Evolution of Satellite PFM Encoding Systems From 1960 to 1965

Hosea D. White Jr.
Goddard Space Flight Center

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-1966-3rd/session-7/5

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
EVOLUTION OF SATELLITE PFM ENCODING SYSTEMS
FROM 1960 TO 1965
by
Hosea D. White, Jr.
Goddard Space Flight Center
Greenbelt Md.

SUMMARY
The optimum small scientific satellite system is assumed to be one in which the experimenter designs his sensor to measure the phenomena of interest, mounts it on a spacecraft, and receives a "perfect" master data tape from the ground station in return. Thus much of the experimenter's burden of the electronics design and testing now required on the spacecraft would be eliminated.

Although this optimum concept may never be attained, the purpose of this paper is to show how-over the past 5 years—an attempt to approach it has been made: The PFM encoding system has been expanded to encompass more spacecraft electronics in a central package, and to incorporate hardware so that much of the time correction and error detection can be done by computer programming on the ground.

The "functional complexity" of the encoding system is shown to have increased by a factor of 20 from Explorer XII (designed in 1960) to IMP F (designed in 1965); yet the volume is about the same, and relatively low power (about 1.2 watts) has been maintained without going to conventional "solid circuits." The components used to accomplish this (MOSFET* blocks) will be discussed briefly. Giant strides have been made in PFM data processing with the advent of IMP A (Explorer XVIII: 1963 46A). These concepts will not be discussed other than to show that hardware has been installed on the satellite to allow much of the time correction and error detection to be done by computer programming on the ground.

THE PFM ENCODING SYSTEM
PFM telemetry has been described amply in the literature (see References 1 and 2). Briefly, PFM is a form of time-division multiplex especially suitable for small scientific satellites because of its efficient use of transmitter power as a function of bit rate. The PFM encoder is the device that encodes the experimental information into a series of pulsed frequency bursts where the burst frequency contains the intelligence of a single analog parameter or the state of either 3 or 4 binary bits, depending on the satellite used. The encoding system is defined as the encoder plus other functions in a central package, such as a digital data processor.

Figure 2 shows the electronic section of a small scientific satellite. It does not include the important functions of the power system and the structure.

The experimenter designs various sensors and has them mounted on the spacecraft. In the optimum system described above, that would be the end of it from the experimenter's point of view, since all the rest would be done by the spacecraft and data processing on the ground.

Since the optimum system does not yet exist, the experimenter must design special electronics to mate with the sensor and may wish to do on-board data processing. To accomplish on-board data processing, the analog experimenter may need many analog-to-digital (A/D) conversions. Two approaches may be taken: (1) Each experimenter may do his own, or (2) a central A/D converter may be time-shared among experimenters. The former approach is often used; but the latter will be done in the Super IMP, with the encoding system supplying a calibrated A/D conversion signal for experiment on-board data processing in the "Magnetometer Autocorrelation Computer." This same A/D converter will be used by other experiments; thus, a significant savings in weight and power by the experiment may be achieved.

The digital experiments often require accumulation of pulses and storage of data until readout time. Also, dynamic range may be a problem, so bit compression techniques are required. In the case of Super IMP, there are nine such experiments that require approximately 450 bits of accumulation and storage every 5 seconds. In the past (Explorer XII and Ariel I*), each experimenter provided his own accumulation and storage and, in the case of Explorer XII, even did most of his own commutation. This resulted in a rather inefficient overall system since many experimenters did the same thing, and the connector and readout problem was rather complicated. When several experimenters require accumulation and storage, a central processor often provides these advantages:

1. More efficient use of power;
2. Reduction of interface connections;
3. Elimination of accumulator readout problem;
4. Cost reduction, since only one development program is required;
5. Removal of burden from the experimenter, including testing of accumulators.

The PFM encoding system provided the central processor, called a Digital Data Processor (DDP), in the IMP A satellite for the first time. This same design was used in IMPs B and C.

