Apr 1st, 8:00 AM

An Optimal Control Algorithm for Ramp Metering of Urban Freeways

John B. Kreer
Michigan State University

Li S. Yuan
Michigan State University

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-17/3
AN OPTIMAL CONTROL ALGORITHM FOR RAMP METERING OF URBAN FREEWAYS
Li Shin Yuan and John B. Kreer
Michigan State University
East Lansing, Michigan

Abstract
An urban freeway is treated as a dynamic process. A state model for the freeway is obtained with sectional traffic densities as states and entrance flow rates as controls. A linear programming problem is solved to obtain the optimal freeway densities and entrance flow rates under steady-state conditions, and a state regulator is used to minimize the deviations in traffic densities from these optimal steady-state values.

Introduction
It is well established by theoretical and experimental work that a plot of the steady-state flow rate, y, (in vehicles per hour) as a function of the traffic density, x, (in vehicles per mile) for a long uniform section of freeway or street with no exit or input points is of the general form shown in Figure 1.1. It follows that the density on any freeway will eventually exceed the point of maximum flow rate if access is uncontrolled under heavy demand. Consequently, maximum effective use of any freeway facility, or surface street network, whether of good or bad design and construction, can be realized only by controlling its loading. With the high cost of construction of urban freeways, even a modest increase in the efficiency of their operation will result in a considerable economic gain.

A method called ramp metering is being used in some cities to keep the freeway density below the critical value by controlling entrance ramp flow rates. However, existing ramp metering systems base their control action only on conditions in the immediate vicinity of the individual entrance ramp. Alternative approaches to this problem are described in this paper. A freeway control algorithm is developed which optimizes both the density and the number of vehicles served by the individual ramp controllers. The development of this algorithm is illustrated by an analysis of the Lodge Freeway, where the linear model of Greenshields appears to be the most realistic for these purposes. Thus the speed will be given by

$$v = v_f (1 - \frac{x}{x_0})$$

where v_f is the free speed, the limiting value of speed as density approaches zero. The density, at which all vehicles will come to a halt, is denoted by x_0. Typically x_0 is approximately 40% of the bumper to bumper density.

Equation (2) is a per lane relationship. If the density is uniform, (2) combined with (3) can be modified so that

$$y = f(x) v_f (1 - \frac{x}{x_j}), \text{ for } x \leq x_j$$

where y and $f(x)$ are the total flow rate and the number of lanes in each direction at z.

Entrance and exit ramps are assumed to cause a discontinuity in the freeway stream flow by the amount of the ramp flow. The effects of the ramps will enter the model by the presence in $\partial y/\partial z$ of terms of the form

$$-\sum y_j \delta(z_j) + \sum y_k \delta(z_k)$$

where $\delta(z)$ is the Dirac impulse function, z_j is the location of the jth entrance ramp, and y_j and y_k are the flows of input ramp j and output ramp k respectively.

Discretization of the Freeway Model
As indicated by (1) and (4) a freeway is a nonlinear, distributed parameter system. The analysis which follows will employ spatial discretization of (1). Instead of discretizing into sections of uniform length, the boundaries between sections of the freeway are assumed to be chosen such that all exit ramps, entrance ramps, and changes in number of lanes occur at the boundaries of sections. Additional section boundaries may be added at points of pronounced change in geometric features of the freeway which could be expected to affect the flow of traffic. With these assumptions as to the location of the section boundaries, for each section (1)
can be approximated by
\[
\frac{dx_k}{dt} = \frac{1}{d_k} \left[y_{k-1} f_{k-1} f_{k-1} f_{k-1} y_k + \delta_k y_k \right] \tag{5}
\]
where
- \(y_k \) = the flow rate at the downstream boundary of section \(k \)
- \(x_k \) = the density in section \(k \) corresponding to \(y_k \)
- \(y_{i_k} \) = the input rate of the entrance ramp of section \(k \)
- \(y_k \) = the flow rate of the output ramp of section \(k \)
- \(\delta_k = 1 \) if an entrance ramp is located in section \(k \), 0 if no entrance ramp is located in section \(k \)
- \(\delta_k = 1 \) if an exit ramp is located in section \(k \), 0 if no exit ramp is located in section \(k \)
- \(d_k \) = the physical length of section \(k \)
- \(y_0 \) = flow rate from uncontrolled section of the freeway into section 1
- \(k = 1, 2, \ldots, n \)

Since the entrance and exit ramps always occur at a section boundary, the convention has been adopted to assign them to sections such that an entrance (exit) ramp always is at the upstream (downstream) end of the section. \(y^n \) is the outflow at the end of the freeway onto the city street system or outbound into the intercity portion of the freeway network. Assuming that, at any exit ramp, a known fraction \(f_k(t) \), of the total flow will leave the freeway, the exit flow at ramp \(k \) is
\[
y_o = f_k y_k \tag{6}
\]
Using (4) and (6) in (5), it becomes
\[
\frac{dx_k}{dt} = \frac{1}{d_k} \left[y_0 f_{k-1} f_{k-1} f_{k-1} \left(x_k - \frac{[x_k - 1]^2}{x_k} \right) + \delta_k y_k \right] \tag{7a}
\]
\[
\frac{dx_k}{dt} = \frac{1}{d_k} \left[(1-\delta_k) f_{k-1} f_{k-1} f_{k-1} \left(x_k - \frac{[x_k - 1]^2}{x_k} \right) \right] \tag{7b}
\]
where \(y_0 \) is the inflow from the uncontrolled portion of the freeway at the upstream end.

