.0e+004 *

4.2522
-0.0088
-0.0717
-3.2039
0.0014
0.0392
0.9205
0.0035
0.0034
-0.0810

The actual failure load of prediction coupons are:

actual_failure_loads_prediction =

20162
19175
20434
20827
19503
19782
17944
20010
22190
20255

Their predicted load are:

predicted_failure_load =

1.0e+004 *

1.9457
1.9518
1.9046
2.1150
1.8520
1.9812
1.7968
1.9049
2.0495
1.9653

Percentage of prediction error is:

ans =
-3.4987
 1.7868
-6.7914
 1.5512
-5.0395
 0.1540
 0.1358
-4.8047
-7.6395
-2.9727

The fitting coefficient R^2 is:

ans =

 0.5825

Percentage of worst prediction error is:

ans =

-7.6395

Do you want to request another result? Y/N [N]:

D. Analysis source code
Source code functions architecture:

→ MAIN_PROGRAM
 → constant_inputs
 → Load_AE_files
 → Load_load_energy_file
 → B_basis_allowable_calculation
 → Distributions_calculator_all_coupons
 → Plot_counts_distribution
 → Plot_duration_distribution
 → Plot_energy_distribution
 → Plot_frequency_distribution
 → Plot_amplitude_distribution
 → Plot_risetime_distribution
 → Plot_average_frequency_distribution
 → Filter_values
 → Filtration_of_data
 → Percentage_of_recording_data_generation
 → Plot_duration_vs_counts
 → Plot_amplitude_vs_average_frequency
 → Plot_duration_vs_energy_vs_amplitude_per_mechanism
 → Plot_amplitude_vs_time
 → Plot_energy_vs_amplitude
 → Prediction_and_training_coupons_combinations_generation
 → SOM_and_MSA_analysis
 → Classification_by_SOM
 → Clusters_parameters_determination
 → Generation_AE_mechanisms_per_coupon_matrix_SOM_classification
 → Amplitude_distribution_calculator_per_mechanism
 → Duration_distribution_calculator_per_mechanism
 → frequency_distribution_calculator_per_mechanism
 → Mean_amplitude_per_mechanism_research
 → Noise_clusters_research
 → Multivariate_statistical_regression_analysis
 → Plot_training_error
 → Plot_prediction_error
 → Plot_R2_values_training
 → Plot_R2_values_prediction
 → Plot_prediction_error_per_AE_parameter
 → Plot_training_error_per_AE_parameter
 → Plot_R2_values_training_per_AE_parameter
 → Plot_R2_values_prediction_per_AE_parameter
 → Results_exploitation
% Delete all the variables stored in matlab memory, close all the open
% windows and clear the matlab command window
close all force;
clear all;
clc;

% Read the analysis parameters in constant_inputs.m file
constant_inputs;

% Defines if the data should be loaded from a previous load (case
% preload=1) or not (case preload=0)
preload=0;

% Defines if the data should be loaded from a previous load (case
% preloaded_AE_files=1) or not (case preloaded_AE_files=0)
preloaded_AE_files=1;

% Differentiation in the loading process
if preload==0

% Existing preload file
if preloaded_AE_files==1
load loaded_AE_files.mat
else
% Load 100% recording of the Acoustic Emissions data available in the Excel
% spreadsheets for all the available coupons
[Matrix_of_files_100_percent]=Load_AE_files(Files_coupon_name, File_extension);

% Load the actual failure loads of all the loaded coupons
[Actual_load,Actual_energies,Coupons_separated_in_energy_impact_groups,
 Load_and_impact_energies_full,Number_of_coupon_per_energy_group] = Load_load_energy_file
(Actual_load_file);
B_basis_allowable_limits=B_basis_allowable_calculation(Actual_load, Actual_energies);
filename='loaded_AE_files.mat';
save
(filename,'Matrix_of_files_100_percent','Actual_load','Actual_energies','B_basis_allowable_limits','Coupons_separated_in_energy_impact_groups','Load_and_impact_energies_full','Number_of_coupon_per_energy_group')
end;

% Create 4 dimensions matrices that will contain the training and
% prediction error at the end of the analysis
Prediction_error_matrix_equation_1=zeros(Number_of_AE_parameters,length
(Files_coupon_name),length(Tested_type_of_SOM),length(Percentage_list));
Prediction_error_matrix_equation_2=zeros(Number_of_AE_parameters,length
(Percentage_list),length(Tested_type_of_SOM),length(Percentage_list));
(Files_coupon_name), length(Tested_type_of_SOM), length(Percentage_list));

Training_error_matrix_equation_1=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
Training_error_matrix_equation_2=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));

% Create 4 dimensions matrices that will contain the training and prediction error at the end of the analysis
R2_value_prediction_matrix_equation_1=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
R2_value_prediction_matrix_equation_2=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
R2_value_training_matrix_equation_1=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
R2_value_training_matrix_equation_2=zeros(Number_of_AE_parameters, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));

% Create 4 dimensions matrices that will contain the worst case error in prediction equation
if Type_of_equation==1
 Worst_case_error_prediction_equation=zeros((Classification_plane_dimension_1*Classification_plane_dimension_2)+1-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_mechanisms_for_worst_case_training=zeros(Max_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_mechanisms_for_worst_case_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_hits_for_worst_case_training=zeros(Max_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_hits_for_worst_case_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
else
 Worst_case_error_prediction_equation=zeros((Classification_plane_dimension_1*Classification_plane_dimension_2)+1+nchoosek((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster, 2)-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_mechanisms_for_worst_case_training=zeros(Max_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2+nchoosek((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster, 2)-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
 Matrix_of_mechanisms_for_worst_case_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon, (Classification_plane_dimension_1*Classification_plane_dimension_2)+2+nchoosek((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster, 2)-nb_of_noise_cluster, Max_nb_training_coupon, length(Tested_type_of_SOM), length(Percentage_list));
end
nb_of_noise_cluster, 2) - nb_of_noise_cluster, Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

Matrix_of_mechanisms_for_worst_case_prediction=zeros(length(F its_coupon_name) - Min_nb_training_coupon, (Classification Plane dimension_1 * Classification Plane dimension_2) + 2 + nchoosek((Classification Plane dimension_1 * Classification Plane dimension_2) - nb_of_noise_cluster, 2) - nb_of_noise_cluster, Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

Matrix_of_hits_for_worst_case_training=zeros(Max_nb_training_coupon, (Classification Plane dimension_1 * Classification Plane dimension_2) + 2 + nchoosek((Classification Plane dimension_1 * Classification Plane dimension_2) - nb_of_noise_cluster, 2) - nb_of_noise_cluster, Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

Matrix_of_hits_for_worst_case_prediction=zeros(length(F its_coupon_name) - Min_nb_training_coupon, (Classification Plane dimension_1 * Classification Plane dimension_2) + 2 + nchoosek((Classification Plane dimension_1 * Classification Plane dimension_2) - nb_of_noise_cluster, 2) - nb_of_noise_cluster, Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

end

AE_parameters_of_best_prediction=zeros(Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

Mean_amplitude_value_per_mechanism=zeros(Classification Plane dimension_1 * Classification Plane dimension_2, Max_nb_training_coupon, length (Tested_type_of_SOM), length (Percentage_list));

% Calculate the AE parameters distributions of all the coupons
[Counts_distribution, Duration_distribution, Energy_distribution, Frequency_distribution, Amplitude_distribution, Risetime_distribution, Average_frequency_distribution] = Distributions_calculator_all_coupons (Matrix_of_files_100_percent, Max_counts, Min_counts, Increment_counts, Max_duration, Min_duration, Increment_duration, Max_energy, Min_energy, Increment_energy, Max_frequency, Min_frequency, Increment_frequency, Max_amplitude, Min_amplitude, Increment_amplitude, Max_risetime, Min_risetime, Increment_risetime, Max_avg_frequency, Min_avg_frequency, Increment_avg_frequency);

% Plot the AE parameters distribution of all the coupons
figure_index=Plot_counts_distribution(Counts_distribution, figure_index, Min_counts, Increment_counts, 1, 0);
figure_index=Plot_duration_distribution(Duration_distribution, figure_index, Min_duration, Increment_duration, 1, 0);
figure_index=Plot_energy_distribution(Energy_distribution, figure_index, Min_energy, Increment_energy, 1, 0);
figure_index=Plot_frequency_distribution(Frequency_distribution, figure_index, Min_frequency, Increment_frequency, 1, 0);
figure_index=Plot_amplitude_distribution(Amplitude_distribution, figure_index, Min_amplitude, Increment_amplitude, 1, 0);
figure_index=Plot_risetime_distribution(Risetime_distribution, figure_index, Min_risetime, Increment_risetime, 1, 0);
figure_index=Plot_average_frequency_distribution(Average_frequency_distribution, figure_index, Min_avg_frequency, Increment_avg_frequency, 1, 0);
% Load the boundary values of all the AE parameter for first filtration
Filter_values;

% Apply a first filtration on the data
Matrix_of_files_100_percent_filtered=Filtration_of_data(Matrix_of_files_100_percent,
Max_counts,Min_counts,Max_duration,Min_duration,Max_energy,Min_energy,Max_frequency,Min_frequency,
Max_amplitude,Min_amplitude,Max_risetime,Min_risetime,Max_avg_frequency,Min_avg_frequency);

% Calculate the AE parameters distributions of all the filtered coupons
[Counts_distribution,Duration_distribution,Energy_distribution,Frequency_distribution,
Amplitude_distribution,Risetime_distribution,Average_frequency_distribution]=Distributions_calculator_all_coupons(Matrix_of_files_100_percent_filtered,Max_counts,
Min_counts,Increment_counts,Max_duration,Min_duration,Increment_duration,Max_energy,
Min_energy,Increment_energy,Max_frequency,Min_frequency,Increment_frequency,
Max_amplitude,Min_amplitude,Increment_amplitude,Max_risetime,Min_risetime,
Increment_risetime,Max_avg_frequency,Min_avg_frequency,Increment_avg_frequency);

% Plot the AE parameters distribution of all the filtered coupons
figure_index=Plot_counts_distribution(Counts_distribution,figure_index,Min_counts,
Increment_counts,1,1);
figure_index=Plot_duration_distribution(Duration_distribution,figure_index,Min_duration,
Increment_duration,1,1);
figure_index=Plot_energy_distribution(Energy_distribution,figure_index,Min_energy,
Increment_energy,1,1);
figure_index=Plot_frequency_distribution(Frequency_distribution,figure_index,
Min_frequency,Increment_frequency,1,1);
figure_index=Plot_amplitude_distribution(Amplitude_distribution,figure_index,
Min_amplitude,Increment_amplitude,1,1);
figure_index=Plot_risetime_distribution(Risetime_distribution,figure_index,Min_risetime,
Increment_risetime,1,1);
figure_index=Plot_average_frequency_distribution(Average_frequency_distribution,
figure_index,Min_avg_frequency,Increment_avg_frequency,1,1);

% Save all the loaded data at that point
save workspacepreload.mat
else
% Loads a previously loaded set of data
load workspacepreload.mat
end;

% Loop allowing the study of different percentage recording of the
% prediction coupons' Acoustic Emissions data
for Percentage_recording_index=1:1:length(Percentage_list)
 clc;
 % Progress of the percentage recording analysis visualization
 Percentage_of_data_recording_progress=(Percentage_recording_index/length(Percentage_list))*100

 % Generate a matrix containing a certain percent of the recorded
% Acoustic emission data of all coupons
[Matrix_of_files_certain_percent_filtered] =✓
Percentage_of_recording_data_generation(Matrix_of_files_100_percent_filtered,✓
Percentage_list(Percentage_recording_index));

% Calculate the AE parameters distributions of all the coupons
[Counts_distribution,Duration_distribution,Energy_distribution,✓
Frequency_distribution,Amplitude_distribution,Risetime_distribution,✓
Average_frequency_distribution]=Distributions_calculator_all_coupons✓
(Matrix_of_files_certain_percent_filtered,Max_counts,Min_counts,Increment_counts,✓
Max_duration,Min_duration,Increment_duration,Max_energy,Min_energy,Increment_energy,✓
Max_frequency,Min_frequency,Increment_frequency,Max_amplitude,Min_amplitude,✓
Increment_amplitude,Max_risetime,Min_risetime,Increment_risetime,Max_avg_frequency,✓
Min_avg_frequency,Increment_avg_frequency);

% Plot the AE parameters distributions of all the coupons
figure_index=Plot_counts_distribution(Counts_distribution,figure_index,Min_counts,✓
Increment_counts,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_duration_distribution(Duration_distribution,figure_index,✓
Min_duration,Increment_duration,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_energy_distribution(Energy_distribution,figure_index,Min_energy,✓
Increment_energy,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_frequency_distribution(Frequency_distribution,figure_index,✓
Min_frequency,Increment_frequency,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_amplitude_distribution(Amplitude_distribution,figure_index,✓
Min_amplitude,Increment_amplitude,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_risetime_distribution(Risetime_distribution,figure_index,✓
Min_risetime,Increment_risetime,Percentage_list(Percentage_recording_index),[0]);
figure_index=Plot_average_frequency_distribution(Average_frequency_distribution,figure_index,✓
Min_avg_frequency,Increment_avg_frequency,Percentage_list(Percentage_recording_index),[0]);

% Plot the acoustic emissions data of each coupon for noise visualization
figure_index=Plot_duration_vs_counts(Matrix_of_files_certain_percent_filtered,✓
figure_index,Files_coupon_name,Percentage_list(Percentage_recording_index));
figure_index=Plot_amplitude_vs_average_frequency✓
(Matrix_of_files_certain_percent_filtered,figure_index,Files_coupon_name,Percentage_list✓
(Percentage_recording_index));
figure_index=Plot_amplitude_vs_time(Matrix_of_files_certain_percent_filtered,✓
figure_index,Files_coupon_name,Percentage_list(Percentage_recording_index));
figure_index=Plot_energy_vs_amplitude(Matrix_of_files_certain_percent_filtered,✓
figure_index,Files_coupon_name,Percentage_list(Percentage_recording_index));

% Loop allowing to study of the number of training coupon influence on
% the prediction error
for nb_of_training_coupons=Min_nb_training_coupon:1:Max_nb_training_coupon
 clc;

% Progress of the percentage recording and number of training
% coupon analysis visualization
Percentage_of_data_recording_progress
Nb_training_coupons_progress=((nb_of_training_coupons-Min_nb_training_coupon+1)/(Max_nb_training_coupon-Min_nb_training_coupon+1))*100

% Generate matrices of all the training coupons combinations and
% their associated prediction coupons combinations
[Training_coupons_combinations,Prediction_coupon_combination,
number_of_training_coupon_combination] =Prediction_and_training_coupons_combinations_generation(Max_nb_training_coupon,
 nb_of_training_coupons,Possible_training_coupons,
Coupons_separated_in_energy_impact_groups,Number_of_coupon_per_energy_group,
Files_coupon_name);

% Specific set of training and prediction coupons combination (previous research)
%Prediction_coupon_combination=[1,5,6,11,12,17,20,24,29,34];
%Training_coupons_combinations=[2,3,4,7,8,9,10,13,14,15,16,18,19,21,22,23,25,26,27,28,30,31,32,33];
%number_of_training_coupon_combination=1;

% Classify the Acoustic emmission data of all coupons by using Kohonen Self Organising Maps and predict the ultimate loads by using the
% Multivariate Statistical Analysis
[Training_error_matrix_equation_1,Training_error_matrix_equation_2,
Prediction_error_matrix_equation_1,Prediction_error_matrix_equation_2,figure_index,
Number_of_mechanisms,Worst_case_error_prediction_equation,
AE_parameters_of_best_prediction,Matrix_of_mechanisms_for_worst_case_training,
Matrix_of_mechanisms_for_worst_case_prediction,Mean_amplitude_value_per_mechanism,
Matrix_of_hits_for_worst_case_training,Matrix_of_hits_for_worst_case_prediction,
R2_value_prediction_matrix_equation_1,R2_value_prediction_matrix_equation_2,
R2_value_training_matrix_equation_1,R2_value_training_matrix_equation_2] = SOM_and_MSA_analysis(Matrix_of_files_certain_percent_filtered,
Matrix_of_files_100_percent_filtered,Number_of_AE_parameters,Actual_load,
Training_coupons_combinations,Prediction_coupon_combination,
Classification_plane_dimension_1,Classification_plane_dimension_2,nb_iteration,
b_of_training_coupons,Min_amplitude,Max_amplitude,Min_duration,Max_duration,
Increment_duration,Min_frequency,Max_frequency,Nb_training_coupons_progress,
Percentage_of_data_recording_progress,figure_index,Training_error_matrix_equation_1,
Training_error_matrix_equation_2,Prediction_error_matrix_equation_1,
Prediction_error_matrix_equation_2,Tested_type_of_SOM,Percentage_list,
Percentage_recording_index,classification_AE_parameter,
Worst_case_error_prediction_equation,Files_coupon_name,nb_of_noise_cluster,remove_noise,
Min_average_frequency,Type_of_equation,AE_parameters_of_best_prediction,
Matrix_of_mechanisms_for_worst_case_training,
Matrix_of_mechanisms_for_worst_case_prediction,Max_nb_training_coupon,
Min_nb_training_coupon,Mean_amplitude_value_per_mechanism,
Matrix_of_hits_for_worst_case_training,Matrix_of_hits_for_worst_case_prediction,
R2_value_prediction_matrix_equation_1,R2_value_prediction_matrix_equation_2,
R2_value_training_matrix_equation_1,R2_value_training_matrix_equation_2);

% Saves all the workspace variables
save workspacefinal.mat
filename='results.mat';

save (filename,'Prediction_error_matrix_equation_1','Prediction_error_matrix_equation_2','Training_error_matrix_equation_1','Training_error_matrix_equation_2','Worst_case_error_prediction_equation','Matrix_of_mechanisms_for_worst_case_training','Matrix_of_mechanisms_for_worst_case_prediction','AE_parameters_of_best_prediction','Files_coupon_name','Possible_training_coupons','File_extension','Actual_load_file','Percentage_list','AE_parameters','Tested_type_of_SOM','classification_AE_parameter','nb_of_noise_cluster','Classification_plane_dimension_1','Classification_plane_dimension_2','Type_of_equation','Min_nb_training_coupon','Max_nb_training_coupon','Actual_load','Mean_amplitude_value_per_mechanism','Matrix_of_hits_for_worst_case_training','Matrix_of_hits_for_worst_case_prediction','figure_index','R2_value_training_matrix_equation_2','R2_value_training_matrix_equation_1','R2_value_prediction_matrix_equation_2','R2_value_prediction_matrix_equation_1'))

end

end

% Plot the training and prediction errors for each type of SOM and for all % the Acoustic Emissions data percentage recordings
for Percentage_recording_index=1:1:length(Percentage_list)
 for type_of_SOM_index=1:1:length(Tested_type_of_SOM)
 if Type_of_equation==1
 figure_index = Plot_training_error(Training_error_matrix_equation_1,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Min_nb_training_coupon,Max_nb_training_coupon);
 figure_index = Plot_prediction_error(Prediction_error_matrix_equation_1,
 (length(Files_coupon_name)-(Number_of_mechanisms+2)),figure_index,Type_of_equation,
 Percentage_list(Percentage_recording_index),Percentage_recording_index,
 Tested_type_of_SOM(type_of_SOM_index),type_of_SOM_index,Max_nb_training_coupon,
 Min_nb_training_coupon);
 figure_index = Plot_R2_values_training(R2_value_training_matrix_equation_1,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Max_nb_training_coupon,Min_nb_training_coupon);
 if type_of_SOM_index==length(Tested_type_of_SOM)
 figure_index = Plot_R2_values_training(R2_value_prediction_matrix_equation_1,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Max_nb_training_coupon,Min_nb_training_coupon);
 else
 figure_index = Plot_R2_values_prediction(R2_value_prediction_matrix_equation_2,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Min_nb_training_coupon,Max_nb_training_coupon);
 end
 else
 figure_index = Plot_training_error(Training_error_matrix_equation_2,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Min_nb_training_coupon,Max_nb_training_coupon);
 figure_index = Plot_prediction_error(Prediction_error_matrix_equation_2,
 (length(Files_coupon_name)-(Number_of_mechanisms+2)),figure_index,Type_of_equation,
 Percentage_list(Percentage_recording_index),Percentage_recording_index,
 Tested_type_of_SOM(type_of_SOM_index),type_of_SOM_index,Max_nb_training_coupon,
 Min_nb_training_coupon);
 figure_index = Plot_R2_values_training(R2_value_prediction_matrix_equation_2,
 nb_of_training_coupons,figure_index,Type_of_equation,Percentage_list
 (Percentage_recording_index),Percentage_recording_index,Tested_type_of_SOM
 (type_of_SOM_index),type_of_SOM_index,Min_nb_training_coupon,Max_nb_training_coupon);
 end
 end
end
(Percentage_recording_index), Percentage_recording_index, Tested_type_of_SOM(index),
(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon, Min_nb_training_coupon);

figure_index = Plot_R2_values_prediction;