IMP A Digital Data Processor

The IMP A DDP has a total experimenter capacity of 105 bits plus a 15-bit sequence clock. The IMP A accumulator breakdown is as follows:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Accumulator Breakdown*</th>
<th>Storage Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. of California</td>
<td>2 each, 15-bit "S"</td>
<td>30</td>
</tr>
<tr>
<td>Univ. of Chicago</td>
<td>1 each, 3-bit "S"</td>
<td>30</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>2 each, 6-bit "S"</td>
<td>45</td>
</tr>
<tr>
<td>Sequence clock</td>
<td>1 each, 15-bit "S"</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>12 accumulators</td>
<td>120 bits</td>
</tr>
</tbody>
</table>

* "S" stands for Signal and is a straight binary counter.

The sequence clock was used extensively in various computer programs on the ground. It was read out twice per sequence and thus could be used as an error detection device for the complete loop-including the satellite, telemetry stations, information processing line, and the computer programs. It also was successful used in ground station time-error detection and rectification software. The sequencing clock had a capacity of 1 month before overflow.

The IMP A DDP was manufactured in 2 1/3 one-inch delta-pack cards using the welded module technique. The basic electrical component was the complementary flip-flop using 24 parts per bit and averaging about 1 milliwatt per bit. Of the 24 parts per bit, 17 were not resistors.

Super IMP Digital Data Processor

The Super IMP has a DDP of expanded capacity and improved design. The experiment capacity of the Super IMP DDP is about 460 bits, or four times that of IMP A. In addition, most of the accumulators will use a bit compression scheme that will allow for a larger dynamic range in counting rate. The digital bit rate has been increased by a factor of 10 over that used in IMP A, using the same transmitter power at the same range. This is accomplished by increasing the bits per channel from 3 to 8 and increasing the channel rate by 4. Each burst is obtained from the output of a 16-level crystal-controlled frequency synthesizer, and the frequencies will be "coherent" to a useful accuracy.

* Ariel I (UK-1): 1962 01.

The present breakdown for the Super IMP DDP is as follows:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Accumulator Breakdown*</th>
<th>Storage Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL</td>
<td>1 ea, 16-bit "ST"</td>
<td>16</td>
</tr>
<tr>
<td>BTL</td>
<td>5 ea, 15-bit "ST"</td>
<td>75</td>
</tr>
<tr>
<td>U. Cal.</td>
<td>2 ea, 16-bit "ST"</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1 ea, 14-bit "S"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ea, 2-bit jammer</td>
<td></td>
</tr>
<tr>
<td>U. Chi.</td>
<td>2 ea, 10-bit "ST"</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1 ea, 12-bit "ST"</td>
<td></td>
</tr>
<tr>
<td>GSFC</td>
<td>4 ea, 10-bit "S"</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1 ea, 24-bit "S"</td>
<td></td>
</tr>
<tr>
<td>SW CTR. for</td>
<td>9 ea, 10-bit "ST"</td>
<td>96</td>
</tr>
<tr>
<td>Adv. studies</td>
<td>1 ea, 6-bit "S"</td>
<td></td>
</tr>
<tr>
<td>STL</td>
<td>2 ea, 8-bit "S"</td>
<td>16</td>
</tr>
<tr>
<td>U. Iowa</td>
<td>2 ea, 12-bit "ST"</td>
<td>24</td>
</tr>
<tr>
<td>Optical</td>
<td>4 ea, 12-bit "S"</td>
<td>48</td>
</tr>
<tr>
<td>aspect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>1 ea, 16-bit "S"</td>
<td>16</td>
</tr>
<tr>
<td>clock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>451</td>
</tr>
</tbody>
</table>

*"ST" stands for Signal or Time.

These accumulators will count pulses up to a maximum and will then count clock pulses for the rest of the accumulation period. Thus, either count S or counting rate T will be telemetered. This scheme takes care of the overflow problem and thus extends the counting-rate dynamic range.

