Application of Reliability and System Safety Analytical Techniques to a Civic Need

Thomas G. Goss
Manager Reliability & System Safety Engineering, The Boeing Company

Follow this and additional works at: http://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
http://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-13/2

This Event is brought to you for free and open access by the Conferences at ERAU Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.
APPLICATION OF
RELIABILITY AND SYSTEM SAFETY
ANALYTICAL TECHNIQUES TO A CIVIC NEED

Thomas G. Goss
Manager Reliability &
System Safety Engineering
The Boeing Company
Cocoa Beach, Florida

ABSTRACT

Many billions of tax payer dollars have been spent on aerospace programs. In order to continue further expenditures for the exploration of space, the American people demand a payoff which is beneficial to the average citizen. This paper will outline one such "spin-off": VIZ, the application of reliability and system safety analytical techniques to a civic need.

INTRODUCTION

In 1969, there were over 55,000 people killed on the nation’s highways and another 2,000,000 seriously injured. The cost of these accidents estimated by the National Safety Council exceeds 11.3 billion dollars.

The number of railroad train derailments has increased over 100 percent in the last five years. There were 5,487 in 1968 alone, and the rate is going up.

There were 1,500 fatalities at railroad crossings in 1968.

In 1969, there were 27 occasions where railroad accidents required the evacuation of populated areas due to the hazardous cargo involved. Twenty-five of the accidents were considered to be major and resulted in explosion, fire, or lethal contamination of the surrounding area.

The shipment of hazardous cargo (poisons - pesticides - explosives - flammables, etc.) by rail, truck, and air is regulated by a tariff written and controlled by a non-government agency.

With these, and other facts identified, the need for the application of aerospace techniques to the solution of the problems became obvious.

Hopefully this paper will generate an interest by the civic community for the application of proven techniques to the resolution of civic problems which exist today. The discussion of the techniques is descriptive rather than specific for reasons of brevity. However, there are many who are familiar with the techniques and agree the approach has merit.

THEORY OF APPLICATION

For many years the aerospace industry has used scientific analytical techniques for assuring system safety and reliability. Typical of these techniques are:

- Preliminary Hazard Analysis
- Operations Safety Analysis
- Human Error Prediction
- Logic Diagram Analysis

These techniques were widely used to assure the safety and reliability of systems such as Minuteman and Saturn/Apollo. The importance of positive system assurance within these programs is obvious. In the case of Minuteman, failure could be catastrophic and in the case of Saturn/Apollo, loss of the astronaut crew, not to mention the tremendous loss in terms of dollars and national prestige.

The development and application of such analyses did not occur overnight. It was a long and sometime painful road for the developers and advocates of the techniques. Like many new developments, the advocates are frequently considered to be "cultists" for which the program is better off without, or at best, are only to be tolerated.

As the techniques were improved and their value to the program demonstrated, the discipline of reliability and system safety engineering was gradually accepted and is now a mandatory requirement in all major DOD- and NASA-sponsored programs.

The logic diagram, sometimes called fault tree, is a deductive analytical technique which lends itself to detailed system analysis, decision-logic, and communication. It results in a graphic and logical representation of the various combinations of possible events, occurring within a system, which can cause a predefined undesired event.

An undesired event is any event which is identified as objectionable or unwanted, such as a potential accident, hazardous condition, or undesired rate increase. (Correlated to the civic application, the undesired event might be fatality at a railroad crossing, insufficient controls for shipment of hazardous cargo, or increased accident rate.)
During the development phase of a major program such as Minuteman, emphasis is devoted to the assurance that undesirable events will not occur to the operational system. To provide this assurance each theoretical undesired event is assumed. The logic tree is then developed to determine what event or series of events could cause the undesirable event. For example, if the assumed undesired event was accidental rocket engine ignition, the causative event could be inadvertent closure of relay contacts.

In applying the logic diagram technique to a civic problem, a major change to the aerospace technique is necessary. Whereas, in the above example, we assume certain undesirable events and then determine what can cause them, in the civic application the undesirable condition now exists and we determine the cause. A subtle, but important difference.