In compact form:
\[
\frac{dx}{dt} = F(x) + B y_1 \tag{8}
\]
where
- \(F(x) \) is a vector whose components are the terms on the right hand side of (7) involving \(x_k \)
- \(B = \text{diag} \left[\frac{\delta_1}{d_1}, \frac{\delta_2}{d_2}, \ldots, \frac{\delta_n}{d_n} \right] \)

In (8) the symbol \(\delta_k^i y_k^i \) is understood to include the contribution of both \(y_0 \) and \(\delta_k^i y_k^i \) in (7a).

Optimal Control of the Freeway

It is reasonable to assume that after the freeway is under control, the entrance flow rates as well as the traffic densities along the freeway will finally approach some steady state values. Therefore, the control vector \(y_1(t) \) is divided into a steady state component, called a reference component, which is constant during each control interval and a time varying component. The reference component is selected on the basis of maximizing the total number of vehicles served and also balancing the entrance queues using a steady state model of the system which considers the nonlinearities.

For this reference value of control vector there will be a corresponding steady state density in each section of the freeway. A local linearization of the freeway model is performed about this reference value of density. The varying component of the control vector is determined using standard linear regulator techniques based on the linearized model and a quadratic performance functional of deviations from reference density and reference ramp flow rates.

The philosophy used here is first to find an optimal steady state density vector and then regulate the entrance ramp rates to keep the state of the system near this vector.

The steady state model can be derived by setting \(\frac{dx_k}{dt} \) to zero in (5), eliminating \(\delta_k y_k \) using (6), and setting \(y_k = y_k^0 \) using (6), and setting \(y_1 = y_1^r \). The result is
\[
y_1^r = \delta_1^r y_1^r \tag{9a}
\]
\[
y_k^r = (1 - \delta_k^r) y_k^r + \delta_k^r y_k^1 \tag{9b}
\]
The dependent variables which are subject to control are \(y_k^r \) for \(k = 1, 2, \ldots, n \). By recursive substitution, explicit expressions for \(y_k^r \) are obtained as:
\[
y_k^r = (1 - \delta_k^r) y_k^r + \delta_k^r y_k^1 + (1 - \delta_k^1) y_k^1 + \delta_k^1 y_k^2 + \ldots + \delta_1^r y_1^r \tag{10}
\]
where \(k = 2, 3, \ldots, n \)

The optimal values for \(y_1^r \) are obtained by solving the following linear programming problem:

Maximize \(\sum_{k=1}^{n} \left(c_k^r d_1^r + c_k^d d_1^r \right) y_k^r \)

subject to the constraints
\[
y_k^r \leq y_k^m, k = 1, 2, \ldots, n. \tag{11}
\]
\[
0 \leq y_k^1 \leq y_k^m, \text{ for all } k \text{ such that } q_1 > 0. \tag{12}
\]
\[0 \leq y_{ir}^{k} = \min \left(y_{im}^{k}, \frac{d_{i}^{k}}{q_{i}^{k}} \right) \text{ for all } k \text{ such that } q_{i}^{k} = 0, \]

where \(q_{i}^{k} \) and \(d_{i}^{k} \) are the queue length and demand rate respectively at entrance ramp \(k \), \(c_{q} \) and \(c_{d} \) are two constant weighting vectors, \(y_{im} \) and \(y_{im}^{k} \) are the maximum allowable flow rate and entrance flow rate respectively and \(y_{m}^{k} \) are expressed in terms of \(y_{ir}^{k} \) by (9a) and (10).

Note that the objective function of the linear programming problem always gives higher priorities to entrance ramps with longer queues and higher demands, so it is designed to balance the queues at the entrance ramps while maximizing the freeway service.

Once \(y_{ir}^{k} \) has been determined by linear programming, the corresponding value for \(x_{r} \) can be found by using (9a) and (10) to find \(y_{r} \).

