Desna: Pathfinder VI Experimental Payload

Max Siege, Robert Moore, Lingxiao Wang, Charles Watson, Jacob Adamski, and James Le
Embry-Riddle Future Space Explorers and Developers Society

Abstract
The objective of this project is to design, fabricate and test a fixed wing unmanned aerial vehicle (UAV) that is to be carried in, and deployed from the Pathfinder VI rocket. The UAV, known as Desna, is tasked with being able to carry a Tamarisk 640 75mm thermal imaging camera, and transmit live video footage to a ground station from 8500 feet AGL. Desna must also fit inside Pathfinder VI’s 7.5” diameter, 35” long cargo bay. To accomplish this, Desna’s wing configuration, determined through aerodynamic calculation of lift and drag at various angles of attack, was designed to be a 5” diameter, 24” long solid of revolution to reduce drag while still being able to accommodate the size of the payload bay.

Mission Objectives
- Desna must fit within the allocated payload bay space of a cylinder 7” in diameter and 35” in length.
- Desna must carry a DBS Tamarisk 640, 75mm thermal imaging camera.
- Desna is to be able to be launched inside of the Pathfinder VI rocket to an altitude of 10,000 feet above ground level (AGL).
- Desna must cruise at an altitude of 8500 feet AGL.
- Desna must transmit live telemetry and video data to a ground station.
- Desna’s payload access hatch.

Aircraft Design
Desna was designed with a 35” main wing section, and 11” outboard winglets. The winglets were given 35° of dihedral to increase the roll stability. Desna’s fuselage was designed to be a 5” diameter, 24” long solid of revolution to reduce drag while still being able to accommodate the size of the camera. Both the rudder and elevator are full flying stabilizers to maximize control authority while still fitting within the size restrictions of the payload bay.

Desna was designed with a centrally rotating wing mechanism, allowing it to fold and fit into a cylinder 7” in diameter and 35” long. The mechanism folds the 11” winglets under the 35” main wing section, and then routes the wing about a bolt in Desna’s payload access hatch.

Concept of Operations
- Launch
- Deployment
- Wing Deployment
- Descent
- Powered Glide Flight Path
- Deploy Chute
- Land

Flight Performance Calculations
All calculations were done using a custom flight stability MATLAB program.

System Configuration
Desna’s electrical systems are split into two sections, the propulsion and flight control system, and the video transition system. Each system is powered by a three cell lithium polymer battery. The wiring setup for both systems is displayed below.

Propulsion and Flight Control System:
- Desna’s telemetry system utilizes a Pixhawk flight computer for autonomous control and the software Mission Planner to receive telemetry and transmit instructions from the ground station using a 915 MHz/433 MHz transceiver. Desna uses two servos (one for each control surface) as well as an NXT motor for flight.

Video Transition System:
The video downlink will be a Ready-Made RC 900MHz-FFV system. The transmitter will be connected to the camera and has an output of 800 mW. The theoretical average range is 4.903 miles (with a maximum of 9.308 miles) as calculated by Lingxiao Wang but has yet to be tested.

Conclusion
Desna is currently in the final stages of development. Desna has passed both it’s Preliminary Design Review and Critical Design Review, and the Desna team has begun manufacturing of both a prototype for flight testing and the final iteration. The prototype of Desna will be flown aboard the maiden flight of Pathfinder VI on Saturday, April 18 at the Spaceport Rocketry Association. The final iteration of Desna will be flight tested upon completion, and will fly aboard Pathfinder VI in the Intercollegiate Rocket Engineering Competition (IREC) in Green River Utah this June. In the future, Desna can be used by the Coast Guard for search and rescue missions, or by the military for rapid reconnaissance in the field.

Acknowledgments
The Embry-Riddle Future Space Explorers and Developers Society would like to thank DBS Technologies for the donation of their Tamarisk 640 cameras. We would also like to thank the Department of Undergraduate Research, the Student Finance Board, and Dr. Perrill for their support.

References