The maximum input rate any accumulator may accept is about 500 kc. Maximum experiment rates usually are in the order of 100 to 250 kc, so the 500 kc provides an adequate safety margin.

The Commutator and the Encoder

Again refer to Figure 2, to the commutator. It may appear strange that this is a separate block, since it is so interrelated with the encoder. It appears as a separate block because of the nature of PFM encoding, where bits were scanned 3 bits at a time and encoded into one of the eight "discrete" frequencies representing the state of the 3 bits; thus, shift registers were seldom used. Note that the Super IMP encodes 8 bits per channel instead of the 3 mentioned for Explorer XII, Ariel I (UK-1), and IMP A (Explorer XVIII).

In Explorer XII, all of the accumulation and most of the digital commutation was done by the digital experimenters. The Explorer XII encoder commutated information from 23 analog lines and 12 digital lines. The Ariel I encoder commutated information on 100 lines from the British experiments (this was all the satellite commutation), but the experimenter did all his accumulation. The Ariel I encoding system had many improvements over that used in Explorer XII in circuit design and packaging techniques. Welded modules were used extensively for the first time at GSFC. (Reference 2 discusses the above systems.)

For the purposes of this paper, note that the functional complexity increased by a factor of 3 between the two systems, with the Ariel I handling information from 100 lines and Explorer XII only 35 lines. The Explorer XII system used about 200 transistors, and the Ariel I system about 600. Ariel I had two encoders; one was real time—the high-speed encoder, and the other was the low-speed encoder. The low-speed encoder was tape-recorded in the satellite at 1/48, the information rate of the real-time encoder. On command from a ground station, the taped output was played back 48 times faster than the recorded speed.

FUNCTIONAL COMPLEXITY

The ambiguous term Functional Complexity (FC) is used here to connote "usefulness" of the system or "what the system does for the experimenter." Although impossible to measure accurately, it is as good a term as any to illustrate the purpose of this paper.

The encoder on Explorer XII, to be used as a reference, is to be assigned a functional complexity of 1 (FC = 1X). The Explorer XII encoder is chosen as the base merely because that was the first PFM encoder in which the author was involved in the electrical design. (There were other PFM satellites before and after this that are not described in this paper.) In general, the ones before Explorer XII (e.g., Vanguard III, P-14, S-30, etc.) would have an FC of less than 1.

It should be noted the IMPs D and E (Anchored IMPs) designed in 1965, are about midway between IMPs A, B, C and F, G in functional complexity.

Table 1 summarizes a few of the significant features illustrated by FC. It should be noted that the author did not assign values of FC by a mathematical method, so the values may be subject to argument.

The table illustrates one rather interesting fact: The transistor count is approximately directly proportional to FC. If this were extrapolated to the Super IMP encoding system, we would expect about 4000 transistors. This would be the case if IMP F were made exactly like IMP A and probably would result in a system too complicated, too heavy, and too large to fly on a small scientific satellite. Work has been done to reduce this count using conventional components and would result in the elimination of about 1000 transistors. However, the capacitor and diode count
Table 1

<table>
<thead>
<tr>
<th>Year Designed</th>
<th>Encoding System Used On:</th>
<th>FC</th>
<th>Number of DDP Bits</th>
<th>Number of Lines Commutated</th>
<th>Number of Input Signal Lines</th>
<th>Number of PP Lines</th>
<th>Comments</th>
<th>Approx. Transistor Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Explorers XII, *XIV, XV, XXVI</td>
<td>1X</td>
<td>0</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>Taken as FC = 1X printed circuit boards</td>
<td>200</td>
</tr>
<tr>
<td>1961</td>
<td>Ariel I</td>
<td>3X</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>Two encoders, welded modules</td>
<td>600</td>
</tr>
<tr>
<td>1962</td>
<td>IMPs A, B, C</td>
<td>6X</td>
<td>105 + clock</td>
<td>159</td>
<td>35</td>
<td>15</td>
<td>First DDP, all modules and interconnects welded</td>
<td>1200</td>
</tr>
<tr>
<td>1965</td>
<td>IMPs F, G (Super IMP) †</td>
<td>20X</td>
<td>445 + clock</td>
<td>508</td>
<td>73</td>
<td>36</td>
<td>Time-share A/D converter bit rate x 10 IMP A</td>
<td>New approach necessary</td>
</tr>
</tbody>
</table>