(R2_value_prediction_matrix_equation_2, nb_of_training_coupons, figure_index);

Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index,
Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon,
Min_nb_training_coupon);

end;
end;

for AE_displayed_parameter_index=1:1:Number_of_AE_parameters

if Type_of_equation==1

figure_index = Plot_prediction_error_per_AE_parameter;

(Prediction_error_matrix_equation_1, (length(Files_coupon_name)-(Number_of_mechanisms+2)),
(Percentage_recording_index), Percentage_list, Type_of_equation, Percentage_list(Percentage_recording_index),
Min_nb_training_coupon, Max_nb_training_coupon);

figure_index = Plot_training_error_per_AE_parameter;

(Training_error_matrix_equation_1, (length(Files_coupon_name)-(Number_of_mechanisms+2)),
figure_index, Type_of_equation, Percentage_list(Percentage_recording_index),
Percentage_recording_index, AE_displayed_parameter_index, Min_nb_training_coupon,
Max_nb_training_coupon);

figure_index = Plot_R2_values_per_AE_parameter;

(R2_value_training_matrix_equation_1, nb_of_training_coupons, figure_index);

Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index,
Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon,
Min_nb_training_coupon);

figure_index = Plot_R2_values_prediction_per_AE_parameter;

(R2_value_prediction_matrix_equation_1, nb_of_training_coupons, figure_index);

Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index,
Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon,
Min_nb_training_coupon);

end

else

figure_index = Plot_prediction_error_per_AE_parameter;

(Prediction_error_matrix_equation_2, (length(Files_coupon_name)-(Number_of_mechanisms+2)),
(Percentage_recording_index), Percentage_list, Type_of_equation, Percentage_list(Percentage_recording_index),
Min_nb_training_coupon, Max_nb_training_coupon);

figure_index = Plot_R2_values_per_AE_parameter;

(R2_value_prediction_matrix_equation_2, nb_of_training_coupons, figure_index);

Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index,
Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon,
Min_nb_training_coupon);

figure_index = Plot_R2_values_prediction_per_AE_parameter;

(R2_value_prediction_matrix_equation_2, nb_of_training_coupons, figure_index);

Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index,
Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon,
Min_nb_training_coupon, AE_displayed_parameter_index);
(R2_value_prediction_matrix_equation_2, nb_of_training_coupons, figure_index, Type_of_equation, Percentage_list(Percentage_recording_index), Percentage_recording_index, Tested_type_of_SOM(type_of_SOM_index), type_of_SOM_index, Max_nb_training_coupon, Min_nb_training_coupon, AE_displayed_parameter_index);

end;
end;

%Results analysis
reply_analyze = input('Do you want to analyze the results? Y/N [N]: ', 's');
if isempty(reply_analyze)
 reply_analyze = 'N';
end
if reply_analyze=='Y'
 reply_continuing='Y';
 while reply_continuing=='Y'
 Results_exploitation;
 reply_continuing = input('Do you want to request another result? Y/N [N]: ', 's');
 if isempty(reply_continuing)
 reply_continuing = 'N';
 end
 end
end;
end;
% File containing the analysis parameters

% Defines the Excel Spreadsheets prefix to use for data loading
Files_coupon_name={'1A' '2A' '4A' '5A' '7A' '8A' '10A' '11A' '13A' '14A' '16A'
 '17A' '19A' '20A' '23A' '24A' '24B' '24C' '24D' '25A' '25B' '25C' '25D'
 '26A' '26B' '26C' '26D' '27A' '27B' '27C' '27D'};

% Defines the array of possible training coupons out of all the loaded coupons
Possible_training_coupons=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31 32 33 34];

% Specify the files extensions for coupons Excel spreadsheets loading
File_extension='30db9.8msc250frq.xls';

% Specify the coupons ultimate loads Excel file name
Actual_load_file='Failure_Loads.xls';

% Defines the studied prediction coupons percentages of data recording
Percentage_list=[0.3];

% Defines the AE parameters boundaries before first filtration
Max_counts=1000;
Min_counts=1;
Increment_counts=1;
Max_duration=9800;
Min_duration=1;
Increment_duration=1;
Max_energy=500;
Min_energy=1;
Increment_energy=1;
Max_frequency=250;
Min_frequency=1;
Increment_frequency=1;
Max_amplitude=500;
Min_amplitude=30;
Increment_amplitude=1;
Max_risetime=10000;
Min_risetime=1;
Increment_risetime=1;
Max_avg_frequency=500;
Min_avg_frequency=1;
Increment_avg_frequency=1;
% Defines the first figure index
figure_index=1;

% Defines the AE parameters names as present in the coupons files
AE_parameters={'Counts' 'Duration (µs)' 'Energy (atto Joules)' 'Load (lb)' 'Average Frequency (KHz)' 'Amplitude (dB)' 'Risetime (µs)'};
Number_of_AE_parameters=length(AE_parameters)-1;

% Specify the types of SOM studied in the analysis
Tested_type_of_SOM=[1];

% Specify the number of noise cluster(s) after Kohonen Self Organizing Maps classification
nb_of_noise_cluster=0;

% Has to be one to enable the noise removal process
remove_noise=0;

% Set the noise average frequency lower limit
Min_average_frequency=45;

% Specify the AE parameters used to classify the Acoustic Emissions data
% #4 is the load so shouldn't be part of the classification AE parameters
% 1= 'Counts'
% 2= 'Duration (µs)'
% 3= 'Energy (atto Joules)'
% 4= 'Load (lb)'
% 5= 'Average Frequency (KHz)'
% 6= 'Amplitude (dB)'
% 7= 'Risetime (µs)'
% 8= 'Average Frequency (KHz)'
classification_AE_parameter=[2 3 6];

% Specify the number of iterations for the Kohonen Self Organizing Maps training process
nb_iteration=500;

% Specify the Kohonen Self Organizing Maps output width and height dimensions
Classification_plane_dimension_1=3;
Classification_plane_dimension_2=3;

% Defines the type of equation: 1 for simple linear equation 2 for equation with cross products
Type_of_equation=1;

% Defines the maximum number of training coupons in the analysis process
Max_nb_training_coupon=33;
%Max_nb_training_coupon=length(Possible_training_coupons)-1;

if Type_of_equation==1
Min_nb_training_coupon=18;
end;
if Type_of_equation==2
 Min_nb_training_coupon=18;
 %Min_nb_training_coupon=
 (Classification_plane_dimension_1*Classification_plane_dimension_2)+nchoosek
 ((Classification_plane_dimension_1*Classification_plane_dimension_2)-
 nb_of_noise_cluster,2)+2;
end;
function [Files_3D_matrix] = Load_AE_files(Files_name, extension)
% Function that loads the acoustic emission data from excel spreadsheets to
% the matlab workspace

% Initialize internal variables for acoustic emission data loading
Max_number_of_rows=0;
Max_number_of_columns=0;

% Determining the largest number acoustic emission data throughout all the
% coupons
for i=1:1:length(Files_name)
 File=xlsread(strcat(Files_name{i},extension));
 if size(File,1)>Max_number_of_rows
 Max_number_of_rows=size(File,1);
 end;
 if size(File,2)>Max_number_of_columns
 Max_number_of_columns=size(File,2);
 end;
end;

% Creation of output variable containing the Acoustic emission data
Files_3D_matrix=zeros(Max_number_of_rows,Max_number_of_columns,length(Files_name));

% Load the acoustic emission data
for i=1:1:length(Files_name)
 Files_3D_matrix(1:size(xlsread(strcat(Files_name{i},extension)),1),1:size(xlsread(strcat(Files_name{i},extension)),2),i)=xlsread(strcat(Files_name{i},extension));
end;
end
function [Actual_loads_matrix,Actual_energies_matrix,\[
Coupons_separated_in_energy_impact_groups,Load_and_impact_energies_full,\[
Number_of_coupon_per_energy_group] = Load_load_energy_file(Loads_energies_file)
% Function loading the load and impact energies of all the coupons in the
% matlab workspace

% Read the excel spreadsheet
Load_and_impact_energies = xlsread(Loads_energies_file);

%Order the data in a proper table
Load_and_impact_energies_full=zeros(size(Load_and_impact_energies,1),3);
for k=1:size(Load_and_impact_energies,1)
 Load_and_impact_energies_full(k,1)=k;
end;
Load_and_impact_energies_full(:,2:3)=Load_and_impact_energies;

%Classify the coupons with respect to their impact energy group
Energy_groups=[8 10 12 13 14 15 16 18 20]';
ranks=ones(9);
Coupons_separated_in_energy_impact_groups=zeros(6,3,9);
for k=1:size(Load_and_impact_energies_full,1)
 [Position,group]=ismember(Load_and_impact_energies_full(k,3),Energy_groups);
 Coupons_separated_in_energy_impact_groups(ranks(group),:,group)=Load_and_impact_energies_full(k,:);
 ranks(group)=ranks(group)+1;
end;

%Calculates the number of coupons per energy group
Number_of_coupon_per_energy_group=ranks-1;
Number_of_coupon_per_energy_group=Number_of_coupon_per_energy_group(:,1)';

% Load impact energies and ultimate loads in separates variables
Actual_loads_matrix=Load_and_impact_energies(:,1);
Actual_energies_matrix=Load_and_impact_energies(:,2);

end
function [B_basis_allowable_limits]=B_basis_allowable_calculation(Actual_load, Actual_energies)

%function that calculates the B basis allowable limits for each impact
%energy

%Initialize the output and internal variables
B_basis_allowable_limits=zeros(34,5);
limits_per_impact_energy=zeros(9,10);
Confidence_level_coefficient=zeros(5,2);
values_retained_for_mean_failure_load=zeros(1,1);

%Defines the B basis calculation parameters: Impact energy, number of
coupons per group, K factors
limits_per_impact_energy(:,1)=[8;10;12;13;14;15;16;18;20];
limits_per_impact_energy(:,2)=[2;6;5;2;2;6;6;3];
limits_per_impact_energy(:,6)=[18.8;3.723;4.152;18.8;18.8;18.8;3.723;3.723;6.919];

%Determine the K factors at a confidence level C=0.90 and P=0.95
Confidence_level_coefficient(:,1)=[2;3;4;5;6];
Confidence_level_coefficient(:,2)=[18.8;6.919;4.943;4.152;3.723];

%Calculate the B basis loads intervals and loads mean values
for impact_energy=1:size(limits_per_impact_energy,1)
 temporary_line=1;
 %Calculate standard deviation
 for current_coupon=1:size(Actual_load,1)
 if limits_per_impact_energy(impact_energy,1)==Actual_energies(current_coupon)
 limits_per_impact_energy(impact_energy,3)=limits_per_impact_energy(impact_energy,3)+(Actual_load(current_coupon))
 limits_per_impact_energy(impact_energy,4)=limits_per_impact_energy(impact_energy,4)+(Actual_load(current_coupon))^2;
 values_retained_for_mean_failure_load(temporary_line)=Actual_load(current_coupon);
 temporary_line=temporary_line+1;
 end;
 end;
 %Calculates mean failure load for each impact energy group
 limits_per_impact_energy(impact_energy,7)=mean(values_retained_for_mean_failure_load);
 values_retained_for_mean_failure_load=zeros(1,1);
 end;
limits_per_impact_energy(:,5)=limits_per_impact_energy(:,3).*limits_per_impact_energy(:,3);
limits_per_impact_energy(:,5)=((limits_per_impact_energy(:,4)-(limits_per_impact_energy(:,3)./limits_per_impact_energy(:,2)))./(limits_per_impact_energy(:,2)-1)).^(1/2);

%Calculate the B basis loads intervals
limits_per_impact_energy(:,8)=limits_per_impact_energy(:,5).*limits_per_impact_energy(:,6);
limits_per_impact_energy(:,9)=limits_per_impact_energy(:,7)-limits_per_impact_energy(:,10);
8);
limits_per_impact_energy(:,10)=limits_per_impact_energy(:,7)+limits_per_impact_energy(:,8);

%Associate the B basis intervals to each coupons
B_basis_allowable_limits(:,1)=Actual_load;
B_basis_allowable_limits(:,2)=Actual_energies;
for current_coupon=1:size(Actual_load,1)
 rank=find(limits_per_impact_energy(:,1)==Actual_energies(current_coupon));
 B_basis_allowable_limits(current_coupon,3)=limits_per_impact_energy(rank,5);
 B_basis_allowable_limits(current_coupon,4)=limits_per_impact_energy(rank,8);
 B_basis_allowable_limits(current_coupon,5)=limits_per_impact_energy(rank,9);
end;
end
function [Counts_distribution, Duration_distribution, Energy_distribution, Frequency_distribution, Amplitude_distribution, Risetime_distribution, Average_frequency_distribution] = Distributions_calculator_all_coupons

(Matrix_of_files_certain_percent, Max_counts, Min_counts, Increment_counts, Max_duration, Min_duration, Increment_duration, Max_energy, Min_energy, Increment_energy, Max_frequency, Min_frequency, Increment_frequency, Max_amplitude, Min_amplitude, Increment_amplitude, Max_risetime, Min_risetime, Increment_risetime, Max_avg_frequency, Min_avg_frequency, Increment_avg_frequency)

% Function calculating the Acoustic Emission parameters distributions

% Creation of internal variables for AE parameters distribution
% Calculation
Counts_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Duration_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Energy_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Frequency_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Amplitude_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Risetime_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));
Average_frequency_matrix=zeros(size(Matrix_of_files_certain_percent,1),size(Matrix_of_files_certain_percent,3));

% Initialization of the internal variables
for i=1:1:size(Matrix_of_files_certain_percent,3)
 Counts_matrix(:,i)=Matrix_of_files_certain_percent(:,1,i);
 Duration_matrix(:,i)=Matrix_of_files_certain_percent(:,2,i);
 Energy_matrix(:,i)=Matrix_of_files_certain_percent(:,3,i);
 Frequency_matrix(:,i)=Matrix_of_files_certain_percent(:,5,i);
 Amplitude_matrix(:,i)=Matrix_of_files_certain_percent(:,6,i);
 Risetime_matrix(:,i)=Matrix_of_files_certain_percent(:,7,i);
 Average_frequency_matrix(:,i)=Matrix_of_files_certain_percent(:,8,i);
end;

% Creation of output variable for count distribution calculation
Counts_distribution=zeros(((Max_counts-Min_counts)/Increment_counts)+1),size(Counts_matrix,2)+1);

% Definition of the count distribution range
for i=1:1:size(Counts_distribution,1)
 Counts_distribution(i,1)=(Min_counts-1*Increment_counts)+i*Increment_counts;
end;

% Calculates the count distribution
for i=1:1:size(Counts_matrix,2)
 for j=1:1:size(Counts_matrix,1)
 if Counts_matrix(j,i)>=Min_counts && Counts_matrix(j,i)<=Max_counts
if Counts_matrix(j,i)>0
 row=ceil((Counts_matrix(j,i)-Min_counts)/Increment_counts)+1;
else
 row=1;
end
Counts_distribution(row,i+1)=Counts_distribution(row,i+1)+1;
end;
end;

% Creation of output variable for duration distribution calculation
Duration_distribution=zeros(((Max_duration-Min_duration)/Increment_duration)+1),size(Duration_matrix,2)+1);

% Definition of the duration distribution range
for i=1:1:size(Duration_distribution,1)
 Duration_distribution(i,1)=(Min_duration-1*Increment_duration)+i*Increment_duration;
end;

% Calculates the duration distribution
for i=1:1:size(Duration_matrix,2)
 for j=1:1:size(Duration_matrix,1)
 if Duration_matrix(j,i)>=Min_duration && Duration_matrix(j,i)<=Max_duration
 if Duration_matrix(j,i)>0
 row=ceil((Duration_matrix(j,i)-Min_duration)/Increment_duration)+1;
 else
 row=1;
 end
 Duration_distribution(row,i+1)=Duration_distribution(row,i+1)+1;
 end;
 end;
end;

% Creation of output variable for energy distribution calculation
Energy_distribution=zeros(((Max_energy-Min_energy)/Increment_energy)+1),size(Energy_matrix,2)+1);

% Definition of the energy distribution range
for i=1:1:size(Energy_distribution,1)
 Energy_distribution(i,1)=(Min_energy-1*Increment_energy)+i*Increment_energy;
end;

% Calculates the energy distribution
for i=1:1:size(Energy_matrix,2)
 for j=1:1:size(Energy_matrix,1)
 if Energy_matrix(j,i)>=Min_energy && Energy_matrix(j,i)<=Max_energy
 if Energy_matrix(j,i)>0
 row=ceil((Energy_matrix(j,i)-Min_energy)/Increment_energy)+1;
 else
 row=1;
 end
 end;
 end;
Energy_distribution(row,i+1)=Energy_distribution(row,i+1)+1;
end;
end;

% Creation of output variable for frequency distribution calculation
Frequency_distribution=zeros(((Max_frequency-Min_frequency)/Increment_frequency)+1),size(Frequency_matrix,2)+1);

% Definition of the frequency distribution range
for i=1:1:size(Frequency_distribution,1)
 Frequency_distribution(i,1)=(Min_frequency-1*Increment_frequency)+i*Increment_frequency;
end;

% Calculates the frequency distribution
for i=1:1:size(Frequency_matrix,2)
 for j=1:1:size(Frequency_matrix,1)
 if Frequency_matrix(j,i)>=Min_frequency && Frequency_matrix(j,i)<=Max_frequency
 if Frequency_matrix(j,i)>0
 row=ceil((Frequency_matrix(j,i)-Min_frequency)/Increment_frequency)+1;
 else
 row=1;
 end
 Frequency_distribution(row,i+1)=Frequency_distribution(row,i+1)+1;
 end
 end
end;

% Creation of output variable for amplitude distribution calculation
Amplitude_distribution=zeros(((Max_amplitude-Min_amplitude)/Increment_amplitude)+1),size(Amplitude_matrix,2)+1);

% Definition of the amplitude distribution range
for i=1:1:size(Amplitude_distribution,1)
 Amplitude_distribution(i,1)=(Min_amplitude-1*Increment_amplitude)+i*Increment_amplitude;
end;

% Calculates the amplitude distribution
for i=1:1:size(Amplitude_matrix,2)
 for j=1:1:size(Amplitude_matrix,1)
 if Amplitude_matrix(j,i)>=Min_amplitude && Amplitude_matrix(j,i)<=Max_amplitude
 if Amplitude_matrix(j,i)>0
 row=ceil((Amplitude_matrix(j,i)-Min_amplitude)/Increment_amplitude)+1;
 else
 row=1;
 end
 Amplitude_distribution(row,i+1)=Amplitude_distribution(row,i+1)+1;
 end
 end;
end;
end;

