Apr 27th, 2:00 PM - 4:00 PM

Paper Session III-C - Space Based Education Outreach

Laura Reeves

Space Resource Teacher

Follow this and additional works at: http://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

SPACE BASED EDUCATION OUTREACH

Laura Reeves
SPACE Resource Teacher

January
1995

Phillips Laboratory
PL/XPI
3550 Aberdeen Ave. SE
Albuquerque, New Mexico 87117-5776

Prepared for
32nd Space Congress
People and Technology – the Case for Space
Education Outreach Program Overview The Air Force Phillips Laboratory's Education Outreach consists of a variety of programs for students from fifth grade through college. While this paper highlights the two space education programs, the following are additional programs offered by the Laboratory.

Computer Assisted Mathematics Instruction brings advanced technologies into the high school classroom to enhance the learning of mathematics. Each school in the program receives a classroom set of networked computers along with software and technical support.

Outstanding Student Summer Hire Program provides full-time summer jobs for outstanding high school and college students.

Air Force Introduction to Engineering is a week-long summer program introducing and motivating ninth graders to consider engineering careers.

Albuquerque Public Schools Gifted Student Program offers mentorships and internships at the Laboratory for high school students.

Stay-In-School Program provides year-round, part-time employment for financially needy high school and college students.

High School Apprenticeship Program provides eight weeks of paid employment at the Laboratory to stimulate high school students to pursue careers in science and engineering.

Various *Fellowship Programs* exist for promising college students.

Phillips Laboratory also participates in the following programs by providing judges, displays, tours, etc.: *New Mexico Science Fairs, Project Uplift Career Expo, and New Mexico MESA Program (Mathematics, Science, and Engineering Achievement).*

Phillips Laboratory SPACE School Experiment Program The SPACE program is a unique learning opportunity for the area high schools. With the aid of their teachers and Phillips Laboratory mentors, students structure and perform high quality scientific experiments.

The program has three goals:

1. Provide a team learning experience otherwise unattainable to students.
2. Demonstrate that Phillips Laboratory is a good citizen by performing a valuable community service to New Mexico.
3. Forge bonds between the Phillips Laboratory and the New Mexico Educational System for the benefit of both.

Each year, teachers and Phillips Laboratory personnel volunteer their time to the program. To recruit students into the program, an initial presentation is given to several science and math classes at each school. Interested students then agree to meet regularly at a designated time, usually after school. Two mentors from Phillips Laboratory coach the team. A student leader is selected and team roles are assigned.

The team selects a topic, designs an experiment, determines the materials needed, and procures these materials. Phillips Laboratory resources are made available in the form of equipment, facilities, and financial support. Data is collected for several weeks and the information is analyzed.

A final report is written by the students and an oral presentation is given at Phillips Laboratory by all the teams. A member of the New Mexico Governor’s office, school principals, and Phillips Laboratory personnel are invited to the presentation.
The SPACE Program is in its third year of operation. Three student teams participated the first year and six the second with all teams coming from high schools in the Albuquerque area. This year the program has expanded to thirteen teams in both middle and high schools involving approximately 170 students. A team outside the Albuquerque area is being piloted in the town of Moriarty. Since this is some distance from Phillips Laboratory the mentors meet with the students once a month and communicate by e-mail the remainder of the time.

Examples of this year’s experiment topics are "Solar Powered Rocket Engine", "Mars Car", "Environmental Effects of a Meteor Strike on Earth", and "Laser Velocimetry in Model Rocket Exhaust." (For a complete list of experiments, schools, teachers and mentors see Appendix A.)

An additional benefit of the program is the leadership experience gained by the Phillips Laboratory volunteers. The majority of the mentors are young people just beginning their careers. Coaching a student team develops many project management skills in a simplified, non-threatening situation.

A monthly newsletter called SPACE UPDATE is sent to mentors, teachers, and others involved with the program. This newsletter contains a General section aimed at all readers, a Teacher section for the teacher-sponsors, a Mentor section for the Laboratory volunteers, a Highlight section that accentuates one aspect of the program, and a Calendar of upcoming events and deadlines.