* Explorer XIV (1962 Bγ1), Explorer XV (1962 Bλ), and Explorer XXVI (1964 86A) used essentially the same systems.
† IMPs D and E (Anchored IMPs) have a FC of about 10X and use MOSFETS.

would not be reduced. It was assumed that the nonresistors (transistors, capacitors, and diodes) were not as reliable as the resistors; in fact, the resistors were considered completely reliable. (Note that these assumptions are the author's and do not necessarily reflect the views of Goddard Space Flight Center.)

Table 1 illustrates another important consideration: that of interconnecting signal wires. The signal wires are defined as the wires coming from the experiment to the encoder commutator and do not count Performance Parameter (PP) lines. The signal lines, of course, must be commutated and encoded to be of any use to the experimenter. The Ariel I encoder is a good example of how not to save wires, since 100 information lines were sent to the encoder. Fifty-one of these lines were accumulator output lines and could have been saved by the encoding system doing the accumulation and commutation. Also, a shift-register scheme could have been used; but that would have added considerable hardware. There was a good reason for direct scanning of the Ariel I digital wires in that some encoder cards were placed directly in the experimenter package to facilitate integration. The experimenters, however, would have preferred that the accumulation be done in an encoding system DDP.

According to the table, then, the DDP 'saved' 124 signal lines for IMP A 435 signal wires on Super IMP, since the commutation is incorporated into each DDP bit. It is clear that 'direct scan' (as used in Ariel I) would not be feasible in Super IMP, and the digital experimenters would be forced to use shift registers if they did their own accumulation. Some of the digital experiments are not amenable to accumulators on Super IMP. These experiments do use shift registers and thus do their own commutation. These shift registers are grouped under "Experimenter's Electronics," rather than "Commutation," in Figure 2. The output of the shift registers are scanned 4 bits at a time by the commutator.

It is interesting to note that less signal lines (e.g., a smaller harness) are required on Super IMP than were required on Ariel I, although the functional complexity increased by 20/3 and the commutated lines have increased by a factor of 5. The reason, of course, is that the DDP supplies many output bits (automatically commutated) for each signal line received.

SUPER IMP CIRCUIT DESIGN AND FABRICATION TECHNIQUES

Since the PFM encoding system has been doing more and more for the experimenter in an attempt to approach the optimum system for small scientific satellites, the parts count has increased drastically. In the author's opinion, the IMP A with a functional complexity of 6X is about the limit for reliable operation using conventional components.

Figure 3 illustrates the problem. The parts used for 2 DDP bits with their readout gates (e.g., built-in commutator) are shown. The reduction in parts is obvious. The major reason for the failure of the solid-circuit approach (the two flat packs in Figure 3) is the
low-power requirement with adequate noise rejection and sufficient speed.

Figure 3 was made before the last approach (called SECOND MOSFET APPROACH) was actually used in IMPs F & G; thus, some of the nomenclature on the figure is incorrect.

Approaches Taken

The IMPs F and G encoding system is functionally much more complex than that of IMPs A, B, and C. If a measure of the functional complexity is the number of binary stages required, IMP F is approximately 3.6 times as complex as IMP A; IMP A has about 140 binary stages, and IMP F has about 500.

The IMP A encoding system had approximately 5000 electrical parts, of which 3000 were not resistors. If IMP F used the same circuit design and fabrication technique, it would have approximately 18,800 electrical parts of which 11,500 would not be resistors. None of the above figures includes welds.