% Creation of output variable for risetime distribution calculation
Risetime_distribution=zeros(((Max_risetime-Min_risetime)/Increment_risetime)+1),size(Risetime_matrix,2)+1);

% Definition of the risetime distribution range
for i=1:size(Risetime_distribution,1)
 Risetime_distribution(i,1)=(Min_risetime-1*Increment_risetime)+i*Increment_risetime;
end;

% Calculates the risetime distribution
for i=1:size(Risetime_matrix,2)
 for j=1:size(Risetime_matrix,1)
 if Risetime_matrix(j,i)>=Min_risetime && Risetime_matrix(j,i)<=Max_risetime
 if Risetime_matrix(j,i)>0
 row=ceil((Risetime_matrix(j,i)-Min_risetime)/Increment_risetime)+1;
 else
 row=1;
 end
 Risetime_distribution(row,i+1)=Risetime_distribution(row,i+1)+1;
 end;
 end;
end;

% Creation of output variable for average frequency distribution calculation
Average_frequency_distribution=zeros(((Max_avg_frequency-Min_avg_frequency)/Increment_avg_frequency)+1),size(Average_frequency_matrix,2)+1);

% Definition of the average frequency distribution range
for i=1:size(Average_frequency_distribution,1)
 Average_frequency_distribution(i,1)=(Min_avg_frequency-1*Increment_avg_frequency)+i*Increment_avg_frequency;
end;

% Calculates the average frequency distribution
for i=1:size(Average_frequency_matrix,2)
 for j=1:size(Average_frequency_matrix,1)
 if Average_frequency_matrix(j,i)>=Min_avg_frequency && Average_frequency_matrix(j,i)<=Max_avg_frequency
 if Average_frequency_matrix(j,i)>0
 row=ceil((Average_frequency_matrix(j,i)-Min_avg_frequency)/Increment_avg_frequency)+1;
 else
 row=1;
 end
 Average_frequency_distribution(row,i+1)=Average_frequency_distribution(row,i+1)+1;
 end;
 end;
end;
end
function [figure_index] = Plot_counts_distribution(Counts_distribution,figure_index, Min_counts, Increment_counts, Percentage_recording, before_after_filter)

% Function that plots counts distribution for all the coupons

%Opens a figure
figure (figure_index)

% Calculates the counts distributions of all the coupons
nb_extra_rows=floor(Min_counts/Increment_counts);
Counts_distribution_from_0=zeros(size(Counts_distribution,1)+nb_extra_rows,size(Counts_distribution,2));
Counts_distribution_from_0((nb_extra_rows+1):size(Counts_distribution,1)+nb_extra_rows,:)=Counts_distribution;

% Plots the counts distribution
bar3(Counts_distribution_from_0(:,[2:size(Counts_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
 title(strcat('Counts distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise'))
else
 title(strcat('Counts distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise removed by first filter'))
end;
xlabel('Coupons')
ylabel(strcat('Counts (',int2str(Increment_counts), '*counts)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
 saveas(figure(figure_index),strcat('Counts distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise'),'fig');
else
 saveas(figure(figure_index),strcat('Counts distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_index));

%Increase the figure index
figure_index=figure_index+1;
end
function [figure_index] = Plot_duration_distribution(Duration_distribution, figure_index, Min_duration, Increment_duration, Percentage_recording, before_after_filter)
% Function that plots counts distribution for all the coupons

% Opens a figure
figure (figure_index)

% Calculates the duration distributions of all the coupons
nb_extra_rows=floor(Min_duration/Increment_duration);
Duration_distribution_from_0=zeros(size(Duration_distribution,1)+nb_extra_rows,size(Duration_distribution,2));
Duration_distribution_from_0((nb_extra_rows+1):size(Duration_distribution,1)+nb_extra_rows,:)=Duration_distribution;

% Plots the duration distribution
bar3(Duration_distribution_from_0(:,[2:size(Duration_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
 title(strcat('Duration distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise'))
else
 title(strcat('Duration distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise removed by first filter'))
end;
xlabel('Coupons')
ylabel(strcat('Duration (',int2str(Increment_duration),'*micro seconds)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
 saveas(figure(figure_index),strcat('Duration distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise'),'fig');
else
 saveas(figure(figure_index),strcat('Duration distribution all coupons at ',int2str(Percentage_recording*100),', percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_index));

% Increase the figure index
figure_index=figure_index+1;
end
function [figure_index] = Plot_energy_distribution(Energy_distribution,figure_index,Min_energy,Increment_energy,Percentage_recording,before_after_filter)
% Function that plots the energy distribution throughout all the coupons

%Opens a figure
figure (figure_index)

% Calculates the energy distribution throughout all the coupons
nb_extra_rows=floor(Min_energy/Increment_energy);
Energy_distribution_from_0=zeros(size(Energy_distribution,1)+nb_extra_rows,size(Energy_distribution,2));
Energy_distribution_from_0((nb_extra_rows+1):size(Energy_distribution,1)+nb_extra_rows,:)=Energy_distribution;

% Plots the energy distribution
bar3(Energy_distribution_from_0(:,[2:size(Energy_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
 title(strcat('Energy distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'))
else
 title(strcat('Energy distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'))
end;
xlabel('Coupon number')
ylabel(strcat('Energy (',int2str(Increment_energy),'*atto Joules)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
 saveas(figure(figure_index),strcat('Energy distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'),'fig');
else
 saveas(figure(figure_index),strcat('Energy distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_index));

%Increase the figure index
figure_index=figure_index+1;
end
function [figure_number_index] = Plot_frequency_distribution(Frequency_distribution,figure_number_index,Min_frequency,Increment_frequency,Percentage_recording,before_after_filter)

% Function that plots the frequency distribution throughout all the coupons

%Opens a figure
figure (figure_number_index)

% Calculates the frequency distribution throughout all the coupons
nb_extra_rows=floor(Min_frequency/Increment_frequency);
Frequency_distribution_from_0=zeros(size(Frequency_distribution,1)+nb_extra_rows,size(Frequency_distribution,2));
Frequency_distribution_from_0((nb_extra_rows+1):size(Frequency_distribution,1)+nb_extra_rows,:)=Frequency_distribution;

% Plots the frequency distribution
bar3(Frequency_distribution_from_0(:,[2:size(Frequency_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
title(strcat('Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'))
else
 title(strcat('Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'))
end;
xlabel('Coupon number')
ylabel(strcat('Frequency (',int2str(Increment_frequency),'*KHz)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
 saveas(figure(figure_number_index),strcat('Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'),'fig');
else
 saveas(figure(figure_number_index),strcat('Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_number_index));

%Increase the figure index
figure_number_index=figure_number_index+1;
end
function [figure_number_index] = Plot_amplitude_distribution (Amplitude_distribution, figure_number_index, Min_amplitude, Increment_amplitude, Percentage_recording, before_after_filter)
% Function that plots the amplitude distribution throughout all the coupons

%Opens a figure
figure (figure_number_index)

% Calculates the amplitude distribution
nb_extra_rows=floor(Min_amplitude/Increment_amplitude);
Amplitude_distribution_from_0=zeros(size(Amplitude_distribution,1)+nb_extra_rows,size(Amplitude_distribution,2));
Amplitude_distribution_from_0((nb_extra_rows+1):size(Amplitude_distribution,1)+nb_extra_rows,:)=Amplitude_distribution;

% Plots the amplitude distribution
bar3(Amplitude_distribution_from_0(:,[2:size(Amplitude_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
 title(strcat('Amplitude distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'))
else
 title(strcat('Amplitude distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'))
end;
xlabel('Coupons')
ylabel(strcat('Amplitude (',int2str(Increment_amplitude),'*dB)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the figure
if before_after_filter==0
 saveas(figure(figure_number_index),strcat('Amplitude distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'),'fig');
else
 saveas(figure(figure_number_index),strcat('Amplitude distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_number_index));

%Increase the figure index
figure_number_index=figure_number_index+1;
end
function [figure_index] = Plot_risetime_distribution(Risetime_distribution, figure_index, Min_risetime, Increment_risetime, Percentage_recording, before_after_filter)

% Function that plots the risetime distribution throughout all the coupons

% Opens a figure
figure (figure_index)

% Calculates the risetime distribution
nb_extra_rows=floor(Min_risetime/Increment_risetime);
Risetime_distribution_from_0=zeros(size(Risetime_distribution,1)+nb_extra_rows,size(Risetime_distribution,2));
Risetime_distribution_from_0((nb_extra_rows+1):size(Risetime_distribution,1)+nb_extra_rows,:)=Risetime_distribution;

% Plots the risetime distribution
bar3(Risetime_distribution_from_0(:,[2:size(Risetime_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
 title(strcat('Risetime distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'))
else
 title(strcat('Risetime distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording noise filtered by first filter'))
end;
xlabel('Coupon number')
ylabel(strcat('Risetime (',int2str(Increment_risetime),' *micro seconds)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
 saveas(figure(figure_index),strcat('Risetime distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'),'fig');
else
 saveas(figure(figure_index),strcat('Risetime distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_index));

% Increase the figure index
figure_index=figure_index+1;
end
function [figure_index] = Plot_average_frequency_distribution
(Average_frequency_distribution,figure_index,Min_avg_frequency,Increment_avg_frequency,
Percentage_recording,before_after_filter)
% Function that plots the average frequency distribution of all the coupons

%Opens a figure
figure (figure_index)

% Calculates the average frequency distributions
nb_extra_rows=floor(Min_avg_frequency/Increment_avg_frequency);
Average_frequency_distribution_from_0=zeros(size(Average_frequency_distribution,1),
+nb_extra_rows,size(Average_frequency_distribution,2));
Average_frequency_distribution_from_0((nb_extra_rows+1):size
(Average_frequency_distribution,1)+nb_extra_rows,:)=Average_frequency_distribution;

% Plots the average frequency distribution
bar3(Average_frequency_distribution_from_0(:,[2:size(Average_frequency_distribution_from_0,2)]),0.75,'detached')
if before_after_filter==0
title(strcat('Average Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'))
else
title(strcat('Average Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'))
end;
xlabel('Coupons')
ylabel(strcat('Average Frequency (',int2str(Increment_avg_frequency),'*KHz)'))
zlabel('Number of hits')
axis tight
grid on
hold on

% Saves and closes the plot
if before_after_filter==0
saveas(figure(figure_index),strcat('Average Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise'),'fig');
else
saveas(figure(figure_index),strcat('Average Frequency distribution all coupons at ',int2str(Percentage_recording*100),' percent of data recording with noise removed by first filter'),'fig');
end;
close(figure(figure_index));

%Increase the figure index
figure_index=figure_index+1;
end
% Defines the Acoustic emission parameters filtration boundaries

% Defines counts new boundaries
Max_counts=800;
Min_counts=1;
Increment_counts=1;

% Defines duration new boundaries
Max_duration=4000;
Min_duration=1;
Increment_duration=1;

% Defines energy new boundaries
Max_energy=150;
Min_energy=1;
Increment_energy=1;

% Defines frequency new boundaries
Max_frequency=160;
Min_frequency=1;
Increment_frequency=1;

% Defines amplitude new boundaries
Max_amplitude=100;
Min_amplitude=30;
Increment_amplitude=1;

% Defines risetime new boundaries
Max_risetime=7000;
Min_risetime=1;
Increment_risetime=1;

% Defines average frequency new boundaries
Max_avg_frequency=160;
Min_avg_frequency=45;
Increment_avg_frequency=1;
 (Matrix_of_files_certain_percent,Max_counts,Min_counts,Max_duration,Min_duration, Max_energy,Min_energy,Max_frequency,Min_frequency,Max_amplitude,Min_amplitude, Max_risetime,Min_risetime,Max_avg_frequency,Min_avg_frequency)
 %Function removing all the acoustic emission data being outside of the
 %filtration boundaries

 % Initialization of variable containing filtered AE data
 Matrix_of_files_certain_percent_filtered=zeros(size(Matrix_of_files_certain_percent,1), size(Matrix_of_files_certain_percent,2),size(Matrix_of_files_certain_percent,3));

 % Filtration process keeping only the AE data having all their AE
 % parameters in between the predefined filtration boundaries
 for i=1:1:size(Matrix_of_files_certain_percent,3)
 new_row=1;
 for j=1:1:size(Matrix_of_files_certain_percent,1)
 if Matrix_of_files_certain_percent(j,1,i)>=Min_counts &&
 Matrix_of_files_certain_percent(j,2,i)>=Min_duration &&
 Matrix_of_files_certain_percent(j,3,i)>=Min_energy &&
 Matrix_of_files_certain_percent(j,5,i)>=Min_frequency &&
 Matrix_of_files_certain_percent(j,6,i)>=Min_amplitude &&
 Matrix_of_files_certain_percent(j,7,i)>=Min_risetime &&
 ==Min_avg_frequency && Matrix_of_files_certain_percent(j,8,i)<=Max_avg_frequency
 Matrix_of_files_certain_percent_filtered(new_row,:,i)=Matrix_of_files_certain_percent(j,:,i);
 new_row=new_row+1;
 end
 end
 end
end
end
function [Matrix_of_percentage_recording_data] =
Percentage_of_recording_data_generation(Matrix_of_files, Percentage_recording)
% Function that copies only a certain percentage of the acoustic emission data

% Initialization of internal variables to detect the maximum number of
% acoustic emission hits in a coupon
max_row=0;

% Detection of the number of acoustic emission hit for 100% of recording
% for each coupon
for i=1:size(Matrix_of_files,3)
 last_row=1;
 last_row_detected=0;
 for k=1:size(Matrix_of_files,1)
 if Matrix_of_files(k,1,i)==0
 if last_row_detected==0
 last_row=k-1;
 last_row_detected=1;
 end
 end
 if last_row_detected==0;
 if k==size(Matrix_of_files,1)
 last_row=k;
 end
 end
 end
 if last_row>max_row
 max_row=last_row;
 end
end;

% Creation of the variable containing only a certain percentage of the
% acoustic emission data
Matrix_of_percentage_recording_data=zeros(floor(max_row*Percentage_recording),size(
(Matrix_of_files,2),size(Matrix_of_files,3));

% Copy of only part of the data in the output variable
for j=1:size(Matrix_of_files,3)
 last_row=1;
 last_row_detected=0;
 for m=1:size(Matrix_of_files,1)
 if Matrix_of_files(m,1,j)==0
 if last_row_detected==0
 last_row=m-1;
 last_row_detected=1;
 end
 end
 if last_row_detected==0;
 if m==size(Matrix_of_files,1)
 last_row=m;
 end
 end
end;
end;
end;
end;
Matrix_of_percentage_recording_data(1:floor((last_row)*Percentage_recording),:,j) = Matrix_of_files(1:floor((last_row)*Percentage_recording),:,j);
end;
end
function [figure_number_index] = Plot_duration_vs_counts(Matrix_of_data,figure_number_index,Files_coupon_name,Percentage_recording)
% Function that plots the duration versus counts of all the coupons
% Loop covering all the coupons
for i=1:size(Matrix_of_data,3)
 %Opens a figure
 figure (figure_number_index)
 % Plots the duration vs counts of the current coupon
 scatter(Matrix_of_data(:,1,i),Matrix_of_data(:,2,i),15,'blue','filled')
 title(strcat('Duration vs counts of coupon ',Files_coupon_name(i), ' at ',int2str(Percentage_recording*100), ' percent of data recording'))
 xlabel('Counts')
 ylabel('Duration (µs)')
 axis tight
 grid on
 hold on

 % Saves and closes the plot
 saveas(figure(figure_number_index),strcat('Duration vs counts of coupon ',cell2mat(Files_coupon_name(i),'), at ',int2str(Percentage_recording*100), ' percent of data recording'),'fig');
 close(figure(figure_number_index));

 %Increases the figure index
 figure_number_index=figure_number_index+1;
end;
end
function [figure_number_index] = Plot_amplitude_vs_average_frequency(Matrix_of_data,
figure_number_index,Files_coupon_name,Percentage_recording)

% Function that plots the amplitude versus average frequency of all the
% coupons

% Loop covering all the coupons
for i=1:1:size(Matrix_of_data,3)

% Opens a figure
figure (figure_number_index)

% Plots the amplitude versus average frequency
scatter(Matrix_of_data(:,8,i),Matrix_of_data(:,6,i),15,'blue','filled')
title(strcat('Amplitude vs Average frequency of coupon ',Files_coupon_name(i),'
' at ',int2str(Percentage_recording*100),'
 percent of data recording'))
xlabel('Average frequency (KHz)')
ylabel('Amplitude (dB)')
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(figure_number_index),strcat('Amplitude vs Average frequency of coupon
',cell2mat(Files_coupon_name(i)),'
 at ',int2str(Percentage_recording*100),'
 percent of data recording'),'fig');
close(figure(figure_number_index));

% Increases the figure index
figure_number_index=figure_number_index+1;
end;
end
function [figure_number_index] = Plot_amplitude_vs_time(Matrix_of_data, %
figure_number_index, Files_coupon_name, Percentage_recording) % Function that plots amplitude versus time for all the coupons

% Loop covering all the coupons
for i=1:1:size(Matrix_of_data,3)

 %Opens a figure
 figure (figure_number_index)

 % Plots the amplitude versus time
 bar(1:1:size(Matrix_of_data(:,6,i),1),Matrix_of_data(:,6,i),0.75,'b','grouped')
 title(strcat('Amplitude vs time of coupon ',Files_coupon_name(i),'

(Percentage_recording*100),'

Percent of data recording'))
 xlabel('time (mmicro s)')
 ylabel('Amplitude (dB)')
 axis tight
 grid on
 hold on

 % Saves and closes the current plot
 saveas(figure(figure_number_index),strcat('Amplitude vs time of coupon ',cell2mat(Files_coupon_name(i)),'

(Percentage_recording*100),'

Percent of data recording'),'fig');
 close(figure(figure_number_index));

 % Increases the figure index
 figure_number_index=figure_number_index+1;
end;
end
function [figure_number_index] = Plot_energy_vs_amplitude(Matrix_of_data, %
figure_number_index,Files_coupon_name,Percentage_recording) %
% Function that plots the energy versus amplitude of all the coupons

% Loop covering all the coupons
for i=1:size(Matrix_of_data,3)

 % Opens a figure
 figure (figure_number_index)

 % Plots the energy versus amplitude
 scatter(Matrix_of_data(:,6,i),Matrix_of_data(:,3,i),15,'blue','filled')
 title(strcat('Energy vs Amplitude of coupon ',Files_coupon_name(i), ' at ',int2str(Percentage_recording*100), ' percent of data recording'))
 xlabel('Amplitude (dB)')
 ylabel('Energy (atto Joules)')
 axis tight
 grid on
 hold on

 % Saves and closes the plot
 saveas(figure(figure_number_index),strcat('Energy vs Amplitude of coupon ',cell2mat(Files_coupon_name(i)),' at ',int2str(Percentage_recording*100), ' percent of data recording'),'fig');
 close(figure(figure_number_index));

 % Increases the figure index
 figure_number_index=figure_number_index+1;
end;
end
function [Training_coupons_combinations, Prediction_coupon_combination, number_of_training_coupon_combination] = Prediction_and_training_coupons_combinations_generation(Max_nb_training_coupon, nb_of_training_coupons, Possible_training_coupons, Coupons_separated_in_energy_impact_groups, Number_of_coupon_per_energy_group, Files_coupon_name)
% Function that generates all the possible training coupons combinations
% and their associated training coupons combinations

% Calculates the number of possible combinations
number_of_training_coupon_combination = nchoosek(Max_nb_training_coupon, nb_of_training_coupons);