Phillips Laboratory Marsville Program Marsville is a classroom based simulation in which student teams create a prototype of a colony on Mars. The Challenger Center for Space Science Education developed Marsville as a way to turn American children on to math and science. For the 1994-1995 school year, Phillips Laboratory is offering the program to the Albuquerque Public Schools fifth grade students and their teachers. Approximately 250 students, 14 teachers, and 9 schools are participating this year (see Appendix B). Next year, the program will be offered to elementary schools throughout the state of New Mexico.

The goals of the program are:

1. To expose students to the technological, scientific, and environmental issues related to space exploration.
2. To demonstrate problem solving and team learning using a cooperative model.
3. To provide students with positive role models from the fields of science and technology.

Marsville spans a time period of four months, from December to March. The program begins with an all-day teacher training workshop held at Phillips Laboratory. During this training, the teachers are given the information they need to proceed with the project. Each teacher and his/her teams are responsible for one part of the Martian colony. In addition to receiving this assignment at the workshop, the teachers also participate in a hands-on construction of a Martian habitat scale model and the life support systems used within. During the project, the teachers receive a biweekly newsletter to keep them abreast of upcoming events and deadlines.

The project with the students is three-fold: Base Operations, Faxaphon, and Link-Up-Day. These three parts are described below.

Base Operations: Through a series of individual and group activities, students learn about the planet Mars and the special challenges it poses to human settlement. Volunteers from Phillips
Laboratory serve as speakers and resource people. Students are formed into teams of 5-7 and each group designs and constructs a model of a life-support system to be used to support the Martian colony. These systems include Air Supply, Waste Management, Temperature, Water Supply, etc. The Laboratory Resource People are available to answer any questions that arise as the systems are being built.

Faxaphon: Each team of 5-7 students is grouped with two other teams in different schools to form a habitat crew. The crew is responsible for cooperatively designing the plastic habitat that will house them on Mars. The teams communicate their construction plans to each other through written or electronic means. They are not allowed to see each other face-to-face until Link-Up-Day. Each team will be responsible for certain parts of the habitat that they will pre-cut and bring with them to Link-Up-Day.

Link-Up-Day: Teams meet at a Phillips Laboratory hanger in March along with invited guests from the schools, the legislature, Phillips Laboratory, and the community. The student teams meet their fellow habitat crew members in person for the first time. Together they construct their inflatable plastic habitat that measures 12 feet by 12 feet by 8 feet. The entire colony consists of twelve habitats. The previously constructed Life Support Systems are erected in the habitats and the Celestial Quest takes place. This entails a presentation of each system by a "presenter" to a group of "questers". The questers then rotate to other systems for new presentations. When the Celestial Quest is completed, connecting tunnels are built linking all of the habitats together. The Martians and guests then participate in a walk-through of the entire colony.
Appendix A
SPACE School Experiment Program
Albuquerque, New Mexico

Participating Schools and Experiment Topics
1994-1995

Albuquerque High School

Experiments:
1. Trajectory of model rocket
2. Electrical resistance as a function of temperature
3. Predicting variations in temperature in earth-orbiting spacecraft
4. Determining orbits of asteroids/comets which would result in collision with the earth

Principal: Tom Savage
Teacher-Sponsor: Jill Snyder
Phillips Lab Mentors: Capt. Dennis Lileikis
Dr. Paul Le Van

Career Enrichment Center

Experiment: Mars car
Principal: Jim Simpson
Teacher-Sponsor: Marla Griego
Phillips Lab Mentors: Dr. Jon Shively
Lt. Michelle Kazmier

Cibola High School

Experiment: Autonomous package delivery system
Principal: Don Duran
Teacher-Sponsor: Michael Nord
Phillips Lab Mentors: Maj. John Casserino
Capt. Dave Swanson

Eldorado High School

Experiment: Manned mission to Mars
Principal: H. Russell Goff
Teacher-Sponsor: Sandra Matthews
Phillips Lab Mentors: Capt. Eric Payne
Dr. Tom King
Capt. Mark Smith

Holy Ghost School

Experiment: Ripples in sand caused by uniformly flowing water
Principal: Noreen Copeland
Jackson Middle School
Experiment: Design, build and test fly a model airplane
Principal: Milton Baca
Teacher-Sponsor: Barbara Druxman
Phillips Lab Mentors: Lt. William Seeliger
Capt. Jim Ross
Mr. Fred Boelitz