Figure 1 is a modified version of the logic diagram of a specific problem of the civilian community. This condition is selected because it allows for a mental exercise of the logic diagram application. Those who are familiar with the technique will notice two major departures from the accepted practice of constructing the diagrams:

1. The absence of OR gates. AND gates -

2. The top undesired event is an existing condition and the segments are results of the condition. Whereas, classically, the top event would be the undesired event and the segments the causative events.

DEVELOPING THE LOGIC DIAGRAM

Figure 1 diagrams the results of INSUFFICIENT URBAN MASS TRANSPORTATION. The diagram depicts two prime branches.

1. INCREASED USE OF INTERNAL COMBUSTION ENGINES

2. Ghetto Growth

The populace which must work in the metropolitan area are faced with two choices: either move into the city or drive to and from employment from an urban area. Moving into the city is not necessarily considered an undesirable result of insufficient urban mass transportation; however, it does contribute to the growth of ghetto areas when there is an ethnic attraction. The use of internal combustion engines is undesirable because of the pollution increase.

Following the ghetto growth branch of the diagram we identify many undesirable results such as CRIME INCREASE, WELFARE DEMAND INCREASE, EDUCATIONAL FACILITY DEMANDS, AND ESTHETIC POLLUTION INCREASE. Each of these undesirable conditions resulting from ghetto growth would be diagrammed in detail. Other undesirable results would be identified and diagrammed in detail; e.g., riot and demonstration potential. For purposes of this paper, the diagram has been simplified to demonstrate the application of the technique.

Following the diagram through the ESTHETIC POLLUTION INCREASE branch, we can identify the INCREASED USE OF OLD AUTOMOBILES which in turn leads to the INABILITY TO MAINTAIN SAFETY STANDARDS and/or STEALS TO MAINTAIN SAFETY STANDARDS. These undesired conditions lead directly to INCREASED ACCIDENT RATE, FAMILY ADDED TO WELFARE ROLES and INCREASED CRIME RATE. Similar logic is used in defining the branch under INCREASED USE OF INTERNAL COMBUSTION ENGINES.

After the diagram has been completed, a valid assessment of INSUFFICIENT URBAN MASS TRANSPORTATION can be made. Qualitative assessment of this particular logic diagram, as simple as it is, shows graphically that INSUFFICIENT URBAN MASS TRANSPORTATION causes or contributes to:

- Ghetto Growth
- Increased Pollution
- Increased Crime
- Increased Accident
- Degradation of Metropolitan Area
- Increased Welfare Requirements

These conditions require expenditure of tax dollars. The expenditure becomes an ever increasing tax burden which might more profitably be expended in the reduction or elimination of the cause rather than reacting to the results of the condition.

Many of the undesired results, due to INSUFFICIENT URBAN MASS TRANSPORTATION, should be analyzed by separate logic diagrams. For example: INCREASED ACCIDENT RATE which shows up in both branches of the logic tree would be treated as a separate diagram. For purposes of depicting the scope of the analytical technique, one result of increased accident rate is aggravation of serious injury following accident (Figure 2). This event and each of the causes which aggravate the injury, is identified and possible solutions of the cause proposed. This logic technique performed by experienced analysts portrays the complete picture and allows responsible officials to initiate corrective measures. Frequently the determination of increasing the urban transportation media is based on the financial success of the media amortized by the fares received over a period of time. However, if the true costs of insufficient transportation is assessed considering the costs of pollution, crime, accidents, welfare, etc., it might very well be more cost effective to the community to subsidize the media.

The previous discussion concerned an extremely broad and complex problem which exists in many metropolitan areas. The condition was selected so that the potential of the logic diagram analysis could be demonstrated.
CONTROL OF HAZARDOUS CARGO TRANSPORTATION

A more specific application is shown in Figure 3. This problem, INADEQUATE CONTROL OF HAZARDOUS CARGO TRANSPORTATION, is "real world" and should receive priority attention throughout the country. In 1969, there were 25 major railroad accidents involving hazardous materials. Major in this instance includes: fire, explosion, contamination, and evacuation of populace. Each occurred in sparsely populated areas. Figure 4 describes three which are typical. There were hundreds of cases where hazardous cargo, such as Class B poisons, leaked during truck or rail transport. Thousands of cases are suspected.