% Initialize output variable
Training_coupons_combinations = zeros(nchoosek(length(Possible_training_coupons) - 18, nb_of_training_coupons - 18), nb_of_training_coupons);

% By default set of training coupons
max_min_training_coupons = [1 2 5 19 24 26 8 9 10 11 12 13 14 28 17 29 22 30];

% Remaining set of training coupons
completing_coupons = [3 4 6 7 15 16 18 20 21 23 25 27 31 32 33 34];

% Generates all the training coupons possible combinations
if nb_of_training_coupons > 18
 remaining_coupons = nchoosek(completing_coupons, nb_of_training_coupons - 18);
 Training_coupons_combinations(:, (size(max_min_training_coupons, 2) + 1): nb_of_training_coupons) = remaining_coupons;
else
 error('Too few training coupons. The minimum number of training coupons is 18 coupons');
end;

% Sorts the training coupons combinations
for a = 1:size(Training_coupons_combinations, 1)
 Training_coupons_combinations(a, 1:size(max_min_training_coupons, 2)) = max_min_training_coupons;
end;
for a = 1:size(Training_coupons_combinations, 1)
 Training_coupons_combinations(a, :) = sort(Training_coupons_combinations(a, :));
end;

% Creates the variables that will contain the prediction coupons combinations
Prediction_coupon_combination = zeros(size(Training_coupons_combinations, 1), (length(Files_coupon_name) - nb_of_training_coupons));

% Generates the associated prediction coupons combinations
for m = 1:size(Prediction_coupon_combination, 1)
 n = 1;
 for o = 1:1:length(Files_coupon_name)
if ismember(Training_coupons_combinations(m,:),o)==zeros(1,size(Training_coupons_combinations,2))
 Prediction_coupon_combination(m,n)=o;
 n=n+1;
end;
end;
end;

% Sorts the prediction coupons combinations
for a=1:size(Prediction_coupon_combination,1)
 Prediction_coupon_combination(a,:)=sort(Prediction_coupon_combination(a,:));
end;
end
function [Training_error_matrix_equation_1, Training_error_matrix_equation_2,
 Prediction_error_matrix_equation_1, Prediction_error_matrix_equation_2, figure_index,
 Number_of_mechanisms, Worst_case_error_prediction_equation,
 AE_parameters_of_best_prediction, Matrix_of_mechanisms_for_worst_case_training,
 Matrix_of_mechanisms_for_worst_case_prediction, Mean_amplitude_value_per_mechanism,
 Matrix_of_hits_for_worst_case_training, Matrix_of_hits_for_worst_case_prediction,
 R2_value_prediction_matrix_equation_1, R2_value_prediction_matrix_equation_2,
 R2_value_training_matrix_equation_1, R2_value_training_matrix_equation_2] =
 SOM_and_MSA_analysis(Matrix_of_files_certain_percent, Matrix_of_files_100_percent,
 Number_of_AE_parameters, Actual_load, Training_coupons_combinations,
 Prediction_coupon_combination, Classification_plane_dimension_1,
 Classification_plane_dimension_2, nb_iteration, nb_of_training_coupons, Min_amplitude,
 Max_amplitude, Min_duration, Max_duration, Increment_duration, Min_frequency, Max_frequency,
 Nb_training_coupons_progress, Percentage_of_data_recording_progress, figure_index,
 Training_error_matrix_equation_1, Training_error_matrix_equation_2,
 Prediction_error_matrix_equation_1, Prediction_error_matrix_equation_2,
 Tested_type_of_SOM, Percentage_list, Percentage_recording_index,
 classification_AE_parameter, Worst_case_error_prediction_equation, Files_coupon_name,
 nb_of_noise_cluster, remove_noise, Min_average_frequency, Type_of_equation,
 AE_parameters_of_best_prediction, Matrix_of_mechanisms_for_worst_case_training,
 Matrix_of_mechanisms_for_worst_case_prediction, Max_nb_training_coupon,
 Min_nb_training_coupon, Mean_amplitude_value_per_mechanism,
 Matrix_of_hits_for_worst_case_training, Matrix_of_hits_for_worst_case_prediction,
 R2_value_prediction_matrix_equation_1, R2_value_prediction_matrix_equation_2,
 R2_value_training_matrix_equation_1, R2_value_training_matrix_equation_2]

% Function that classifies the Acoustic emission data and establish an
% equation between AE data and failure load using a multivariate
% statistical regression analysis

% Calculates the number of failure mechanisms based on the Self organizing
% map output characteristics
Number_of_mechanisms=Classification_plane_dimension_1*Classification_plane_dimension_2;

% Creates internal variable for the Acoustic emission parameters combinations
Parameters_combinations=zeros(Number_of_AE_parameters,Number_of_mechanisms);
Parameters_combinations=zeros(1,Number_of_mechanisms);

% Generates the AE parameters possible combinations
% for m=1:1:3
% Parameters_combinations(m,:)=m*ones(1,Number_of_mechanisms);
% end;
% for m=5:1:(Number_of_AE_parameters+1)
% Parameters_combinations(m-1,:)=m*ones(1,Number_of_mechanisms);
% end;

%Test only the energy as AE parameter
Parameters_combinations(1,:)=3*ones(1,Number_of_mechanisms);

number_of_parameters_combination=size(Parameters_combinations,1);

% Loop covering the different types of SOM
for type_of_SOM_index=1:1:length(Tested_type_of_SOM)
 % Initialization progress bar indicators
 initialization_SOM=0;
 Type_of_SOM_progress=(type_of_SOM_index/length(Tested_type_of_SOM))*100;

 % Creation of worst case error and MSRA matrices retaining variables
 Training_worst_case_error_1=zeros(number_of_parameters_combination,size(Training_coupons_combinations,1));
 Training_worst_case_error_2=zeros(number_of_parameters_combination,size(Training_coupons_combinations,1));
 Prediction_worst_case_error_1=zeros(number_of_parameters_combination+1,size(Prediction_coupon_combination,1));
 Prediction_worst_case_error_2=zeros(number_of_parameters_combination+1,size(Prediction_coupon_combination,1));

 if Type_of_equation==1
 Temporary_save_of_matrix_of_mechanisms_training=zeros(Max_nb_training_coupon,Num(nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_matrix_of_mechanisms_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon,Num(nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_matrix_of_hits_training=zeros(Max_nb_training_coupon,Num(nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_matrix_of_hits_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon,Num(nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_R2_value_prediction_matrix_equation_1=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
 Temporary_save_of_R2_value_training_matrix_equation_1=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
 else
 Temporary_save_of_matrix_of_mechanisms_training=zeros(Max_nb_training_coupon,((Num(nb_of_noise_cluster)-1)*2+choose((Num(nb_of_noise_cluster)-1)*2)-nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_matrix_of_mechanisms_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon,((Num(nb_of_noise_cluster)-1)*2+choose((Num(nb_of_noise_cluster)-1)*2)-nb_of_noise_cluster),number_of_parameters_combination);
 Temporary_save_of_matrix_of_hits_training=zeros(Max_nb_training_coupon,((Num(nb_of_noise_cluster)-1)*2+choose((Num(nb_of_noise_cluster)-1)*2)-nb_of_noise_cluster),size(Training_coupons_combinations,1));
 Temporary_save_of_matrix_of_hits_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon,((Num(nb_of_noise_cluster)-1)*2+choose((Num(nb_of_noise_cluster)-1)*2)-nb_of_noise_cluster),number_of_parameters_combination);
 Temporary_save_of_R2_value_prediction_matrix_equation_1=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
 Temporary_save_of_R2_value_training_matrix_equation_1=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
 end
((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster,2)-nb_of_noise_cluster,size(Training_coupons_combinations,1),
number_of_parameters_combination);
 Temporary_save_of_matrix_of_hits_prediction=zeros(length(Files_coupon_name)-Min_nb_training_coupon,
(Classification_plane_dimension_1*Classification_plane_dimension_2)+2+nchoosek
((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster,2)-nb_of_noise_cluster,number_of_parameters_combination);
 Temporary_save_of_R2_value_prediction_matrix_equation_2=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
 Temporary_save_of_R2_value_training_matrix_equation_2=zeros(number_of_parameters_combination,size(Prediction_coupon_combination,1));
end

% Creates a variables retaining the equations generated by
% the multivariate statistical analysis
Retained_equations=zeros(size(Worst_case_error_prediction_equation,1),number_of_parameters_combination,size(Training_coupons_combinations,1));

% Loop covering all the training coupons combinations
for combination_index=1:1:size(Training_coupons_combinations,1)

 % AE parameters combinations progress bar
 Combination_progress=(combination_index/size(Training_coupons_combinations,1))*100;
 if (((Classification_plane_dimension_1*Classification_plane_dimension_2)+2)<=nb_of_training_coupons) ||
 (((Classification_plane_dimension_1*Classification_plane_dimension_2)+nchoosek
((Classification_plane_dimension_1*Classification_plane_dimension_2)-nb_of_noise_cluster,2)+2)<=nb_of_training_coupons) && (Type_of_equation==2))

 % Case where the Acoustic Emission data are not classified
 if initialization_SOM==0

 % Classifies the AE data using the Self Organizing Maps
 %[Matrix_of_files_certain_percent_classified,updatedNet] = Classification_by_SOM_test(Matrix_of_files_certain_percent,Matrix_of_files_100_percent,nb_iteration,Tested_type_of_SOM(type_of_SOM_index),Training_coupons_combinations(combination_index,:),Classification_plane_dimension_1,Classification_plane_dimension_2,classification_AE_parameter);
 Classification_by_SOM(Matrix_of_files_certain_percent,Matrix_of_files_100_percent,nb_iteration,Tested_type_of_SOM(type_of_SOM_index),Training_coupons_combinations(combination_index,:),Classification_plane_dimension_1,Classification_plane_dimension_2,classification_AE_parameter);

 % Saves the trained Self Organizing Map
 Filename=strcat('SOM network trained on',int2str(nb_of_training_coupons),'
 coupons type',int2str(Tested_type_of_SOM(type_of_SOM_index)),' at ',int2str(Percentage_list(Percentage_recording_index)*100),'
 percent of data recording.mat');
save(Filename,'updatedNet');

% Generates a 4 Dimensions matrix with classified AE
% data
[Classified_mechanisms_per_coupon_4D_matrix] = Generation_AE_mechanisms_per_coupon_matrix_SOM_classification(
 Matrix_of_files_certain_percent_classified, Min_amplitude, Max_amplitude, Min_duration, Max_duration, Increment_duration, Min_frequency, Max_frequency, Number_of_mechanisms);

% Research the average amplitude value per mechanism for
% further mechanisms identification
Mean_amplitude_value_per_mechanism = Mean_amplitude_per_mechanism_research(
 Mean_amplitude_value_per_mechanism, Classified_mechanisms_per_coupon_4D_matrix, type_of_SOM_index, nb_of_training_coupons, Percentage_recording_index);

% Plots the Classified AE data with noise removed by
% boundaries filtration
Noise_clusters = [0];
figure_index = Plot_duration_vs_counts_per_mechanism(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Files_coupon_name, Percentage_list(Percentage_recording_index), Noise_clusters, Tested_type_of_SOM, type_of_SOM_index, nb_of_training_coupons);
figure_index = Plot_energy_vs_amplitude_per_mechanism(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Files_coupon_name, Percentage_list(Percentage_recording_index), Noise_clusters, Tested_type_of_SOM, type_of_SOM_index, nb_of_training_coupons);
figure_index = Plot_amplitude_distribution_per_mechanism_per_coupon(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Files_coupon_name, Tested_type_of_SOM(type_of_SOM_index), Percentage_list(Percentage_recording_index), Noise_clusters);
figure_index = Plot_duration_vs_energy_vs_amplitude_per_mechanism(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Files_coupon_name, Tested_type_of_SOM(type_of_SOM_index), Percentage_list(Percentage_recording_index), Noise_clusters);
figure_index = Plot_duration_distribution_per_mechanism_per_coupon(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Files_coupon_name, Tested_type_of_SOM(type_of_SOM_index), Percentage_list(Percentage_recording_index), Noise_clusters);
figure_index = Plot_frequency_distribution_per_mechanism_per_coupon(Classified_mechanisms_per_coupon_4D_matrix, figure_index, Tested_type_of_SOM(type_of_SOM_index), Percentage_list(Percentage_recording_index), Noise_clusters);

% Researches the noise clusters in classified AE data
% (Ready for future investigations)
Noise_clusters = Noise_clusters_research(Classified_mechanisms_per_coupon_4D_matrix, remove_noise, Min_average_frequency, nb_of_noise_cluster);
if size(Noise_clusters, 2) < nb_of_noise_cluster
% error('STOP: number of noise clusters detected insufficient')
%end;

% Plots the Classified AE data without noise cluster
%figure_index=Plot_duration_vs_counts_per_mechanism(
Classified_mechanisms_per_coupon_4D_matrix, figure_index,Files_coupon_name,✓
Percentage_list(Percentage_recording_index),Noise_clusters,Tested_type_of_SOM,✓
type_of_SOM_index,nb_of_training_coupons);
%figure_index=Plot_energy_vs_amplitude_per_mechanism(
Classified_mechanisms_per_coupon_4D_matrix, figure_index,Files_coupon_name,✓
Percentage_list(Percentage_recording_index),Noise_clusters,Tested_type_of_SOM,✓
type_of_SOM_index,nb_of_training_coupons);
%figure_index=Plot_amplitude_distribution_per_mechanism_per_coupon(
Classified_mechanisms_per_coupon_4D_matrix,figure_index,Max_amplitude,Min_amplitude,✓
Files_coupon_name,Tested_type_of_SOM(type_of_SOM_index),Percentage_list✓
(Percentage_recording_index),Noise_clusters);
%figure_index=Plot_duration_distribution_per_mechanism_per_coupon(
Classified_mechanisms_per_coupon_4D_matrix,figure_index,Max_duration,Increment_duration,✓
Files_coupon_name,Tested_type_of_SOM(type_of_SOM_index),Percentage_list✓
(Percentage_recording_index),Noise_clusters);
%figure_index=Plot_frequency_distribution_per_mechanism_per_coupon(
Classified_mechanisms_per_coupon_4D_matrix,figure_index,Max_frequency,Files_coupon_name,✓
Tested_type_of_SOM(type_of_SOM_index),Percentage_list(Percentage_recording_index),✓
Noise_clusters);

initialization_SOM=1;
end;

% Loop covering all the AE parameters combinations
for i=1:1:number_of_parameters_combination
% Loop covering the 2 types of equation
% (with/without cross products)
for Current_type_of_equation=Type_of_equation:1:✓

Type_of_equation

% Determine the coefficients of the
% equation linking the AE data and the
% failure load
[Training_worst_case_error,✓
Prediction_worst_case_error,Equation_coefficient,Mechanisms_matrix_of_training_coupons,✓
Mechanisms_matrix_of_prediction_coupons,Hits_matrix_of_training_coupons,✓
Hits_matrix_of_prediction_coupons,R2_training,R2_prediction] =✓
Multivariate_statistical_regression_analysis(Classified_mechanisms_per_coupon_4D_matrix,✓
Training_coupons_combinations(combination_index,:),Prediction_coupon_combination✓
(combination_index,:),Parameters_combinations(i,:),Actual_load,Current_type_of_equation,✓
Noise_clusters,type_of_SOM_index);

% Displays the analysis progress indicators
clc;
Percentage_of_data_recording_progress
Nb_training_coupons_progress
Type_of_SOM_progress
Combination_progress
Noise_clusters
Prediction_worst_case_error
Equation_coefficient

% Retains worst case
% training/prediction errors and the
% worst case equation of the current coupons

combination

if Current_type_of_equation==1
 Training_worst_case_error_1(i, combination_index)=Training_worst_case_error;
 Prediction_worst_case_error_1(i, combination_index)=Prediction_worst_case_error;
 Retained_equations(:,i,combination_index)=Equation_coefficient;
 Temporary_save_of_matrix_of_mechanisms_training(1:size(Training_coupons_combinations,2),1,combination_index,i)=Training_coupons_combinations(combination_index,:);
 Temporary_save_of_matrix_of_mechanisms_prediction(1:size(Prediction_coupon_combination,2),1,combination_index,i)=Prediction_coupon_combination(combination_index,:);
 Temporary_save_of_R2_value_prediction_matrix_equation_1(i,combination_index)=R2_prediction;
 Temporary_save_of_R2_value_training_matrix_equation_1(i,combination_index)=R2_training;
if nb_of_training_coupons==size(Classified_mechanisms_per_coupon_4D_matrix,4)

Training_worst_case_error_1=Training_worst_case_error;
end;
else

Training_worst_case_error_2(i,combination_index)=Training_worst_case_error;
Prediction_worst_case_error_2(i,combination_index)=Prediction_worst_case_error;
Retained_equations(:,:,i,combination_index)=Equation_coefficient;

Temporary_save_of_matrix_of_mechanisms_training(1:size(Training_coupons_combinations,2),1,combination_index,i)=Training_coupons_combinations(combination_index,:);

Temporary_save_of_matrix_of_mechanisms_prediction(1:size(Prediction_coupon_combination,2),1,combination_index,i)=Prediction_coupon_combination(combination_index,:);

Temporary_save_of_matrix_of_hits_training(1:size(Training_coupons_combinations,2),1,combination_index,i)=Training_coupons_combinations(combination_index,:);

Temporary_save_of_matrix_of_hits_prediction(1:size(Prediction_coupon_combination,2),1,combination_index,i)=Prediction_coupon_combination(combination_index,:);

Temporary_save_of_R2_value_prediction_matrix_equation_2(i,combination_index)=R2_prediction;
Temporary_save_of_R2_value_training_matrix_equation_2(i,combination_index)=R2_training;

if nb_of_training_coupons==size(Classified_mechanisms_per_coupon_4D_matrix,4)

Training_worst_case_error_2=Training_worst_case_error;
% Case where there is not enough training coupons
else
 error_message=strcat('BEWARE: THERE IS NOT ENOUGH COUPONS TO USE\nMULTIVARIATE STATISTICAL ANALYSIS. YOU NEED AT LEAST ',int2str(size(Classified_mechanisms_per_coupon_4D_matrix,3)+2), ' COUPONS TO DETERMINE THE EQUATION\nFOR ',int2str(size(Classified_mechanisms_per_coupon_4D_matrix,3)),' MECHANISMS IN THE\nEQUATION OF TYPE 1 (SIMPLE LINEAR COMBINATION OF MECHANISMS)')
end;

% Retains worst case training/prediction errors and the worst case
% equation over all the coupons combinations
if Current_type_of_equation==1
 max(Temporary_save_of_R2_value_training_matrix_equation_1)
 for j=1:1:size(Prediction_worst_case_error_1,2)
 [current_min,rank]=min(abs(Prediction_worst_case_error_1(1:(size(Prediction_worst_case_error_1,1)-1),j)));
 Prediction_worst_case_error_1(size(Prediction_worst_case_error_1,1),j)=Prediction_worst_case_error_1(rank,j);
 end;
 [Maximum,combination_number]=min(abs(Prediction_worst_case_error_1(size(Prediction_worst_case_error_1,1)-1,:),)));
 [Minimum_of_maximum,AE_parameter_of_minimum_prediction]=min(abs(Prediction_worst_case_error_1(1:(size(Prediction_worst_case_error_1,1)-1),),
 (Prediction_worst_case_error_1(1:(size(Prediction_worst_case_error_1,1)-1),),)));
 Training_error_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=Training_worst_case_error_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index);
 Prediction_error_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=Prediction_worst_case_error_1(1:size(Prediction_worst_case_error_1,1)-1,:,
 combination_number);
 Worst_case_error_prediction_equation(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=Retained_equations(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index);
 R2_value_prediction_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=Temporary_save_of_R2_value_prediction_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index);
 R2_value_training_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=Temporary_save_of_R2_value_training_matrix_equation_1(:,:,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index);
 AE_parameters_of_best_prediction(nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=AE_parameters_of_best_prediction(nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index);
type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_mechanisms_prediction(:,:,combination_number, AE_parameter_of_minimum_prediction);