La Cueva High School
Experiment: Solar powered rocket engine
Principal: Sue Griffith
Teacher-Sponsor: Darla Shrock
Oliver Larson
Phillips Lab Mentors: Capt. Fred Kennedy
Lt. Vickie Kennedy

Manzano High School
Experiment: Hover craft
Principal: Tim Whalen
Teacher-Sponsor: Steve Schum
Phillips Lab Mentors: Lt. Jay Munson
Lt. Dan Ward

Moriarty High School
Experiment: Environmental effects of a meteor strike on earth
Principal: Freddy Cardenas
Teacher-Sponsor: Paula Avery
Phillips Lab Mentors: Mr. Bryan Austin
Capt. Ivan Thorsos

Rio Grande High School
Experiment: Underwater video submarine
Principal: Veronica C. Garcia
Teacher-Sponsor: Ruth Creel
Phillips Lab Mentors: 2Lt. Rob Ireland
2Lt. Julia Laurenzano
Sandia High School

Experiment: How can you fool a smart weapon?
Principal: Jimmy Juarez
Teacher-Sponsor: Carrie Meharg
Phillips Lab Mentors: Lt. Mike Merrick
Maj. Mike Zywien

St. Pius X High School

Experiment: Laser velocimetry in flowing fluids and model rocket exhaust
Principal: Father Ron Schwenzer
Teacher-Sponsor: John De Witt
Phillips Lab Mentors: Dr. Nick Morley
Capt. Jeffrey Moler

West Mesa High School

Experiment: Electromagnetic launcher
Principal: Bob Hennig
Teacher-Sponsor: Russ Ives
Phillips Lab Mentors: Mr. Lee Gutheinz
Mr. Jeff West
Appendix B
Marsville Program
Albuquerque, New Mexico

Participating Schools
1994-1995

<table>
<thead>
<tr>
<th>TEAM NUMBER</th>
<th>TEACHER NAME</th>
<th>SCHOOL</th>
<th>LIFE SUPPORT SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bass, Kim</td>
<td>Puesta Del Sol</td>
<td>Water Supply</td>
</tr>
<tr>
<td>2</td>
<td>Bell, Virginia</td>
<td>Bandelier</td>
<td>Recreation</td>
</tr>
<tr>
<td>3</td>
<td>Carpenter, Pat</td>
<td>Zuni</td>
<td>Air Supply</td>
</tr>
<tr>
<td>4</td>
<td>Johannes-Novak, Debra</td>
<td>Mission Ave</td>
<td>Air Supply</td>
</tr>
<tr>
<td>5</td>
<td>Kramer, Roger</td>
<td>Dennis Chavez</td>
<td>Food Production</td>
</tr>
<tr>
<td>6</td>
<td>Lethem, Sandy</td>
<td>Zuni</td>
<td>Waste Management</td>
</tr>
<tr>
<td>7</td>
<td>Nuno, Dolores</td>
<td>Kit Carson</td>
<td>Temperature</td>
</tr>
<tr>
<td>8</td>
<td>Pappas, Helen</td>
<td>Bandelier</td>
<td>Food Production</td>
</tr>
<tr>
<td>9</td>
<td>Sandoval, Robina</td>
<td>Petroglyph</td>
<td>Waste Management</td>
</tr>
<tr>
<td>10</td>
<td>Sloan, Debbie</td>
<td>Zia</td>
<td>Communication</td>
</tr>
<tr>
<td>11</td>
<td>Stokes, Linda</td>
<td>SY Jackson</td>
<td>Transportation</td>
</tr>
<tr>
<td>12</td>
<td>Thompson-Loyd, Michelle</td>
<td>Zuni</td>
<td>Water Supply</td>
</tr>
<tr>
<td>13</td>
<td>Weeks, Kaylene</td>
<td>Mission Ave</td>
<td>Transportation</td>
</tr>
<tr>
<td>14</td>
<td>Williamson, Barbara</td>
<td>Bandelier</td>
<td>Recreation</td>
</tr>
</tbody>
</table>