Several approaches have been taken in an attempt to reduce the IMPs F and G parts count; the main ones are listed:

1. Redesign of electrical circuits (binaries and logic circuits) and improved system design (sexadecimal bursts instead of octal bursts, to make the logic based on a system divisible by 2 instead of 3) in order to reduce the number of parts. This has been done; and it is estimated that approximately 5500 parts can be saved, resulting in a "conventional" design with 13,200 parts—of which 8600 are nonresistors. This still is an awesome number of parts.

2. Monolithic solid-circuit approach, in which two types of low-power elements were used. The elements were a BINARY BLOCK (at 1/2 mw/bit) and a low-power LOGIC BLOCK (at approximately 1/10 mw/logic function). The two blocks would be used in approximately 65 percent of the system, and "conventional" components in the rest. Both blocks were based on the improved circuit design above. This approach was abandoned because the MOSFET approach seemed much better.

3. First MOSFET approach. (Actually used in IMPs D & E) Here again, two basic building blocks are used: a MOSFET BINARY (with resistors added externally) and a LOGIC BLOCK. Two promising things happen with this approach: One is that about 93 percent of the system will be MOSFET blocks or resistors; and the other is that the total parts count goes down to about 5200 parts, where only 1700 are nonresistors. Thus, this approach results in about the same number of total parts used in the IMP A encoding system but has even less nonresistor parts than IMP A. Please note again that IMP F has about 3.6 times the functional complexity of IMP A.

4. Second MOSFET Approach. New blocks were obtained, where two binary bits and their readout gates as well as the associated resistors were integrated on a single chip. The logic blocks described above and these new blocks enabled a 50% size reduction such that the nonresistor parts were reduced to about 800.

In all the above, the assumption is made that resistors are an order of magnitude more reliable than nonresistor (capacitors, diodes, transistors, or MOSFETs) parts and may be weighed accordingly in a mathematical reliability analysis.

Status of Approaches

1. Conventional design (using IMP A circuits and logic) was out of the question (18,800 parts required).

2. Conventional design (using IMP F conventional circuits and logic) was better than the above but not desirable (13,200 parts required).

3. Monolithic solid-circuit approach for 65 percent of the system and conventional design for the rest was more desirable but was abandoned because of schedule problems (approximately 8000 parts required; this figure may be off by 50 percent).

4. The FIRST MOSFET approach appeared to be by far the best from its electrical properties, reduction of parts, and schedule. Its disadvantage was that less was known about its long-term reliability than was known about the conventional approach. Indeed, it turned out that the MOSFETs required shielding because their gate thresholds shifted as a function of radiation (ref. #3). IMPs D & E have been designed, manufactured and tested using this approach and IMPs F & G (Super IMPs) were also designed using this method. The package for the Super IMP Encoding System came out to be a 7 1/2 inch delta pack and would require about 7 pounds of shielding. This was too heavy so another approach, the SECOND MOSFET approach was used. (Please note that this first MOSFET approach was entirely adequate for IMPs D & E because its functional complexity was about 1/2 that of IMPs F & G and came out to be a 3 1/2 inch delta pack.) Also the shielding required on IMPs D & E was less because it will be a lunar orbiter.

5. The SECOND MOSFET approach (bottom row of figure #3) was used in order to reduce the size of the encoding system package. The prototype for IMPs F & G has been manufactured into a 3 1/2 inch delta pack using this approach. The new building blocks required for this approach were also manufactured by GME on a very short time scale. The writer will not elaborate further on this second MOSFET approach except to say that it will probably open up new horizons in small scientific satellite systems. These new blocks incorporate up to 50 MOSFETs and 16 very large value polycrystalline silicon resistors on a
monolithic chip in such a way that highly reliable low power circuits may be used. The use of this new technology will be the subject of another paper.

First MOSFET Approach Expanded

Since all approaches except the MOSFET approach are familiar to most readers of this paper and since the MOSFET is a new "animal," this section will give some of the device's electrical properties that are useful in IMP encoding system design.