The reference density for each section can be calculated from the flow-density characteristic, using the lower of the two densities which is possible for the \(y_{m}^{k} \), i.e.

\[x_{r}^{k} = \frac{1}{2} \left[x_{j}^{k} - \sqrt{x_{j}^{k} \frac{a_{k}}{a_{k-1}} - \frac{4 a_{k}}{a_{k-1}}} \right] \] (14)

In the absence of any random disturbances in the traffic flow on the freeway maintaining the ramp metering rates at \(y_{ir}^{k} \) should keep the density at \(x_{r}^{k} \). Since random accelerations and decelerations of vehicles in the traffic stream are certain to occur, it is necessary to superimpose a variable component on the ramp metering rates to regulate the densities to \(x_{r}^{k} \). For this purpose let

\[x(t) = x_{r}^{k} + e(t) \] (15)

and

\[y_{r}^{k}(t) = y_{ir}^{k} + w(t) \] (16)

where \(e(t) \) and \(w(t) \) are perturbation vectors. Substituting (15) and (16) into (8), expanding \(F(x_{r}^{k} + e) \) around \(x_{r}^{k} \), by Taylor series expansion, and neglecting the second order terms in \(e \) one has:

\[A e(t) + B w(t) \]

where

\[A = \begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial x} & \frac{\partial F}{\partial x} \\ \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} \\ \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} \end{bmatrix} = [a_{ij}] \] (18)

with

\[a_{kk} = \frac{d_{k}}{q_{i}^{k}} \left[1 - \frac{2 a_{k}}{a_{k-1}} \right] x_{j}^{k} \] (19a)

where \(q_{i}^{k} \) and \(d_{i}^{k} \) are the queue length and demand rate respectively at entrance ramp \(k \), \(c_{q} \) and \(c_{d} \) are two constant weighting vectors, \(y_{im} \) and \(y_{im}^{k} \) are the maximum allowable flow rate and entrance flow rate respectively and \(y_{m}^{k} \) are expressed in terms of \(y_{ir}^{k} \) by (9a) and (10).

Fortunately, system (17) is completely controllable due to this complete controllability it is well known that an optimal control which minimizes the performance functional

\[J(w) = \frac{1}{2} \int_{0}^{\infty} \left[< e(t), Qe(t) > + < w(t), Rw(t) > \right] dt \] (20)

\(Q \) is a positive semidefinite and \(R \) is a positive definite matrix) exists, is unique, and is given by the equation:

\[w^{*}(t) = - R^{-1} B^{T} K e^{*}(t) \] (21)

where \(K \) is the constant \(n \times n \) positive definite matrix which is the solution of the algebraic Riccati equation:

\[A^{T} K + K A - K B R^{-1} B^{T} K - Q = 0 \] (22)

The vector \(e^{*}(t) \) is obtained by:

\[e^{*}(t) = x(t) - x_{r}^{k} \] (24)

where the vector \(x(t) \) is measured by the density detectors along the freeway.

Implementation of the Control Algorithm

The data which the central controller must have in order to compute the optimal entrance ramp rates determined by this algorithm are \(x, d_{i}, q_{i}, x_{r}^{k}, y_{r} \) and \(f \). These quantities can all be measured using suitably placed vehicle presence detectors. Densities are determined by accumulating the fraction of time a vehicle is indicated as present by the detector and multiplying this by the density of average length vehicles which would exist at bumper to bumper density. Demand is measured by counting vehicles passing a detector at a point far enough upstream on the entrance ramp that the queue will not reach it. The queues are measured from the difference between the counts of the demand measuring detectors and the counts of detectors placed at the downstream ends of the ramps. The fraction of the traffic stream leaving at each exit ramp \(f^{k} \) is measured by suitably placed detectors. Speeds are measured by dividing the time a vehicle presence is detected by average vehicle length. By curve fitting to a number of pairs of density and average vehicle speed measurements it is possible to determine values of \(x_{r}^{k} \) and \(v_{f} \). These latter quantities change slowly so that the fact that it takes longer to arrive at an individual measurement of them is not serious.
The flow chart for the computer program which would implement the control algorithm is shown in Figure 2. The vectors x, x_j, v_f, d_i, f and q_i are monitored continuously. Whenever a density above a level judged to be critical is detected in any section of the freeway, the optimal ramp rates are computed and ramp metering is activated. New values of x, d_i, and q_i can be obtained approximately once per minute from the vehicle detectors. The ramp metering is continued until all queues are reduced to zero. New values of x, d_i and q are computed and used by the controller any time the measurements indicate a significant change in x or v_f and when a significant change in the relative demands or queue lengths occurs. The latter is considered to have occurred whenever the inequality

$$\left| \frac{c^k q^k (m+1) + c^k d^k (m+1)}{\sum_k [c^k q^k (m+1) + c^k d^k (m+1)]} \right| - \left| \frac{c^k q^k (m) + c^k d^k (m)}{\sum_k [c^k q^k (m) + c^k d^k (m)]} \right| > \epsilon_3$$

m = index of the d_i and q_i measurements

ϵ_3 = suitably chosen threshold value

is satisfied for some value of k.

Conclusion

It has been demonstrated that well established techniques of optimal control can be applied to the optimization of ramp metering of urban freeways.

Acknowledgment

The research described in this paper was partially supported by the Crouse-Hinds Company under contract with Michigan State University.

References