Matrix_of_hits_for_worst_case_training(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_hits_training(:,:,combination_number, AE_parameter_of_minimum_prediction);

Matrix_of_hits_for_worst_case_prediction(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_hits_prediction(:,:,combination_number, AE_parameter_of_minimum_prediction);

else

 max(Temporary_save_of_R2_value_training_matrix_equation_2)

 for j=1:1:size(Prediction_worst_case_error_2,2)

 [current_min, rank] = min(abs(Prediction_worst_case_error_2(1:(size(Prediction_worst_case_error_2,1)-1), j)));
 Prediction_worst_case_error_2(size(Prediction_worst_case_error_2,1), j) = Prediction_worst_case_error_2(rank, j);

 end;

 [Maximum, combination_number] = min(abs(Prediction_worst_case_error_2(size(Prediction_worst_case_error_2,1),:)));

 [Minimum_of_maximum, AE_parameter_of_minimum_prediction] = min(abs(Prediction_worst_case_error_2(1:(size(Prediction_worst_case_error_2,1)-1), combination_number)));

 Training_error_matrix_equation_2(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Training_worst_case_error_2(:,:,combination_number);

 Prediction_error_matrix_equation_2(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Prediction_worst_case_error_2(1:size(Prediction_worst_case_error_2,1)-1, combination_number);

 Worst_case_error_prediction_equation(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Retained_equations(:,:, combination_number);

 R2_value_prediction_matrix_equation_2(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_R2_value_prediction_matrix_equation_2(:,:,combination_number);

 R2_value_training_matrix_equation_2(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_R2_value_training_matrix_equation_2(:,:,combination_number);

 AE_parameters_of_best_prediction(nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = AE_parameter_of_minimum_prediction;

 Matrix_of_mechanisms_for_worst_case_prediction(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_mechanisms_prediction(:,:,combination_number, AE_parameter_of_minimum_prediction);

 Matrix_of_hits_for_worst_case_training(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_hits_training(:,:,combination_number, AE_parameter_of_minimum_prediction);

 Matrix_of_hits_for_worst_case_prediction(:,:,nb_of_training_coupons, type_of_SOM_index, Percentage_recording_index) = Temporary_save_of_matrix_of_hits_prediction(:,:,combination_number, AE_parameter_of_minimum_prediction);
type_of_SOM_index, Percentage_recording_index)
= Temporary_save_of_matrix_of_hits_prediction(:,:,combination_number,
AE_parameter_of_minimum_prediction);
 end;

end
function [Matrix_of_files_certain_percent_classified,updatedNet] = Classification_by_SOM(Matrix_of_files_certain_percent,Matrix_of_files_100_percent, nb_iteration,type_of_SOM,Training_coupons_combinations,Classification_plane_dimension_1, Classification_plane_dimension_2,classification_AE_parameter)
% Function classifying the Acoustic emission data using a Kohonen Self Organizing Map
% Two sets of data are defined, the training and the prediction set:
% The training set is used to train the map to classify the AE data
% Both the training and the prediction sets are then classified using the % trained map
%
% Retains the number of AE hits of each coupons
retain_nb_row=zeros(1,size(Matrix_of_files_certain_percent,3));

% Loop covering all the coupons
for i=1:1:size(Matrix_of_files_100_percent,3)
 nb_row=0;
 % Test if the current coupon is a training coupon
 if ismember(i,Training_coupons_combinations)==1
 % Loop covering all the AE hits
 for j=1:1:size(Matrix_of_files_100_percent,1)
 % Test the hit validity
 if Matrix_of_files_100_percent(j,6,i)~=0
 % Increase by one the number of hit for the current coupon
 nb_row=nb_row+1;
 end
 end
 % Retains the number of hit of the current coupon
 retain_nb_row(i)=nb_row;
 end
end;
Total_nb_row=sum(retain_nb_row);

%Initialize the training AE data matrix
All_coupons_AE_data_matrix=zeros(Total_nb_row,size(Matrix_of_files_100_percent,2));

% Creates a training data matrix combining all the training coupons AE data
All_coupons_AE_data_matrix(1:retain_nb_row(Training_coupons_combinations(1)),:)=Matrix_of_files_100_percent(1:retain_nb_row(Training_coupons_combinations(1)),:);
for k=2:1:length(Training_coupons_combinations)
 All_coupons_AE_data_matrix((sum(retain_nb_row(1:(Training_coupons_combinations(k)-1)))+1):(sum(retain_nb_row(1:(Training_coupons_combinations(k)-1))))+retain_nb_row(Training_coupons_combinations(k))),:)=Matrix_of_files_100_percent(1:retain_nb_row(Training_coupons_combinations(k)),:);
end;

%%%
%TRAINING OF THE NETWORK
%%%
% Type of network selection
 if type_of_SOM == 1
 typology='gridtop';
 distance_function='dist';
 end;
 if type_of_SOM == 2
 typology='gridtop';
 distance_function='linkdist';
 end;
 if type_of_SOM == 3
 typology='gridtop';
 distance_function='mandist';
 end;
 if type_of_SOM == 4
 typology='gridtop';
 distance_function='boxdist';
 end;
 if type_of_SOM == 5
 typology='hextop';
 distance_function='dist';
 end;
 if type_of_SOM == 6
 typology='hextop';
 distance_function='linkdist';
 end;
 if type_of_SOM == 7
 typology='hextop';
 distance_function='mandist';
 end;
 if type_of_SOM == 8
 typology='hextop';
 distance_function='boxdist';
 end;
 if type_of_SOM == 9
 typology='randtop';
 distance_function='dist';
 end;
 if type_of_SOM == 10
 typology='randtop';
 distance_function='linkdist';
 end;
 if type_of_SOM == 11
 typology='randtop';
 distance_function='mandist';
 end;
 if type_of_SOM == 12
 typology='randtop';
 distance_function='boxdist';
 end;

% Creation of the Kohonen Self Organizing Map (SOM)
SOM_network=newsom(All_coupons_AE_data_matrix(:,classification_AE_parameter)', [Classification_plane_dimension_1 Classification_plane_dimension_2],typology, distance_function,100,3);

% SOM network parameters
SOM_network.trainParam.epochs=nb_iteration;
SOM_network.trainParam.goal=0.1;
SOM_network.trainParam.show=1;
SOM_network.trainParam.showCommandLine=0;
SOM_network.trainParam.showWindow=1;
SOM_network.trainParam.time=inf;

% Training of the SOM network
[updatedNet,training_records,output] = train(SOM_network,All_coupons_AE_data_matrix(:,classification_AE_parameter)');

% Closes the SOM training user interface
nntraintool('close');

output=sim(updatedNet,All_coupons_AE_data_matrix(:,classification_AE_parameter)');

[Duration_clusters_parameters,Amplitude_clusters_parameters,Energy_clusters_parameters,Average_frequency_clusters_parameters] =Clusters_parameters_determination(output,All_coupons_AE_data_matrix, Classification_plane_dimension_1,Classification_plane_dimension_2);

%%%
% CLASSIFICATION OF EACH COUPON
%%%

% Copy of the unclassified data
Matrix_of_files_certain_percent_classified=Matrix_of_files_certain_percent;

% Classification of all the coupons (both training and prediction)
for i=1:size(Matrix_of_files_certain_percent,3);
 % Classification of the AE hits
 Output_sim= sim(updatedNet,Matrix_of_files_certain_percent(:,classification_AE_parameter,i)');
 SOM_classification_results=vec2ind(Output_sim);
 % Add a column with the cluster number for each AE hit
 Matrix_of_files_certain_percent_classified(:,size(Matrix_of_files_certain_percent,2)+1,i)=SOM_classification_results';
end;
end
function [Duration_clusters_parameters, Amplitude_clusters_parameters, Energy_clusters_parameters, Average_frequency_clusters_parameters] = Clusters_parameters_determination(SOM_output, All_coupons_AE_data_matrix, Classification_plane_dimension_1, Classification_plane_dimension_2)
% Function that calculates the Ae parameters of the Johonen SOM output
% and outputs the results in Excel spreadsheets

% Calculates the number of clusters
nb_of_clusters = Classification_plane_dimension_1 * Classification_plane_dimension_2;

% Initializes the output variables
Energy_clusters_parameters = zeros(nb_of_clusters, 6);
Duration_clusters_parameters = zeros(nb_of_clusters, 6);
Amplitude_clusters_parameters = zeros(nb_of_clusters, 6);
Average_frequency_clusters_parameters = zeros(nb_of_clusters, 6);

% Retain the Kohonen SOM classification results
clusters_classification = vec2ind(SOM_output);

% Separates AE data points of each cluster
for i = 1:nb_of_clusters
 current_cluster_values = zeros(1, size(All_coupons_AE_data_matrix, 2));
 rank = 1;
 for k = 1:size(All_coupons_AE_data_matrix, 1)
 if i == clusters_classification(k)
 current_cluster_values(rank, :) = All_coupons_AE_data_matrix(k, :);
 rank = rank + 1;
 end;
 end;

% Calculates the clusters Energy parameters
Energy_clusters_parameters(i, 1) = i;
Energy_clusters_parameters(i, 2) = min(current_cluster_values(:, 3));
Energy_clusters_parameters(i, 3) = max(current_cluster_values(:, 3));
Energy_clusters_parameters(i, 4) = mean(current_cluster_values(:, 3));
Energy_clusters_parameters(i, 5) = std(current_cluster_values(:, 3));
Energy_clusters_parameters(i, 6) = size(current_cluster_values, 1);

% Calculates the clusters Duration parameters
Duration_clusters_parameters(i, 1) = i;
Duration_clusters_parameters(i, 2) = min(current_cluster_values(:, 2));
Duration_clusters_parameters(i, 3) = max(current_cluster_values(:, 2));
Duration_clusters_parameters(i, 4) = mean(current_cluster_values(:, 2));
Duration_clusters_parameters(i, 5) = std(current_cluster_values(:, 2));
Duration_clusters_parameters(i, 6) = size(current_cluster_values, 1);

% Calculates the clusters Amplitude parameters
Amplitude_clusters_parameters(i, 1) = i;
Amplitude_clusters_parameters(i, 2) = min(current_cluster_values(:, 6));
Amplitude_clusters_parameters(i, 3) = max(current_cluster_values(:, 6));
Amplitude_clusters_parameters(i, 4) = mean(current_cluster_values(:, 6));
Amplitude_clusters_parameters(i,5)=std(current_cluster_values(:,6));
Amplitude_clusters_parameters(i,6)=size(current_cluster_values,1);

%Calculates the clusters Average frequency parameters
Average_frequency_clusters_parameters(i,1)=i;
Average_frequency_clusters_parameters(i,2)=min(current_cluster_values(:,5));
Average_frequency_clusters_parameters(i,3)=max(current_cluster_values(:,5));
Average_frequency_clusters_parameters(i,4)=mean(current_cluster_values(:,5));
Average_frequency_clusters_parameters(i,5)=std(current_cluster_values(:,5));
Average_frequency_clusters_parameters(i,6)=size(current_cluster_values,1);

end

%Generates the clusters AE parameters output Excel spreadsheet
headers={'Mechanism #' 'Min value' 'Max value' 'Mean value' 'Standard deviation' '# of Hits'};
filename=strcat('Clusters parameters for ',int2str(nb_of_clusters),'.xls');
xlswrite(filename,headers,'Energy');
xlswrite(filename,Energy_clusters_parameters,'Energy','A2');
xlswrite(filename,headers,'Duration');
xlswrite(filename,Duration_clusters_parameters,'Duration','A2');
xlswrite(filename,headers,'Amplitude');
xlswrite(filename,Amplitude_clusters_parameters,'Amplitude','A2');
xlswrite(filename,headers,'Average_frequency');
xlswrite(filename,Average_frequency_clusters_parameters,'Average_frequency','A2');
end
function [Matrix_of_data_classified_per_mechanism_per_coupon] =
Generation_AE_mechanisms_per_coupon_matrix_SOM_classification (Matrix_of_data, Min_amplitude, Max_amplitude, Min_duration, Max_duration, Duration_increment, Min_frequency, Max_frequency, Number_of_mechanisms)
% Function generating the 4 dimensions matrix of filtered AE data

% Creates the internal variables for the 4D matrix generation
mechanisms_values=zeros(Number_of_mechanisms);

% Internal variables helping to recognize AE data classification
for i=1:size(mechanisms_values)
 mechanisms_values(i)=i;
end;

% Creation of 4 dimensions matrix of classified AE data
Matrix_of_data_classified_per_mechanism_per_coupon=zeros(size(Matrix_of_data,1),size(Matrix_of_data,2),Number_of_mechanisms,size(Matrix_of_data,3));

% Fills up the 4 dimensions matrix with the classified acoustic emissions
data
for i=1:size(Matrix_of_data,3)
 for j=1:size(Matrix_of_data,1)
 for k=1:size(mechanisms_values,1)
 if (Matrix_of_data(j,9,i)==mechanisms_values(k)) && (Matrix_of_data(j,9,i)~=0)
 m=1;
 while Matrix_of_data_classified_per_mechanism_per_coupon(m,9,k,i)~=0
 m=m+1;
 end;
 Matrix_of_data_classified_per_mechanism_per_coupon(m,:,k,i)=Matrix_of_data(j,:,i);
 end;
 end;
 end;
end;

% Calculates the Amplitude/duration/frequency distributions of the acoustic
emissions classified data
Matrix_of_data_classified_per_mechanism_per_coupon=Amplitude_distribution_calculator_per_mechanism(Matrix_of_data_classified_per_mechanism_per_coupon,Min_amplitude, Max_amplitude);
Matrix_of_data_classified_per_mechanism_per_coupon=Duration_distribution_calculator_per_mechanism(Matrix_of_data_classified_per_mechanism_per_coupon,Min_duration,Max_duration, Duration_increment);
Matrix_of_data_classified_per_mechanism_per_coupon=frequency_distribution_calculator_per_mechanism(Matrix_of_data_classified_per_mechanism_per_coupon,Min_frequency, Max_frequency);
end
function [Classified_mechanisms_per_coupon_4D_matrix] =
Amplitude_distribution_calculator_per_mechanism(
 Classified_mechanisms_per_coupon_4D_matrix, Min_amplitude, Max_amplitude)

% Function calculating the amplitude distribution per mechanism and storing
% it into column 9 and 10 of the 4 dimensions matrix.

% Initialization of temporary amplitude distribution matrix
Amplitude_distribution = zeros((Max_amplitude+1-Min_amplitude), size
 (Classified_mechanisms_per_coupon_4D_matrix,3)+1);

% Generation of the amplitude range
for i=1:1:(Max_amplitude+1-Min_amplitude)
 Amplitude_distribution(i,1) = (Min_amplitude-1)+i;
end;

% Calculation and storage of the amplitude distribution for each mechanism
% of each coupon

% Loop covering each coupon
for i=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,4)
 % Initialization of the amplitude distribution matrix
 Amplitude_distribution(:,2:(size(Classified_mechanisms_per_coupon_4D_matrix,3)+1)) = zeros(size(Amplitude_distribution,1), size(Classified_mechanisms_per_coupon_4D_matrix,3));

 % Loop covering each mechanism
 for j=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 % Loop covering each AE hit
 for k=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 % Test if the AE hit amplitude is positive
 if Classified_mechanisms_per_coupon_4D_matrix(k,6,j,i) > 0
 % Increase the number of hits for the particular AE hit
 % amplitude
 Amplitude_distribution(Classified_mechanisms_per_coupon_4D_matrix(k,6,j,i)-Min_amplitude+1,j+1) = Amplitude_distribution
 (Classified_mechanisms_per_coupon_4D_matrix(k,6,j,i)-Min_amplitude+1,j+1)+1;
 end;
 end;
 end;

 % Loop copying the final amplitude distribution
 for m=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 Classified_mechanisms_per_coupon_4D_matrix(1:size(Amplitude_distribution,1),9,m,i) = Amplitude_distribution(:,1);
 Classified_mechanisms_per_coupon_4D_matrix(1:size(Amplitude_distribution,1),10,m,i) = Amplitude_distribution(:,m+1);
 end;
end;
end
function [Classified_mechanisms_per_coupon_4D_matrix] = \$
\text{Duration_distribution_calculator_per_mechanism}(\$
\text{Classified_mechanisms_per_coupon_4D_matrix},\text{Min_duration},\text{Max_duration},\text{Duration_increment}) \$
\)$
\% Function calculating the amplitude distribution per mechanism and storing
\% it into column 11 and 12 of the 4 dimensions matrix.

\% Initialization of temporary duration distribution matrix
\text{Duration_distribution} = \text{zeros}(\text{ceil}((\text{Max_duration}-\text{Min_duration})/\text{Duration_increment})+2),\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},3)+1);

\% Generation of the duration range
\text{for} \ i=1:1:(\text{ceil}((\text{Max_duration}-\text{Min_duration})/\text{Duration_increment})+1)
\text{Duration_distribution}(i,1)=(i-1)*\text{Duration_increment};
\text{Duration_distribution}(i,1)=(\text{Min_duration}-1)*\text{Duration_increment}+i*\text{Duration_increment};
\text{end};

\% Calculation and storage of the duration distribution for each mechanism
\% of each coupon
\% Loop covering each coupon
\text{for} \ i=1:1:\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},4)
\% Initialisation of the duration distribution matrix
\text{Duration_distribution}(,:2:(\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},3)+1)) = \text{zeros}(\text{size}(\text{Duration_distribution},1),\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},3));
\text{for} \ j=1:1:\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},3)
\% Loop covering each AE hit
\text{for} \ k=1:1:\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},1)
\% Test if the AE hit duration is positive
\text{if} \ \text{Classified_mechanisms_per_coupon_4D_matrix}(k,2,j,i)>0
\text{% Increase the number of hits for the particular AE hit}
\% duration
\text{row} = \text{ceil}(((\text{Classified_mechanisms_per_coupon_4D_matrix}(k,2,j,i)-\text{Duration_increment})/\text{Duration_increment})+2);
\text{Duration_distribution}(\text{row},j+1)=\text{Duration_distribution}(\text{row},j+1)+1;
\text{end};
\text{end};
\% Loop copying the final duration distribution
\text{for} \ m=1:1:\text{size}(\text{Classified_mechanisms_per_coupon_4D_matrix},3)
\text{Classified_mechanisms_per_coupon_4D_matrix}(1:\text{size}(\text{Duration_distribution},1),11,m) = \text{Duration_distribution}(,:,1);
\text{Classified_mechanisms_per_coupon_4D_matrix}(1:\text{size}(\text{Duration_distribution},1),12,m) = \text{Duration_distribution}(,:,m+1);
\text{end};
\text{end};
\text{end};
function [Classified_mechanisms_per_coupon_4D_matrix] =
 frequency_distribution_calculator_per_mechanism(
 Classified_mechanisms_per_coupon_4D_matrix, Min_frequency, Max_frequency)
%Function calculating the frequency distribution per mechanism and storing
%it into column 13 and 14 of the 4 dimensions matrix.