A primary design constraint is power, which must be relatively low. Since a great deal of accumulation and storage is done in the encoding system digital data processor, binary counters are used. One primary problem, then, is: How do you make a low-power binary, at reasonable speeds (up to 500 kc), that is electrically quiet and that will perform for 1 year in orbit over the temperature range of -30°C to +60°C? In the past (IMP A), complimentary flip-flops were used with considerable success. We have developed a two-transistor "low-power" flip-flop to eliminate half the transistors. Either of these devices operates on the principle of using low voltages (supply) and reasonably low resistor values up to about 200 K ohms. The fact that the supply voltages are low implies that the "trigger" voltages must be low, and this means that the noise rejection threshold is low.

The MOSFET binary works on a different principle to achieve low power: It uses large voltages and large resistors. The supply voltages have a difference of potential of 10.5 volts, and it takes a "trigger" of about 5 volts (large) to flip them; this gives excellent noise rejection. It should be pointed out here that all capacitors and diodes have been eliminated in the binary design and that the device uses a double-input threshold level "flipping" technique. Indeed, a binary stage consists of one TO-5 can and four large-value resistors while a complimentary flip-flop requires 4 transistors, 6 resistors, 5 capacitors, and either 4 or 8 diodes depending on speed requirements. Thus, the low-power MOSFET has five discrete parts, and the low-power complimentary flip-flop has up to 23 parts; this is a parts reduction of better than 4 to 1 and is a "nonresistor" parts reduction of up to 17 to 1! The fact that the resistors are external enables the designer to obtain an efficient speed-versus-power profile. Thus, a 0.1-mw low-speed MOSFET flip-flop is obtained by using 2-megohm resistors. The external high-value resistors used with the MOSFET binary protect against the possibility that a "short" in a MOSFET binary could cause a catastrophic failure by "deadheading" the line. This is particularly important, since about 88 percent of the binaries are such that a failure will cause loss of data from only part of a single experiment. The rest of the experiments still would provide useful information.

An especially exciting feature of the MOSFET approach is the elimination of many stages in the electrical testing of modules and of the individual discrete components that go into the modules.

Another desirable quality of the MOSFET is that it is a voltage (not current) operated device. The input impedance at its gate is many meg-ohms; thus, no steady-state power is required to operate them as a logic function (e.g., it is not necessary to supply "base current").

The MOSFET essentially has no "offset" voltage; it acts like an open circuit when off and a resistor (less than 3K) when on. When off, the leakage is very low. This feature is useful in commutating devices.

Another unique propriety of the MOSFET is that it is symmetric (one can't tell the source from drain). This, of course, means that a simple monolithic logics block that can be made from MOSFETs and can be arranged in many different logic configurations. The LOGIC blocks used are as follows:

```
  T T T T
 / / / /  /
 | | | |/
 T T T T
```

It is up to the designer to utilize the many ways that the blocks can be connected, and he will be pleasantly surprised at the things he can do with MOSFET logic blocks with very few parts and with considerable power savings.

On some occasions, transistors are required and can be mated very nicely with MOSFET logic when required.

Although not qualified to comment on semiconductor manufacturing processes, the author has been assured by competent personnel that the manufacturing process steps required to make an all-MOSFET monolithic chip are considerably fewer than those for conventional integrated circuits. The basic MOSFET blocks are made by the General Micro Electronics Company (GME) in California. The cooperation received from that plant was outstanding in that "prototype" blocks of both types were delivered within a month after they received GSFC drawings. The blocks worked very well, and the above example is given to illustrate that the manufacturing processes may be simpler than those of integrated circuits.