The logic tree (Figure 3) is constructed as previously described. The existing undesirable condition is shown as the top segment of the tree. (In this instance, the diagram analyzes only poisons (pesticides, etc.).) The subsequent branches of the tree are results of the top undesirable condition. For the sake of brevity, the logic involved in the preparation of the tree will not be discussed. Suffice to say that each branch and segment of the tree represents a condition which did occur during 1969 and was the result of inadequate controls. Each of the segments of this tree would be represented in a separate diagram to describe the specific event. For example: CONTAINER NOT ADEQUATE FOR CONTENT is a prime candidate based on the number of leaks discovered in 1969.

After the problems associated with INADEQUATE CONTROL OF HAZARDOUS CARGO TRANSPORTATION are defined in the logic diagram, there is a need to develop preventive measures. The use of the Preliminary Hazard Analysis technique provides a method for satisfying that need. (Figure 5).

Figure 5 is a Preliminary Hazard Analysis which the analyst develops based on the information he derives from the logic diagram. This analysis describes the hazardous condition in brief terms and provides the accident prevention measures necessary for its control. As a result of this analysis, new or more stringent standards, different inspection methods, additional training, etc., are developed and implemented.

A third application of the logic diagram technique is shown in Figure 6, LACK OF A BALANCED AND INTEGRATED SAFETY PLAN. Unless the state generates an integrated safety plan which defines in detail the role of all agencies responsible for safety, the results will be as shown on the diagram. The capability to efficiently react to a catastrophic condition does not exist nor is preventive safety given the emphasis it deserves. The tax dollar expended for safety is generally wasted for the results achieved. When results of the undesired event are diagramed in this fashion, a rational prioritization of effort and funds can be made to optimize the safety of the community.
Figure 1
Figure 2

Problem Area

- **Increased Accident Rate**
- **Aggravation of Serious Injury Following Accident**

Solution Considerations

1. **Late Arrival of Medical Aid**
 - Congested Traffic
 - Lack of Communication

2. **Inability to Exterminate**
 - Inadequate Training
 - Non-Availability of Proper Tools
 - Fire or Structural Damage

3. **Traverse or Rough Terrain**
 - Hand Carry Perturbation
 - Vehicle or Hand Carry Not Possible

4. **Delay in Getting to Medical Aid**
 - Congested Traffic
 - Rescue Vehicle Breakdown or Accident

Solutions

- **Use of Helicopter Ambulance**
- **Provide directional traffic indicators to direct traffic to single lane — traffic indicators controlled from central station**
- **Provide emergency traffic lane in future main arterial highways. This lane not to be used for regular traffic.**
- **Provide emergency vehicles at locations that have a history of high accident rates during predictable hours of occurrence**
- **Provide emergency telephones on highways where communications for help would be difficult**

- **Provide training of ambulance & rescue personnel in emergency techniques**
- **Establish state controlled rescue & emergency safety schools**
- **Provide ambulance & rescue vehicles with modern ingress rescue equipment — similar to New York Port Authority**
- **Utilize experience of nonflammable material research such as that developed in the Apollo Program**
- **Work with NISS to make standard for future auto manufacture**
- **Work with NISS to require rupture proof gas tanks & self extinguishing fire systems on future auto manufacture**
- **Provide training of emergency crew (ambulance — police) at schools similar to army rangers**
- **Use of helicopter**
- **Ensure equipment included in rescue equipment**