% Initialisation of temporary amplitude distribution matrix
Frequency_distribution=zeros((Max_frequency+1-Min_frequency),size(
 Classified_mechanisms_per_coupon_4D_matrix,3)+1);

% Generation of the frequency range
for i=1:1:(Max_frequency+1-Min_frequency)
 Frequency_distribution(i,1)=(Min_frequency-1)+i;
end;

% Calculation and storage of the frequency distribution for each mechanism
% of each coupon

% Loop covering each coupon
for i=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,4)
 % Initialisation of the frequency distribution matrix
 Frequency_distribution(:,2:size(Classified_mechanisms_per_coupon_4D_matrix,3)+1))
 =zeros(size(Frequency_distribution,1),size(Classified_mechanisms_per_coupon_4D_matrix,3));
 % Loop covering each mechanism
 for j=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 % Loop covering each AE hit
 for k=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 % Test if the AE hit frequency is positive
 if Classified_mechanisms_per_coupon_4D_matrix(k,5,j,i)>0
 % Increase the number of hits for the particular AE hit
 Frequency_distribution(Classified_mechanisms_per_coupon_4D_matrix(k,5,j,i)-Min_frequency+1,j+1)=
 Frequency_distribution(Classified_mechanisms_per_coupon_4D_matrix(k,5,j,i)-Min_frequency+1,j+1)+1;
 end;
 end;
 end;
 % Loop copying the final frequency distribution
 for m=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 Classified_mechanisms_per_coupon_4D_matrix(1:size(Frequency_distribution,1),13,m,i)=
 Frequency_distribution(:,1);
 Classified_mechanisms_per_coupon_4D_matrix(1:size(Frequency_distribution,1),14,m,i)=
 Frequency_distribution(:,m+1);
 end;
end;
end
function [Mean_amplitude_value_per_mechanism] = Mean_amplitude_per_mechanism_research(Mean_amplitude_value_per_mechanism,Classified_mechanisms_per_coupon_4D_matrix,type_of_SOM_index,nb_of_training_coupons,Percentage_recording_index)

% Function that calculates the mean Amplitude of the AE data points contained in the Kohonen SOM output clusters

%Select the amplitude as observed parameter
selected_parameter=6;

%Calculates the mean amplitude of each cluster
%Loop covering all the clusters
for current_mechanism=1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 rank=1;
 clear saved_values;
 for current_coupon=1:size(Classified_mechanisms_per_coupon_4D_matrix,4)
 for line=1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 if Classified_mechanisms_per_coupon_4D_matrix(line,selected_parameter,current_mechanism,current_coupon)~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(line,selected_parameter,current_mechanism,current_coupon);
 rank=rank+1;
 end;
 end;
 end;
 Mean_amplitude_value_per_mechanism(current_mechanism,nb_of_training_coupons,type_of_SOM_index,Percentage_recording_index)=mean(saved_values);
end;
end
function [Noise_clusters]=Noise_clusters_research
(Classified_mechanisms_per_coupon_4D_matrix,remove_noise,Min_average_frequency,
nb_of_noise_cluster)

% Function that detects the noise clusters after a Self Organizing Map
% classification of the acoustic emission data

% Creation of an internal variable retaining the noise clusters
Noise_clusters_all_coupons=zeros(size(Classified_mechanisms_per_coupon_4D_matrix,4),size
(Classified_mechanisms_per_coupon_4D_matrix,3));

% Detection of the noise clusters
if remove_noise>0
 % Loop covering all the coupons and all the failure mechanisms
 for i=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,4)
 for j=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 nb_data=1;
 % Detection of actual Acoustic emission data in the current mechanism
 while Classified_mechanisms_per_coupon_4D_matrix(nb_data,8,j,i)~=0 && nb_data<size(Classified_mechanisms_per_coupon_4D_matrix,1)
 nb_data=nb_data+1;
 end
 % If there is data and the average of average frequencies of
 % the mechanism is below a certain value then the mechanism is
 % considered as a noise cluster
 if nb_data>0
 if mean(Classified_mechanisms_per_coupon_4D_matrix(1:nb_data,8,j,i))<Min_average_frequency
 Noise_clusters_all_coupons(i,j)=1;
 end
 end
 end
 end
 Noise_detection_OK=1;
 % If the noise clusters are the same throughout all the coupons then we
 % correctly detected the noise clusters
 % Detection of non correct noise clusters detection
 for k=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 if Noise_clusters_all_coupons(1,k)==1
 if Noise_clusters_all_coupons(:,k)==ones(size(Noise_clusters_all_coupons,1),1)
 Noise_detection_OK=0;
 end
 else
 if Noise_clusters_all_coupons(:,k)==zeros(size(Noise_clusters_all_coupons,1),1)
 Noise_detection_OK=0;
 end
 end
 end
end
% Case of correct noise cluster detection
if Noise_detection_OK==1
 Noise_clusters=vec2ind(Noise_clusters_all_coupons(1,:));
 if size(Noise_clusters,2)>nb_of_noise_cluster
 Noise_clusters_save=Noise_clusters;
 Noise_clusters=zeros(1,nb_of_noise_cluster);
 Noise_clusters=Noise_clusters_save(1,1:nb_of_noise_cluster);
 end;
 else
 Error_message='Something went wrong with the noise clusters detection'
 Noise_clusters=[0];
 end;
end

% In case of no noise cluster detection
else
 Noise_clusters=[0];
end;
end

% Function that calculates the ultimate failure load of all coupons using % a multivariate statistical regression analysis

% Clears the internal variables used to feed the MSR analysis
clear Mechanisms_matrix_of_training_coupons;
clear Mechanisms_matrix_of_prediction_coupons;

% Initialization of the matrices containing the mechanism manifestation
% depending on the number of noise clusters and the type of needed equation
if Noise_clusters == zeros(size(Noise_clusters,1),size(Noise_clusters,2))
 if Type_of_equation == 1
 Mechanisms_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+1);
 Mechanisms_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+1);
 Hits_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+1);
 Hits_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+1);
 else
 Mechanisms_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+nchoosek(size(Classified_mechanisms_per_coupon_4D_matrix,3),2)+1);
 Mechanisms_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+nchoosek(size(Classified_mechanisms_per_coupon_4D_matrix,3),2)+1);
 Hits_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+nchoosek(size(Classified_mechanisms_per_coupon_4D_matrix,3),2)+1);
 Hits_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)+nchoosek(size(Classified_mechanisms_per_coupon_4D_matrix,3),2)+1);
 end
else
 if Type_of_equation == 1
 Mechanisms_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Mechanisms_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Hits_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Hits_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 else
 Mechanisms_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Mechanisms_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Hits_matrix_of_training_coupons = zeros(size(training_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 Hits_matrix_of_prediction_coupons = zeros(size(prediction_coupons,2),size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1);
 end
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+nchoosek(size
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2),2)+1);
Mechanisms_matrix_of_prediction_coupons=zeros(size(prediction_coupons,2),size
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+nchoosek(size
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2),2)+1);
Hits_matrix_of_training_coupons=zeros(size(training_coupons,2),size
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+nchoosek(size
(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2),2)+1);
end;
end;

% First columns of mechanism matrices need to be 1 to have a constant in
% the output equation
Mechanisms_matrix_of_training_coupons(:,1)=1;
Mechanisms_matrix_of_prediction_coupons(:,1)=1;

% fulfill the mechanism matrices of training coupons with the mechanism
% manifestation (number of hits of an AE parameter)
for i=1:size(training_coupons,2)
 Total_nb_hits_training_coupon_j=0;
 if Noise_clusters==zeros(size(Noise_clusters,1),size(Noise_clusters,2))
 for j=1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 clear saved_values;
 saved_values=0;
 rank=1;
 for k=1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 if Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter
(j),j,training_coupons(i))~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(k,
selected_parameter(j),j,training_coupons(i));
 Hits_matrix_of_training_coupons(i,j+1) =
 Hits_matrix_of_training_coupons(i,j+1)+1;
 rank=rank+1;
 end;
 end;
 Mechanisms_matrix_of_training_coupons(i,j+1)=mean(saved_values);
 end;
 else
 number_of_jumped_noise_cluster=0;
 for j=1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 if isequal(zeros(1,size(Noise_clusters,2)),ismember(Noise_clusters,j))==0
 number_of_jumped_noise_cluster=number_of_jumped_noise_cluster+1;
 else
 clear saved_values;
 saved_values=0;
 rank=1;
 for k=1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
if Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,training_coupons(i))~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,training_coupons(i));
 Hits_matrix_of_training_coupons(i,j+1)= Hits_matrix_of_training_coupons(i,j+1)+1;
 rank=rank+1;
end;
end;
Mechanisms_matrix_of_training_coupons(i,j+1-number_of_jumped_noise_cluster)=mean(saved_values);
end;
end;
end;

% fulfill the mechanism matrices of prediction coupons with the mechanism % manifestation (number of hits of an AE parameter)
for i=1:1:size(prediction_coupons,2)
 Total_nb_hits_prediction_coupon_j=0;
 if Noise_clusters==zeros(size(Noise_clusters,1),size(Noise_clusters,2))
 for j=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,3)
 clear saved_values;
 number_of_jumped_noise_cluster=0;
 saved_values=0;
 rank=1;
 for k=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 if Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i))~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i));
 Hits_matrix_of_prediction_coupons(i,j+1) = Hits_matrix_of_prediction_coupons(i,j+1)+1;
 rank=rank+1;
 end;
 end;
 Mechanisms_matrix_of_prediction_coupons(i,j+1-number_of_jumped_noise_cluster)=mean(saved_values);
 end;
 else
 number_of_jumped_noise_cluster=0;
 for j=1:1:(size(Classified_mechanisms_per_coupon_4D_matrix,3))
 if isequal(zeros(1,size(Noise_clusters,2)),ismember(Noise_clusters,j))==0
 number_of_jumped_noise_cluster=number_of_jumped_noise_cluster+1;
 else
 clear saved_values;
 saved_values=0;
 rank=1;
 for k=1:1:size(Classified_mechanisms_per_coupon_4D_matrix,1)
 if Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i))~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i));
 Hits_matrix_of_prediction_coupons(i,j+1) = Hits_matrix_of_prediction_coupons(i,j+1)+1;
 rank=rank+1;
 end;
 end;
 Mechanisms_matrix_of_prediction_coupons(i,j+1-number_of_jumped_noise_cluster)=mean(saved_values);
 end;
 end;
 end;
if Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i))~=0
 saved_values(rank)=Classified_mechanisms_per_coupon_4D_matrix(k,selected_parameter(j),j,prediction_coupons(i));
 Hits_matrix_of_prediction_coupons(i,j+1-number_of_jumped_noise_cluster) = Hits_matrix_of_prediction_coupons(i,j+1-number_of_jumped_noise_cluster)+1;
 rank=rank+1;
end;
end;
Mechanisms_matrix_of_prediction_coupons(i,j+1-number_of_jumped_noise_cluster)=mean(saved_values);
end;
end;
end;
end;

% In the case of a desired equation of type 2 (including cross products),
% fulfill the remaining columns of the training coupons matrix with the actual cross products
if Type_of_equation==2
 if Noise_clusters==zeros(size(Noise_clusters,1),size(Noise_clusters,2))
 Product_of_mechanisms=nchoosek(2:1:(size(Classified_mechanisms_per_coupon_4D_matrix,3))+1,2);
 for n=1:size(Product_of_mechanisms,1)
 Hits_matrix_of_training_coupons(:,size(Classified_mechanisms_per_coupon_4D_matrix,3)+1+n)=Hits_matrix_of_training_coupons(:,Product_of_mechanisms(n,1)).*Hits_matrix_of_training_coupons(:,Product_of_mechanisms(n,2));
 end;
 else
 Product_of_mechanisms=nchoosek(2:1:(size(Classified_mechanisms_per_coupon_4D_matrix,3))-size(Noise_clusters,2)+1,2);
 for n=1:size(Product_of_mechanisms,1)
 Mechanisms_matrix_of_training_coupons(:,size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1+n)=Mechanisms_matrix_of_training_coupons(:,Product_of_mechanisms(n,1)).*Mechanisms_matrix_of_training_coupons(:,Product_of_mechanisms(n,2));
 Hits_matrix_of_training_coupons(:,size(Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1+n)=Hits_matrix_of_training_coupons(:,Product_of_mechanisms(n,1)).*Hits_matrix_of_training_coupons(:,Product_of_mechanisms(n,2));
 end;
 end;
end;

% In the case of a desired equation of type 2 (including cross products),
% fulfill the remaining columns of the prediction coupons matrix with the
% actual cross products
if Type_of_equation==2
 if Noise_clusters==zeros(size(Noise_clusters,1),size(Noise_clusters,2))
 Product_of_mechanisms=nchoosek(2:1:(size
 (Classified_mechanisms_per_coupon_4D_matrix,3)+1),2);
 for n=1:1:size(Product_of_mechanisms,1)
 Mechanisms_matrix_of_prediction_coupons(:,size
 (Classified_mechanisms_per_coupon_4D_matrix,3)+1+n)
 =Mechanisms_matrix_of_prediction_coupons(:,Product_of_mechanisms(n,1)).
 *Mechanisms_matrix_of_prediction_coupons(:,Product_of_mechanisms(n,2));
 Hits_matrix_of_prediction_coupons(:,size
 (Classified_mechanisms_per_coupon_4D_matrix,3)+1+n)=Hits_matrix_of_prediction_coupons(:,
 Product_of_mechanisms(n,1)).*Hits_matrix_of_prediction_coupons(:,Product_of_mechanisms
 (n,2));
 end;
 else
 Product_of_mechanisms=nchoosek(2:1:(size
 (Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1),2);
 for n=1:1:size(Product_of_mechanisms,1)
 Mechanisms_matrix_of_prediction_coupons(:,size
 (Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1+n)
 =Mechanisms_matrix_of_prediction_coupons(:,Product_of_mechanisms(n,1)).
 *Mechanisms_matrix_of_prediction_coupons(:,Product_of_mechanisms(n,2));
 Hits_matrix_of_prediction_coupons(:,size
 (Classified_mechanisms_per_coupon_4D_matrix,3)-size(Noise_clusters,2)+1+n)=Hits_matrix_of_prediction_coupons(:,
 Product_of_mechanisms(n,1)).*Hits_matrix_of_prediction_coupons(:,Product_of_mechanisms
 (n,2));
 end;
 end;
end;

% Generate the matrix of ultimate loads of training coupons
Actual_load_of_training_coupons=zeros(length(training_coupons),1);
for q=1:1:length(training_coupons)
 Actual_load_of_training_coupons(q)=Actual_load(training_coupons(q),1);
end;

% Generate the matrix of ultimate loads of prediction coupons
Actual_load_of_prediction_coupons=zeros(length(prediction_coupons),1);
for q=1:1:length(prediction_coupons)
 Actual_load_of_prediction_coupons(q)=Actual_load(prediction_coupons(q),1);
end;

% Execute the multivariate statistical analysis with the training coupons
Equation_coefficient = mvregress (Mechanisms_matrix_of_training_coupons,
Actual_load_of_training_coupons);

% Initialise the internal variables for prediction loads of both training
% and prediction coupons
Predicted_training_load=zeros(size(Mechanisms_matrix_of_training_coupons,1),1);
Predicted_prediction_load=zeros(size(Mechanisms_matrix_of_prediction_coupons,1),1);
%
% Calculates the predicted loads of the training coupons using the equation
% for r=1:size(Mechanisms_matrix_of_training_coupons,1)
% Predicted_training_load(r)= Mechanisms_matrix_of_training_coupons(r,:)*Equation_coefficient;
% end;
%
% Calculates the predicted loads of the prediction coupons using the equation
% for r=1:size(Mechanisms_matrix_of_prediction_coupons,1)
% Predicted_prediction_load(r)= Mechanisms_matrix_of_prediction_coupons(r,:)*Equation_coefficient;
% end;
%
% Calculates the fitting coefficient R2 of training coupons load prediction
% Average_training_coupons_failure_load=mean(Actual_load_of_training_coupons);
% for k=1:size(Mechanisms_matrix_of_training_coupons,1)
% SSStot_training(k)=(Actual_load_of_training_coupons(k)-Average_training_coupons_failure_load)^2;
% SSSerr_training(k)=(Actual_load_of_training_coupons(k)-Predicted_training_load(k))^2;
% end;
% R2_training=1-(sum(SSSerr_training)/sum(SSStot_training));
% Correl_coeff_training=corrcoef(Actual_load_of_training_coupons,Predicted_training_load);
% R2_training=Correl_coeff_training(1,2)*Correl_coeff_training(1,2);
%
% Calculates the fitting coefficient R2 of prediction coupons load prediction
% Average_prediction_coupons_failure_load=mean(Actual_load_of_prediction_coupons);
% for k=1:size(Mechanisms_matrix_of_prediction_coupons,1)
% SSStot_prediction(k)=(Actual_load_of_prediction_coupons(k)-Average_prediction_coupons_failure_load)^2;
% SSSerr_prediction(k)=(Actual_load_of_prediction_coupons(k)-Predicted_prediction_load(k))^2;
% end;
% R2_prediction=1-(sum(SSSerr_prediction)/sum(SSStot_prediction));
% Correl_coeff_prediction=corrcoef(Actual_load_of_prediction_coupons,Predicted_prediction_load);
% if size(prediction_coupons,2)>1
% R2_prediction=Correl_coeff_prediction(1,2)*Correl_coeff_prediction(1,2);
% else
% R2_prediction=1;
% end;
%
% Calculates the error and the worst case error of training coupons load
% prediction
% Training_percentage_error = ((Predicted_training_load-Actual_load_of_training_coupons)/Actual_load_of_training_coupons)*100;
% [max_training_error,rank_1]=max(abs(Training_percentage_error));
% Training_worst_case_error=Training_percentage_error(rank_1);
%
% Calculates the error and the worst case error of training coupons load
% prediction
Prediction_percentage_error = ((Predicted_prediction_load - Actual_load_of_prediction_coupons) ./ Actual_load_of_prediction_coupons) * 100;
[max_prediction_error, rank_2] = max(abs(Prediction_percentage_error));
Prediction_worst_case_error = Prediction_percentage_error(rank_2);
end
function [index_of_figures] = Plot_training_error (Error_matrix, nb_training_coupon,\nindex_of_figures, Equation_type, Percentage_recording, Percentage_recording_index,\nTested_type_of_SOM, type_of_SOM_index, Min_nb_training_coupon, Max_nb_training_coupon)

% Function that plots the training error in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(Error_matrix,1),size(Error_matrix,2),size(Error_matrix,3),size(Error_matrix,4));

if Error_matrix==Zeros_matrix
else
%Opens a figure
 figure (index_of_figures)

% Plots a 2D plot in case of single prediction coupon
 if Min_nb_training_coupon==Max_nb_training_coupon
 plot(abs(Error_matrix(:,Min_nb_training_coupon,type_of_SOM_index,\nPercentage_recording_index)));\n xlabel('AE parameter')\n ylabel('Absolute value of percentage training error')
 else

% Plots a 3D error surface in case of more than one number of\n% prediction coupon
 surf([Min_nb_training_coupon:1:nb_training_coupon],[1:1:size(Error_matrix,1),\nabs(Error_matrix(:,Min_nb_training_coupon:nb_training_coupon,type_of_SOM_index,\nPercentage_recording_index))]);\n xlabel('Number of training coupons used')\n ylabel('AE parameter')\n zlabel('Absolute value of training error percentage')\n colorbar\n end\n
 title(strcat('Absolute value of training error for type ',int2str(Equation_type),', equation and a percentage recording of ',int2str(Percentage_recording*100), ' percent and type ',int2str(Tested_type_of_SOM), ' SOM'))\n axis tight\n grid on\n hold on

% Saves and closes the plot
 saveas(figure(index_of_figures),strcat('Training error for type ',int2str(\n(Equation_type),', equation and a percentage recording of ',int2str(\n(Percentage_recording*100), ' percent and type ',int2str(Tested_type_of_SOM), ' SOM'),'fig'));\n close(figure(index_of_figures));