EVALUATION OF FIRST MOSFET APPROACH

The various stages in evaluating the MOSFET approach were as follows:

Circuit Design Using Individual MOSFETs

Several different binaries were designed and breadboarded at GSFC. These binaries were operated in an extremely simple system to check
their noise rejection and speed-versus-power profile. The disadvantage of this binary is that it takes 12 MOSFETs and 4 resistors and that its standby power is twice that of other binaries breadboarded. The advantage gained is that it is a threshold double-input direct-coupled device (e.g., MASTER-SLAVE BINARY) which can be manufactured with no capacitors or diodes. Good speed versus power was not obtained with the breadboard because of excessive capacities, but this problem was largely solved by GME in a monolithic package.

Specification for the Two Basic Building Blocks

It was decided to have the 12 MOSFETs of the binary in an integrated package and to mount the chip in a TO-5 header. The four resistors were to be placed external to the package for three basic reasons:

1. The speed versus power can be tailored,
2. The Metal-Oxide Silicon (MOS) technology had not advanced to the point where it was practical to put large-value MOS resistors on the chip,
3. The binary cannot "deadhead" the line if the large-value resistors are external.

The TO-5 package was chosen because it is easier for the GSFC manufacturing facility to weld to than the flat pack.

System Check Using Many MOSFETs (Breadboard)

A representative encoding system was breadboarded. This system is about two-thirds the functional complexity of IMP A and contains the circuits that produce the new functions to be used in IMPs F and G (e.g., 16-level oscillator, A/D converter, "S-T" accumulators, etc.). It contains 127 binary blocks and 208 logic blocks with only 17 transistors. The breadboard was made with 8-pin "tube sockets" such that the production MOSFETs were "plugged" in as soon as they arrived. Breadboarding with MOSFET blocks turned out to be much simpler than with conventional design. The electrical design and MOSFET performance were evaluated with this system. The system worked very well.

Welded MOSFET Encoding System Package

The breadboard MOSFETs were removed and were welded into a package (delta pack), and complete system checks were performed with simulated experiment inputs. The package was potted. The welded modules were layed out and fabricated at GSFC (the modular techniques group). It was necessary to concurrently lay out the welded modules and build a breadboard in order to meet the MOSFET schedule for test and evaluation.

The completely potted system, tested at GSFC for about 2 weeks, passed with flying colors. The following tests were performed: initial magnetic checks, humidity, vibration, acceleration, 5 days of thermal cycling and soak in a vacuum, reentry, and final magnetic checks. The system was completely instrumented through all checks except magnetic, humidity, and acceleration.

This MOSFET system is now on "burn-in" and is monitored 5 days a week for system performance. Over 9000 hours have been logged on the system with no failures. This, of course, is more than 3 million CAN hours or 24 million MOSFET hours without a failure.

A concurrent evaluation of individual MOSFET cans is being performed at GSFC. This evaluation is not yet completed but, to date, indicates good performance and quality control.

CONCLUDING REMARKS

The evolution of the refined encoding system used on Super IMP from the relatively simple Explorer XII was a gradual one, with milestones occurring in the Ariel I (UK-1) and IMP A (Explorer XVIII) systems. Digital data processors, analog-to-digital converters, improved commutation, increased efficiency with crystal-controlled "digital oscillators," and a "30-day satellite clock" have been incorporated.

All the encoders mentioned were special purpose and-as such-were designed both electrically and mechanically at Goddard Space Flight Center, although some of the actual flight units were fabricated and tested by private industry. All major improvements in concept were a result of the close relation between the experimenters at GSFC and elsewhere and the encoder designers. These improvements were possible mainly because the experimenters could work directly with the people who design and manufacture the flight hardware.

REFERENCES

EXPERIMENTER DESIGNS SENSORS AND GETS PERFECT MASTER DATA TAPE AS AN OUTPUT

OPTIMUM SYSTEM FOR SCIENTIFIC SATELLITE

Figure No. 1

ENCODING SYSTEM FUNCTION

APPROXIMATE FUNCTIONAL COMPLICITY

EVOLUTION OF PFM ENCODING SYSTEM

Figure No. 2

368
Figure 3
Hardware Required for Two DDP Bits