- **Same solution considerations as late arrival of medical aid**
- **Ensure rescue vehicle maintenance is not neglected**
- **Provide stringent drivers test for emergency vehicle drivers**
- **Provide special high speed defensive driving course**
- **Design vehicle for maximum energy absorption during impact**
- **Ensure restraints for cargo such as litters, rescue tools, etc. to prevent movement during impact**
- **Provide inflatable bag concept for attendants and the injured**
Figure 3
Accidents Involving Hazardous Materials

<table>
<thead>
<tr>
<th>EVENT</th>
<th>CAUSE</th>
<th>HAZARDOUS MATERIAL</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- TRAIN DERAILMENT - LAUREL, MISSISSIPPI, JANUARY 25, 1969</td>
<td>- WHEEL BROKE</td>
<td>- PROPANE GAS</td>
<td>- 14 CARS DERAILED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2 FATALITIES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 33 HOSPITALIZED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 60 HOMES DESTROYED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- EVACUATION OF 1000 POPULACE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- BURNING MATERIEL/FRAGMENTS SCATTERED 1/2 MILE RADIUS</td>
</tr>
<tr>
<td>- RAILROAD CAR EXPLOSION - WELLS, NEVADA, JULY, 1969</td>
<td>- HOT BOX - FIRE - MOVING TRAIN</td>
<td>- 750 LB BOMBS - REMOTE LOCATION</td>
<td>- 4 CRATERS 20' WIDE X 50' LONG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FRAGMENTATION UP TO 1/2 MILE</td>
</tr>
<tr>
<td>- RAILROAD TRAIN DERAILMENT & COLLISION - DUNRIETH, INDIANA, JANUARY 1968</td>
<td>- BROKEN RAIL WHICH WAS FORGED IN 1929</td>
<td>- CYANIDE</td>
<td>- TOWN OF 250 EVACUATED FOR 2 DAYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- COLLISION WITH FREIGHT TRAIN OF 106 CARS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- APPROXIMATELY 200 BUSINESSES & HOMES DESTROYED/DAMAGED CYANIDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- POLLUTION OF LOCAL WATER - SEVERAL MONTHS</td>
</tr>
</tbody>
</table>

Figure 4
PRELIMINARY HAZARD ANALYSIS

<table>
<thead>
<tr>
<th>SYSTEM OR FUNCTION</th>
<th>MODE</th>
<th>HAZARDOUS ELEMENT</th>
<th>EVENT CAUSING HAZARDOUS CONDITION</th>
<th>HAZARDOUS CONDITION</th>
<th>EVENT CAUSING POTENTIAL ACCIDENT</th>
<th>POTENTIAL ACCIDENT</th>
<th>EFFECT AND HAZARD CLASS</th>
<th>ACCIDENT PREVENTION MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMPERED CARGO TRUCK</td>
<td>HANDLE</td>
<td>CLS "B"</td>
<td>FOGGED</td>
<td>SPILL</td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>SUSPENDED CONVECTION</td>
<td>TOXICITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CANISTER</td>
<td>TRAVEL</td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>LEAKAGE</td>
<td>AUTO IGNITION</td>
<td>TOXICITY</td>
</tr>
<tr>
<td>EXPLOSIVES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOXICITY</td>
<td>FIRE EXPLOSION</td>
<td>DEATH OR INJURY TO PERSONNEL AND ANIMALS</td>
<td></td>
</tr>
<tr>
<td>FLAMMABLES</td>
<td></td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>Rupture</td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>SPONTANEOUS CONVECTION</td>
<td>TOXICITY</td>
</tr>
<tr>
<td>GYPSUM</td>
<td></td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>Rupture</td>
<td>LEAKAGE</td>
<td>SPILL</td>
<td>SPONTANEOUS CONVECTION</td>
<td>TOXICITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOXICITY</td>
<td>FIRE EXPLOSION</td>
<td>PERIODIC HYDROSTATIC TEST</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5
SAFETY RESPONSIBILITY ASSIGNED TO VARIOUS AGENCIES
SAFETY RESPONSIBILITY ASSIGNED TO VARIOUS AGENCIES

LACK OF BALANCED & INTEGRATED SAFETY PLAN

Figure 6