 %Increases the figures index
 index_of_figures=index_of_figures+1;
end;
end
function [index_of_figures] = Plot_prediction_error (Error_matrix,\nmax_nb_prediction_coupon,index_of_figures,Equation_type,Percentage_recording,\nPercentage_recording_index,Tested_type_of_SOM,type_of_SOM_index,Min_nb_training_coupon,\nMax_nb_training_coupon)
% Function that plots the prediction error in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(Error_matrix,1),size(Error_matrix,2),size(Error_matrix,3),size\n(Error_matrix, 4));

if Error_matrix==Zeros_matrix
else
 % Opens a figure
 figure (index_of_figures)
 % Plots a 2D plot in case of single prediction coupon
 %if Error_matrix(:,1:(max_nb_prediction_coupon-1))==zeros(size(Error_matrix,1),\n(max_nb_prediction_coupon-1))
 if Min_nb_training_coupon==Max_nb_training_coupon
 plot(abs(Error_matrix(:,Max_nb_training_coupon,type_of_SOM_index,\nPercentage_recording_index)));
 xlabel('AE parameter')
 ylabel('Absolute value of prediction error percentage')
 else
 % Detection of the minimum and maximum number of prediction
 % coupons
 max_number_of_tested_coupons=0;
 min_number_of_tested_coupons=0;
 min_detected=0;
 max_detected=0;
 for i=1:1:size(Error_matrix,2)
 if Error_matrix(:,i)~=zeros(size(Error_matrix,1),1)
 if min_detected==0
 min_number_of_tested_coupons=i;
 min_detected=1;
 end;
 else
 if min_detected==1
 if max_detected==0
 max_number_of_tested_coupons=i-1;
 max_detected=1;
 end;
 end;
 end;
 end;

 % Plots a 3D error surface in case of more than one number of
 % prediction coupon
end;
surf([min_number_of_tested_coupons:1:max_number_of_tested_coupons], [1:1:size(\text{Error_matrix}, 1)], abs(\text{Error_matrix}(:, min_number_of_tested_coupons:max_number_of_tested_coupons, type_of_SOM_index, \text{Percentage_recording_index}))); hold on
B_basis_limit=(15*\text{ones}(\text{size}(\text{Error_matrix},2), \text{size}(\text{Error_matrix},1)));
\text{surf}([\text{Min_nb_training_coupon}:1:\text{Max_nb_training_coupon}], [1:1: \text{size}(B_basis_limit,2)], B_basis_limit([\text{Min_nb_training_coupon}:\text{Max_nb_training_coupon}, :]));
xlabel('\text{Number of training coupons}')
ylabel('\text{AE parameter}')
zlabel('\text{Absolute value of prediction error percentage}')
colorbar
end;
title(strcat('\text{Absolute value of prediction error percentage for type}', int2str(\text{Equation_type}), ', ', int2str(\text{Percentage_recording*100}), ', \text{percent and type}', int2str(\text{Tested_type_of_SOM}', ', ', \text{SOM}')));
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(index_of_figures), strcat('Prediction error for type', int2str(\text{Equation_type}), ', ', int2str(\text{Percentage_recording*100}), ', \text{percent and type}', int2str(\text{Tested_type_of_SOM}', ', SOM')),'fig');
close(figure(index_of_figures));

%Increases the figures index
index_of_figures=index_of_figures+1;
end;
end
function [index_of_figures] = Plot_R2_values_training (R2_values_matrix, nb_of_training_coupons, index_of_figures, Type_of_equation, Percentage_recording, Percentage_recording_index, Tested_type_of_SOM, type_of_SOM_index, Max_nb_training_coupon, Min_nb_training_coupon)
% Function that plots the training error in a 3D surface shape
% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(R2_values_matrix,1),size(R2_values_matrix,2),size(R2_values_matrix,3),size(R2_values_matrix,4));
if R2_values_matrix==Zeros_matrix
else
%Opens a figure
figure (index_of_figures)
% Plots a 2D plot in case of single prediction coupon
if Min_nb_training_coupon==Max_nb_training_coupon
plot(R2_values_matrix(:,Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index));
xlabel('AE Parameters number')
ylabel('Training R^2 value')
else
% Plots a 3D error surface in case of more than one number of prediction coupon
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,1)],100*R2_values_matrix(:,Min_nb_training_coupon:Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index));
ninety_percent_limit=0.9*ones(size(R2_values_matrix,1),size(R2_values_matrix,2));
hold on
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,1)],100*ninety_percent_limit(:,Min_nb_training_coupon:Max_nb_training_coupon));
xlabel('Number of training coupons used')
ylabel('AE parameter')
zlabel('Training R^2 value')
colorbar
end

% Saves and closes the plot
saveas(figure(index_of_figures),strcat('Training R^2 value for type ',int2str(Type_of_equation),' equation and a percentage recording of ',int2str(Percentage_recording*100), ' percent and type ',int2str(Tested_type_of_SOM),' SOM'))
axis tight
grid on
hold on
(Percentage_recording*100), ' percent and type ',int2str(Tested_type_of_SOM),'✓ SOM'),'fig');
 close(figure(index_of_figures));

 % Increases the figures index
 index_of_figures=index_of_figures+1;
end;
end
function [index_of_figures] = Plot_R2_values_prediction (R2_values_matrix, nb_of_training_coupons, index_of_figures, Type_of_equation, Percentage_recording, Percentage_recording_index, Tested_type_of_SOM, type_of_SOM_index, Max_nb_training_coupon, Min_nb_training_coupon)
% Function that plots the training error in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(R2_values_matrix,1),size(R2_values_matrix,2),size(R2_values_matrix,3),size(R2_values_matrix,4));
if R2_values_matrix==Zeros_matrix
else

 %Opens a figure
 figure (index_of_figures)
 % Plots a 2D plot in case of single prediction coupon
 if Min_nb_training_coupon==Max_nb_training_coupon
 plot(R2_values_matrix(:,Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index));
 xlabel('AE Parameters number')
 ylabel('Prediction R^2 value')
 else
 % Plots a 3D error surface in case of more than one number of
 % prediction coupon
 surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,1)],100*R2_values_matrix(:,Min_nb_training_coupon:1,Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index));
 ninety_percent_limit=0.9*ones(size(R2_values_matrix,1),size(R2_values_matrix,2));
 hold on
 surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,1)],100*ninety_percent_limit(:,Min_nb_training_coupon:1,Max_nb_training_coupon));
 xlabel('Number of training coupons used')
 ylabel('AE parameter')
 zlabel('Prediction R^2 value')
 colorbar
 end
 title(strcat('Prediction R^2 value for type ',int2str(Type_of_equation),', equation, a percentage recording of ',int2str(Percentage_recording*100), ', percent and type ',int2str(Tested_type_of_SOM),' SOM'))
 axis tight
 grid on
 hold on

% Saves and closes the plot
 saveas(figure(index_of_figures),strcat('Prediction R^2 value for type ',int2str(Type_of_equation),', equation and a percentage recording of ',int2str(Percentage_recording*100), ', percent and type ',int2str(Tested_type_of_SOM),' SOM'))
SOM'), 'fig');
 close(figure(index_of_figures));

 % Increases the figures index
 index_of_figures = index_of_figures + 1;

end;

end
function [figure_index] = Plot_prediction_error_per_AE_parameter (Error_matrix, %
max_nb_prediction_coupon,figure_index,Equation_type,Percentage_recording, %
Percentage_recording_index,AE_displayed_parameter_index,Min_nb_training_coupon, %
Max_nb_training_coupon)

% Function that plots the prediction error per Acoustic Emission parameter
% in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(Error_matrix,1),size(Error_matrix,2),size(Error_matrix,3),size(%
(Error_matrix,4));

if Error_matrix==Zeros_matrix
else

%Opens a figure
figure (figure_index)

%if Error_matrix(:,1:(max_nb_prediction_coupon-1),1)==zeros(size(Error_matrix, %
1),(max_nb_prediction_coupon-1),1)
 if Min_nb_training_coupon==Max_nb_training_coupon % Plots a 2D plot in case of single prediction coupon
 for type_of_SOM_index=1:1:size(Error_matrix,3)
 Error_matrix_for_plot(type_of_SOM_index)=abs(Error_matrix
AE_displayed_parameter_index,Max_nb_training_coupon,type_of_SOM_index, Percentage_recording_index));
 end;
 plot(Error_matrix_for_plot);
 xlabel('Type of SOM')
 ylabel('Absolute value of prediction error percentage')
 else

 % Detection of the minimum and maximum number of prediction
 % coupons
 max_number_of_tested_coupons=0;
 min_number_of_tested_coupons=0;
 min_detected=0;
 max_detected=0;
 for i=1:1:size(Error_matrix,2)
 if Error_matrix(:,i)~=zeros(size(Error_matrix,1),1)
 if min_detected==0
 min_number_of_tested_coupons=i;
 min_detected=1;
 end;
 else
 if Error_matrix(:,i)==zeros(size(Error_matrix,1),1)
 if min_detected==1
 if max_detected==0
 max_number_of_tested_coupons=i-1;
 max_detected=1;
 end;
 end;
 end;
 end;
 end;
 end;
end;
```matlab
end;
end;
end;
Error_saved_matrix=zeros(size(Error_matrix,3),max_number_of_tested_coupons-
min_number_of_tested_coupons+1);
for type_of_SOM=1:1:size(Error_matrix,3)
    Error_saved_matrix(type_of_SOM,:)=Error_matrix
    (AE_displayed_parameter_index,Min_nb_training_coupon:Max_nb_training_coupon,type_of_SOM,
Percentage_recording_index);
end;

% Plots a 3D error surface in case of more than one number of
% prediction coupon
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(Error_matrix,3)],abs(Error_saved_matrix));
hold on
B_basis_limit=15*ones(Max_nb_training_coupon,size(Error_saved_matrix,1));
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(B_basis_limit,2)],B_basis_limit(Min_nb_training_coupon:Max_nb_training_coupon,:'));
xlabel('Number of training coupons used')
ylabel('Type of SOM')
zlabel('Absolute value of prediction error percentage')
colorbar
end;
title(strcat('Absolute value of prediction error percentage for type ','int2str
(Equation_type),' equations and a percentage recording of ','int2str
(Percentage_recording*100), ' percent and number ','int2str
(AE_displayed_parameter_index),' AE parameter'))
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(figure_index),strcat('Prediction error for type ','int2str
(Equation_type),' equations and a percentage recording of ','int2str
(Percentage_recording*100), ' percent and number ','int2str
(AE_displayed_parameter_index),' AE parameter'),'fig');
close(figure(figure_index));

% Increases the figures index
figure_index=figure_index+1;
end;
end
```
function [figure_index] = Plot_training_error_per_AE_parameter (Error_matrix,\nmax_nb_prediction_coupon,figure_index,Equation_type,Percentage_recording,\nPercentage_recording_index,AE_displayed_parameter_index,Min_nb_training_coupon,\nMax_nb_training_coupon)
% Function that plots the prediction error per Acoustic Emission parameter
% in a 3D surface shape
% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(Error_matrix,1),size(Error_matrix,2),size(Error_matrix,3),size\n(Error_matrix,4));
if Error_matrix==Zeros_matrix
else

%Opens a figure
figure (figure_index)
if Min_nb_training_coupon==Max_nb_training_coupon
% Plots a 2D plot in case of single prediction coupon
for type_of_SOM_index=1:1:size(Error_matrix,3)
 Error_matrix_for_plot(type_of_SOM_index)=abs(Error_matrix\n(AE_displayed_parameter_index,Max_nb_training_coupon,type_of_SOM_index,\nPercentage_recording_index));
end;
plot(Error_matrix_for_plot);
xlabel('Type of SOM')
ylabel('Absolute value of prediction error percentage')
else

% Detection of the minimum and maximum number of prediction
% coupons
max_number_of_tested_coupons=0;
min_number_of_tested_coupons=0;
min_detected=0;
max_detected=0;
for i=1:1:size(Error_matrix,2)
 if Error_matrix(:,i)==zeros(size(Error_matrix,1),1)
 if min_detected==0
 min_number_of_tested_coupons=i;
 min_detected=1;
 end;
 else
 if Error_matrix(:,i)==zeros(size(Error_matrix,1),1)
 if min_detected==1
 if max_detected==0
 max_number_of_tested_coupons=i-1;
 max_detected=1;
 end;
 end;
 end;
 end;
end;
end;
for type_of_SOM=1:1:size(Error_matrix,3)
 Error_saved_matrix(type_of_SOM,:)=abs(Error_matrix
 (AE_displayed_parameter_index,Min_nb_training_coupon:Max_nb_training_coupon,type_of_SOM,
 Percentage_recording_index));
end;

% Plots a 3D error surface in case of more than one number of
% prediction coupon
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(Error_matrix,3)],abs(Error_saved_matrix));
hold on
B_basis_limit=15*ones(size(Error_matrix,2),size(Error_matrix,3))
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(B_basis_limit,2)],B_basis_limit(Min_nb_training_coupon:1:Max_nb_training_coupon,:'));
xlabel('Number of training coupons used')
ylabel('Type of SOM')
zlabel('Absolute value of training error percentage')
colorbar
end;
title(strcat('Absolute value of training error percentage for type ',int2str
(Equation_type),' equations and a percentage recording of ',int2str
(Percentage_recording*100), ' percent and number ',int2str
(AE_displayed_parameter_index), ' AE parameter'))
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(figure_index),strcat('Training error for type ',int2str
(Equation_type),' equations and a percentage recording of ',int2str
(Percentage_recording*100), ' percent and number ',int2str
(AE_displayed_parameter_index), ' AE parameter'),'fig');
close(figure(figure_index));

% Increases the figures index
figure_index=figure_index+1;
end;
end
function [index_of_figures] = Plot_R2_values_training_per_AE_parameter
(R2_values_matrix, nb_of_training_coupons, index_of_figures, Type_of_equation,
Percentage_recording, Percentage_recording_index, Tested_type_of_SOM, type_of_SOM_index,
Max_nb_training_coupon, Min_nb_training_coupon, AE_displayed_parameter_index)
% Function that plots the training error in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(R2_values_matrix,1),size(R2_values_matrix,2),size(R2_values_matrix,3),size(R2_values_matrix,4));
if R2_values_matrix==Zeros_matrix
else

%Opens a figure
figure (index_of_figures)
% Plots a 2D plot in case of single prediction coupon
if Min_nb_training_coupon==Max_nb_training_coupon
 for type_of_SOM_index=1:1:size(R2_values_matrix,3)
 R2_values_matrix_for_plot(type_of_SOM_index)=R2_values_matrix
 (AE_displayed_parameter_index,Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index);
 end;
 plot(R2_values_matrix_for_plot);
xlabel('Type of SOM')
ylabel('Training R^2 value')
else

%Plots a 3D error surface in case of more than one number of prediction coupon
for type_of_SOM_index=1:1:size(R2_values_matrix,3)
 R2_values_saved_matrix(type_of_SOM_index,:)=R2_values_matrix
(AE_displayed_parameter_index,Min_nb_training_coupon:Max_nb_training_coupon,type_of_SOM_index,Percentage_recording_index);
end;
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,3)],100*R2_values_saved_matrix);
ninety_percent_limit=0.9*ones(size(R2_values_matrix,3),size(R2_values_matrix,2));
hold on
surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size(R2_values_matrix,3)],100*ninety_percent_limit(:,Min_nb_training_coupon:Max_nb_training_coupon));
xlabel('Number of training coupons used')
ylabel('Type of SOM')
zlabel('Training R^2 value')
colorbar
end;
title(strcat('Training R^2 value for type ',int2str(Type_of_equation),' equation, a percentage recording of ',int2str(Percentage_recording*100), ' percent and AE parameter number ',int2str(AE_displayed_parameter_index)))
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(index_of_figures),strcat('Training R^2 value for type ',int2str
(Type_of_equation),', equation, a percentage recording of ',int2str
(Percentage_recording*100),', percent and AE parameter number ',int2str
(AE_displayed_parameter_index)), 'fig');
close(figure(index_of_figures));

% Increases the figures index
index_of_figures = index_of_figures + 1;
end;
end
function [index_of_figures] = Plot_R2_values_prediction_per_AE_parameter
(R2_values_matrix, nb_of_training_coupons, index_of_figures, Type_of_equation,
Percentage_recording, Percentage_recording_index, Tested_type_of_SOM, type_of_SOM_index,
Max_nb_training_coupon, Min_nb_training_coupon, AE_displayed_parameter_index)
% Function that plots the training error in a 3D surface shape

% Creates an internal variables for the prediction error plot
Zeros_matrix=zeros(size(R2_values_matrix,1),size(R2_values_matrix,2),size(R2_values_matrix,3),size(R2_values_matrix,4));
if R2_values_matrix==Zeros_matrix
else
%Opens a figure
figure (index_of_figures)
% Plots a 2D plot in case of single prediction coupon
if Min_nb_training_coupon==Max_nb_training_coupon
 for type_of_SOM_index=1:1:size(R2_values_matrix,3)
 R2_values_matrix_for_plot(type_of_SOM_index)=R2_values_matrix
(AE_displayed_parameter_index,Max_nb_training_coupon,type_of_SOM_index,)
(Percentage_recording_index);
 end;
 plot(R2_values_matrix_for_plot);
xlabel('Type of SOM')
ylabel('Prediction R^2 value')
else
% Plots a 3D error surface in case of more than one number of
% prediction coupon
 for type_of_SOM_index=1:1:size(R2_values_matrix,3)
 R2_values_saved_matrix(type_of_SOM_index,:)=R2_values_matrix
(AE_displayed_parameter_index,Min_nb_training_coupon:Max_nb_training_coupon,type_of_SOM_index,)
(Percentage_recording_index);
 end;
 surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(R2_values_matrix,3)],100*R2_values_saved_matrix);
ninety_percent_limit=0.9*ones(size(R2_values_matrix,3),size(R2_values_matrix,
2));
 hold on
 surf([Min_nb_training_coupon:1:Max_nb_training_coupon],[1:1:size
(R2_values_matrix,3)],100*ninety_percent_limit(:,Min_nb_training_coupon:
Max_nb_training_coupon));
xlabel('Number of training coupons used')
ylabel('Type of SOM')
zlabel('Prediction R^2 value')
colorbar
 end;
 title(strcat('Prediction R^2 value for type ',int2str(Type_of_equation),'
 equation, a percentage recording of ',int2str(Percentage_recording*100), ' percent and AE'
 parameter number ',int2str(AE_displayed_parameter_index)))
axis tight
grid on
hold on

% Saves and closes the plot
saveas(figure(index_of_figures), strcat('Prediction R^2 value for type ', int2str(Type_of_equation), ' equation, a percentage recording of ', int2str(Percentage_recording*100), ' percent and AE parameter number ', int2str(AE_displayed_parameter_index)), 'fig');
close(figure(index_of_figures));

% Increases the figures index
index_of_figures = index_of_figures + 1;
end;
end
% File that interpret the test results from a results.mat file
% User request possible through user interaction

reply_continuing='Y';

while reply_continuing=='Y'
% Initialization and loading of results data
clear all
cld
close all
clc
load('results.mat')
figure_index=3;
percentage_data_recording=0;
type_of_SOM=0;
bib_training_coupon=0;
AE_parameter=0;

% Introduction
display('**
' display('************ Welcome to the results analysis part ************
' display('**
display('In order to research a precise result press 1
display('of training coupons and the AE parameter that you seek)
display('If one of these parameters is a function of your analysis press 2')
display('')

% Selection through different results exploitation possibilities
reply_type_of_analysis_choice = input('Enter your choice 1 or 2 :

display(')
while isempty(reply_type_of_analysis_choice)|| ((reply_type_of_analysis_choice==1) && reply_type_of_analysis_choice==2))
 display('Incorrect choice')
 reply_type_of_analysis_choice = input('Enter your choice 1 or 2 :
end;

% Specific result request
if reply_type_of_analysis_choice==1
 display('The available percentages of data recording are: ')
 display(Percentage_list*100)
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),' :'));
 while isempty(reply_percentage_of_data_recording)|| reply_percentage_of_data_recording<1 || (reply_percentage_of_data_recording>length(Percentage_list))
 display('Incorrect choice')
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),' :'));
end;
percentage_data_recording=reply_percentage_of_data_recording;
display('The available types of SOM are: ');
display(Tested_type_of_SOM);
reply_type_of_SOM = input('Which type of SOM do you want to use? ');
while isempty(reply_type_of_SOM)|| (sum(ismember(Tested_type_of_SOM, reply_type_of_SOM))~=1)
 display('Incorrect choice')
 reply_type_of_SOM = input('Which type of SOM do you want to use? ');
end;
[tf,type_of_SOM]=ismember(reply_type_of_SOM,Tested_type_of_SOM);
display(strcat('The possible number of training coupon is between :',int2str(Min_nb_training_coupon), ' and :',int2str(Max_nb_training_coupon)));
reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
while isempty(reply_nb_of_training_coupon) || reply_nb_of_training_coupon<Min_nb_training_coupon) || reply_nb_of_training_coupon>Max_nb_training_coupon)
 display('Incorrect choice')
 reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
end;

nb_training_coupon=reply_nb_of_training_coupon;
display(strcat('The best AE parameter for the number of coupons and the type of SOM you entered is the number :',int2str(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM))));
AE_parameter=AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM);
display('The results of you request are: ')
display(strcat('The matrix of mechanisms and its associated matrix of hits used to define the equation are: '))
display(Matrix_of_mechanisms_for_worst_case_training(1:nb_training_coupon,2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording))
display(Matrix_of_hits_for_worst_case_training(1:nb_training_coupon,2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording))
display('Where each line correspond to the following training coupons: ')
display(Matrix_of_mechanisms_for_worst_case_training(1:nb_training_coupon,1,
nb_training_coupon,type_of_SOM,percentage_data_recording))
 display('The actual failure load of training coupons are: ')
 actual_failure_loads_training=zeros(nb_training_coupon,1);
 for i=1:(nb_training_coupon)
 actual_failure_loads_training(i)=Actual_load
 end;
 display(actual_failure_loads_training)
display('Their predicted load are: ')
predicted_failure_load_training=zeros(nb_training_coupon);
 for j=1:(nb_training_coupon)
 predicted_failure_load_training=Matrix_of_mechanisms_for_worst_case_training(1:nb_training_coupon,2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording).*Worst_case_error_prediction_equation(:,nb_training_coupon,type_of_SOM,percentage_data_recording);
 end;
 display(predicted_failure_load_training)
display('Percentage of training error is: ')
display(((predicted_failure_load_training-actual_failure_loads_training)./actual_failure_loads_training)*100)
display('The fitting coefficient R^2 is: ')
if Type_of_equation==1
 display(R2_value_training_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))
else
 display(R2_value_training_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))
end;

% Training coupons prediction figure generation
figure(figure_index)
figure_index=figure_index+1;
errorbar(Matrix_of_mechanisms_for_worst_case_training(1:(nb_training_coupon),1,nb_training_coupon,type_of_SOM,percentage_data_recording),actual_failure_loads_training,(0.15*actual_failure_loads_training).*ones(size(actual_failure_loads_training,1),1),'--ok')
hold on
scatter(Matrix_of_mechanisms_for_worst_case_training(1:(nb_training_coupon),1,nb_training_coupon,type_of_SOM,percentage_data_recording),predicted_failure_load_training,15,'filled','or')
hold on
if Type_of_equation==1
 text(6,27000,strcat('R^2=',num2str(R2_value_training_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))))
else
 text(6,27000,strcat('R^2=',num2str(R2_value_training_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))))
type_of_SOM, percentage_data_recording)));
end;
title('Actual vs predicted failure load of training coupons')
legend('Actual failure load', 'Predicted failure load')
xlabel('Coupon identification number')
ylabel('Failure load (lbf)'
axis tight
grid on
display('The matrix of mechanisms and its associated matrix of hits used to predict with the equation are: ')
display(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording))
display(Matrix_of_hits_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording))
display('Where each line correspond to the following prediction coupons: ')
display(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),1,nb_training_coupon,type_of_SOM,percentage_data_recording))
display('The best fitting equation coefficients are: ')
display(Worst_case_error_prediction_equation(:,nb_training_coupon,type_of_SOM,percentage_data_recording))
display('The actual failure load of prediction coupons are: ')
actual_failure_loads_prediction=zeros(length(Files_coupon_name)-nb_training_coupon,1);
for i=1:(length(Files_coupon_name)-nb_training_coupon)
 actual_failure_loads_prediction(i)=Actual_load(Matrix_of_mechanisms_for_worst_case_prediction(i,1,nb_training_coupon,type_of_SOM,percentage_data_recording));
end;
display(actual_failure_loads_prediction)
display('Their predicted load are: ')
predicted_failure_load=zeros(length(Files_coupon_name)-nb_training_coupon);
for j=1:(length(Files_coupon_name)-nb_training_coupon)
 predicted_failure_load=Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),2:size(Matrix_of_mechanisms_for_worst_case_training,2),nb_training_coupon,type_of_SOM,percentage_data_recording)*Worst_case_error_prediction_equation(:,nb_training_coupon,type_of_SOM,percentage_data_recording);
end;
display(predicted_failure_load)
display('Percentage of prediction error is: ')
display(((predicted_failure_load-actual_failure_loads_prediction)/actual_failure_loads_prediction)*100)
display('The fitting coefficient R^2 is: ')
if Type_of_equation==1
 display(R2_value_prediction_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))
else
 display(R2_value_prediction_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM),nb_training_coupon,type_of_SOM,percentage_data_recording))
(nb_training_coupon, type_of_SOM), nb_training_coupon, type_of_SOM, percentage_data_recording)
 end;
 display('Percentage of worst prediction error is: ')
 if Type_of_equation==1
 display(Prediction_error_matrix_equation_1(AE_parameter, nb_training_coupon, type_of_SOM, percentage_data_recording))
 else
 display(Prediction_error_matrix_equation_2(AE_parameter, nb_training_coupon, type_of_SOM, percentage_data_recording))
 end;

% Prediction coupons prediction figure generation
figure(figure_index)
figure_index=figure_index+1;
errorbar(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name) - nb_training_coupon), 1, nb_training_coupon, type_of_SOM, percentage_data_recording),
actual_failureLoads_prediction, (0.15*actual_failureLoads_prediction).*ones(size(actual_failureLoads_prediction,1),1), '--ok')
hold on
scatter(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name) - nb_training_coupon), 1, nb_training_coupon, type_of_SOM, percentage_data_recording),
predicted_failure_load, 15, 'filled', 'or')
hold on
if Type_of_equation==1
 text(20,24000,strcat('R^2=',num2str(R2_value_prediction_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon, type_of_SOM), nb_training_coupon, type_of_SOM, percentage_data_recording))));
else
 text(20,24000,strcat('R^2=',num2str(R2_value_prediction_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon, type_of_SOM), nb_training_coupon, type_of_SOM, percentage_data_recording))));
end;
title('Actual vs predicted failure load of prediction coupons')
legend('Actual failure load', 'Predicted failure load')
xlabel('Coupon identification number')
ylabel('Failure load (lb)')
axis tight
grid on
else
% Results request with influence of a specific parameter
 display('What parameter is your variable for a study of influence?')
 display('1: percentage of data recording')
 display('2: type of SOM')
 display('3: number of training coupons')
 display(' ')
 reply_type_of_influence_study = input('Enter your choice 1/2/3 :');
 display(' ')
 while isempty(reply_type_of_influence_study)|| ((reply_type_of_influence_study==1) && (reply_type_of_influence_study==2))
 reply_type_of_influence_study = input('Enter your choice 1/2/3 :');
 display(' ')
end;

% Influence of the percentage of data recording
if reply_type_of_influence_study==1
 display('The available types of SOM are: ')
 display(Tested_type_of_SOM)
 reply_type_of_SOM = input('Which type of SOM do you want to use? ');
 while isempty(reply_type_of_SOM)|| (sum(ismember(Tested_type_of_SOM, reply_type_of_SOM)))<1
 display('Incorrect choice')
 reply_type_of_SOM = input('Which type of SOM do you want to use? ');
 end;
 display(' ')
 type_of_SOM=reply_type_of_SOM;
 display(strcat('The possible number of training coupon is between :',int2str(Min_nb_training_coupon), ' and :',int2str(Max_nb_training_coupon)))
 display(' ')
 reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
 while isempty(reply_nb_of_training_coupon) || (reply_nb_of_training_coupon<Min_nb_training_coupon) || (reply_nb_of_training_coupon>Max_nb_training_coupon)
 display('Incorrect choice')
 reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
 end;
 display(' ')
 nb_training_coupon=reply_nb_of_training_coupon;
 display('The best AE parameters to predict the ultimate load in function of the percentage recording are: ')
 display(Percentage_list*100)
 for k=1:length(Percentage_list)
 Best_AE_parameters(k)=AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM,k);
 end;
 display(Best_AE_parameters)
 if Type_of_equation==1
 for j=1:length(Percentage_list)
 Training_error(j)=Training_error_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM,Percentage_list(j)), nb_training_coupon,type_of_SOM,Percentage_list(j));
 Prediction_error(j)=Prediction_error_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM,Percentage_list(j)), nb_training_coupon,type_of_SOM,Percentage_list(j));
 end;
 display('The training errors are: ') display(Training_error)
 display('The predictions errors are: ') display(Prediction_error)
 end;
 if Type_of_equation==2
 for j=1:length(Percentage_list)
Training_error(j)=Training_error_matrix_equation_2
(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM,j),nb_training_coupon,type_of_SOM,j);

Prediction_error(j)=Prediction_error_matrix_equation_2
(AE_parameters_of_best_prediction(nb_training_coupon,type_of_SOM,j),nb_training_coupon,type_of_SOM,j);

end;
display('The training errors are :')
display(Training_error)
display('The predictions errors are :')
display(Prediction_error)
end;
display('The best fitting equations for these percentage recording are :')
for l=1:length(Percentage_list)
 Best_fitting_equation(:,l)=Worst_case_error_prediction_equation(:,nb_training_coupon,type_of_SOM,l);
end;
display(Best_fitting_equation)

reply_visualize_training_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to find the equation ? [Y]/[N] :','s');
while isempty(reply_visualize_training_matrix) || (reply_visualize_training_matrix=='Y' && reply_visualize_training_matrix=='N')
 reply_visualize_training_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to find the equation ? [Y]/[N] :','s');
end;
if reply_visualize_training_matrix=='Y'
 display('The first column correspond to the coupon number')
 display(Matrix_of_mechanisms_for_worst_case_training(1:nb_training_coupon,:,nb_training_coupon,type_of_SOM,:))
 display('The matrix of hits is:')
 display(Matrix_of_hits_for_worst_case_training(1:nb_training_coupon,:,nb_training_coupon,type_of_SOM,:))
end;

reply_visualize_prediction_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to predict ? [Y]/[N] :','s');
while isempty(reply_visualize_prediction_matrix) || (reply_visualize_prediction_matrix=='Y' && reply_visualize_prediction_matrix=='N')
 reply_visualize_prediction_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to predict ? [Y]/[N] :','s');
end;
if reply_visualize_prediction_matrix=='Y'
 display('The first column correspond to the coupon number')
 display(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),:,nb_training_coupon,type_of_SOM,:))
 display('The matrix of hits is:')
 display(Matrix_of_hits_for_worst_case_prediction(1:(length(Files_coupon_name)-nb_training_coupon),:,nb_training_coupon,type_of_SOM,:))
end;
% Influence of the type of Kohonen SOM used for classification
if reply_type_of_influence_study==2
 display('The available percentages of data recording are: ')
 display(Percentage_list*100)
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),'%: '));
 while isempty(reply_percentage_of_data_recording)||
 (reply_percentage_of_data_recording<1) || (reply_percentage_of_data_recording>length(Percentage_list))
 display('Incorrect choice')
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),'%: '));
 end;
 display(' ') percentage_data_recording=reply_percentage_of_data_recording;
 display(strcat('The possible number of training coupon is between :',int2str(Min_nb_training_coupon),' and :',int2str(Max_nb_training_coupon)))
 display(' ') reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
 while isempty(reply_nb_of_training_coupon) ||
 (reply_nb_of_training_coupon<Min_nb_training_coupon) ||
 (reply_nb_of_training_coupon>Max_nb_training_coupon)
 display('Incorrect choice')
 reply_nb_of_training_coupon = input('How many training coupons do you want to use? ');
 end;
 display(' ') nb_training_coupon=reply_nb_of_training_coupon;
 display('The best AE parameters to predict the ultimate load in function of the type of SOM are: ')
 display(Tested_type_of_SOM)
 for k=1:length(Tested_type_of_SOM)
 Best_AE_parameters(k)=AE_parameters_of_best_prediction(nb_training_coupon,k,percentage_data_recording);
 end;
 display(Best_AE_parameters)
 if Type_of_equation==1
 for j=1:length(Tested_type_of_SOM)
 Training_error(j)=Training_error_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording),nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording);
 Prediction_error(j)=Prediction_error_matrix_equation_1(AE_parameters_of_best_prediction(nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording),nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording);
 end;
 display('The training errors are: ')
 display(Training_error)
 display('The predictions errors are: ')
display(Prediction_error)
end;
if Type_of_equation==2
for j=1:length(Tested_type_of_SOM)
 Training_error(j)=Training_error_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording),nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording);
 Prediction_error(j)=Prediction_error_matrix_equation_2(AE_parameters_of_best_prediction(nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording),nb_training_coupon,Tested_type_of_SOM(j),percentage_data_recording);
end;
display('The training errors are :')
display(Training_error)
display('The predictions errors are :')
display(Prediction_error)
end;
display('The best fitting equations for these types of SOM are :')
for l=1:length(Tested_type_of_SOM)
 Best_fitting_equation(:,l)=Worst_case_error_prediction_equation(:,nb_training_coupon,1,percentage_data_recording);
end;
display(Best_fitting_equation)
display(Matrix_of_mechanisms_for_worst_case_training(1:nb_training_coupon,:,nb_training_coupon,:,percentage_data_recording))
display(Matrix_of_hits_for_worst_case_training(1:nb_training_coupon,:nb_training_coupon,:,percentage_data_recording))
end;
if reply_visualize_prediction_matrix=='Y'
display('The first column correspond to the coupon number')
display('The matrix of mechanism is:')
display(Matrix_of_mechanisms_for_worst_case_prediction(1:length(nb_training_coupon,1,percentage_data_recording))
display('The matrix of hits is:')
display(Matrix_of_hits_for_worst_case_prediction(1:nb_training_coupon,:nb_training_coupon,:,percentage_data_recording))
end;
% Influence of the number of training coupons
if reply_type_of_influence_study==3
 display('The available percentages of data recording are: ')
 display(Percentage_list*100)
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),' :'));
 while isempty(reply_percentage_of_data_recording) || (reply_percentage_of_data_recording<1) || (reply_percentage_of_data_recording>length(Percentage_list))
 display('Incorrect choice')
 reply_percentage_of_data_recording = input(strcat('How many percent of data recording do you want to use? 1/../',int2str(length(Percentage_list)),' :'));
 end;
end;
percentage_data_recording=reply_percentage_of_data_recording;
display('The available types of SOM are: ')
display(Tested_type_of_SOM)
reply_type_of_SOM = input('Which type of SOM do you want to use? ');
while isempty(reply_type_of_SOM) || (sum(ismember(Tested_type_of_SOM,reply_type_of_SOM))==1)
 display('Incorrect choice')
 reply_type_of_SOM = input('Which type of SOM do you want to use? ');
end;
[tf,type_of_SOM]=ismember(reply_type_of_SOM,Tested_type_of_SOM);
display('The number of training coupons used are :')
for m=1:(Max_nb_training_coupon-Min_nb_training_coupon+1)
 number_of_training_coupons_variation(m)=Min_nb_training_coupon+m-1;
end;
display(number_of_training_coupons_variation)
display('The best AE parameters to predict the ultimate load in of the number of training coupons are :')
for k=1:length(number_of_training_coupons_variation)
 type_of_SOM
 Best_AE_parameters(k)=AE_parameters_of_best_prediction(number_of_training_coupons_variation(k),type_of_SOM,percentage_data_recording);
end;
display(Best_AE_parameters)
if Type_of_equation==1
 for j=1:length(number_of_training_coupons_variation)
 Training_error(j)=Training_error_matrix_equation_1(AE_parameters_of_best_prediction(number_of_training_coupons_variation(j),type_of_SOM,percentage_data_recording),number_of_training_coupons_variation(j),type_of_SOM,percentage_data_recording);
 end;
percentage_data_recording);
Prediction_error(j)=Prediction_error_matrix_equation_1
(AE_parameters_of_best_prediction(number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording),number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording);
end;

display('The training errors are :')
display(Training_error)
display('The predictions errors are :')
display(Prediction_error)
end;
if Type_of_equation==2
for j=1:length(number_of_training_coupons_variation)
Training_error(j)=Training_error_matrix_equation_2
(AE_parameters_of_best_prediction(number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording),number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording);
Prediction_error(j)=Prediction_error_matrix_equation_2
(AE_parameters_of_best_prediction(number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording),number_of_training_coupons_variation(j),type_of_SOM,
percentage_data_recording);
end;

display('The training errors are :')
display(Training_error)
display('The predictions errors are :')
display(Prediction_error)
end;
display('The best fitting equations for these number of training coupons are:
')
for l=1:length(number_of_training_coupons_variation)
Best_fitting_equation(:,l)=Worst_case_error_prediction_equation(:,
number_of_training_coupons_variation(l),type_of_SOM,percentage_data_recording);
end;
display(Best_fitting_equation)
reply_visualize_training_matrix = input('Do you want to visualize the matrix
of mechanisms and hits used to find the equation ? [Y]/[N] :','s');
while isempty(reply_visualize_training_matrix) ||
 (reply_visualize_training_matrix=='Y' && reply_visualize_training_matrix=='N')
 reply_visualize_training_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to find the equation ? [Y]/[N] :','s');
end;
if reply_visualize_training_matrix=='Y'
display('The first column correspond to the coupon number')
 for h=1:length(number_of_training_coupons_variation)
 display(Matrix_of_mechanisms_for_worst_case_training(1:
number_of_training_coupons_variation(h),:,number_of_training_coupons_variation(h),
 type_of_SOM,percentage_data_recording))
 display(Matrix_of_hits_for_worst_case_training(1:
number_of_training_coupons_variation(h),:,number_of_training_coupons_variation(h),
 type_of_SOM,percentage_data_recording))
 end;
end;

reply_visualize_prediction_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to predict? [Y]/[N] : ', 's');
while isempty(reply_visualize_prediction_matrix) || (reply_visualize_prediction_matrix == 'Y' && reply_visualize_prediction_matrix ~= 'N')
 reply_visualize_prediction_matrix = input('Do you want to visualize the matrix of mechanisms and hits used to predict? [Y]/[N] : ', 's');
end;
if reply_visualize_prediction_matrix == 'Y'
 display('The first column correspond to the coupon number')
 for h = 1:length(number_of_training_coupons_variation)
 display(Matrix_of_mechanisms_for_worst_case_prediction(1:(length(Files_coupon_name)-number_of_training_coupons_variation(h)),:,
 number_of_training_coupons_variation(h),type_of_SOM,percentage_data_recording))
 display(Matrix_of_hits_for_worst_case_prediction(1:(length(Files_coupon_name)-number_of_training_coupons_variation(h)),:,
 number_of_training_coupons_variation(h),type_of_SOM,percentage_data_recording))
 end;
end;
end;

%Loop for more results exploitation
reply_continuing = input('Do you want to request another result? Y/N [N]: ', 's');
close(figure(1))
close(figure(2))
display(' ')
if isempty(reply_continuing)
 reply_continuing = 'N';
end;
end;