Apr 28th, 8:00 AM

Panel Session IV - Launch Vehicle Options for Exploration

Daniel J. Collins
Vice President and Delta Program Manager, The Boeing Company

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-2004-41st/april-28/12
Launch Vehicle Options for Exploration

Dan Collins
Vice President
Delta Programs

April 23, 2004

Substantial Delta Investments are Available to Jump Start NASA's Exploration Vision

Delta IV Heavy

Rocketdyne RS-68

First new U.S. booster engine in over 20 yrs per USG requirements

Decatur, AL

1.5m sq. ft. state-of-the-art manufacturing facility and tooling

Heavy configuration to satisfy USG heavy-lift requirements

Delta IV Rocket Development

SLC 37 at CCAFS

New launch pad and infrastructure

Boeing Has Invested Billions in Design Development and Infrastructure

Delta IV Heavy Subsystems May Also be Used for Other Exploration Launch Options

Delta IV Heavy fairing

• Based on 100% successful heritage fairing design
 • Titan IV heritage

Delta IV upper stage

• Adaptable for in-space transportation/upper stage applications

Delta IV - Affordable & Sustainable Exploration Support

• Robust capabilities minimizes near-term investment
• Decatur Manufacturing Facility
 - Designed to produce 40 CBCs/year
• RS-68 developed and flight-proven
 - Production capability sized to support Delta-IV production
• SLC 37-B designed for 15 launches per year

Delta IV Support Of EELV And Other NASA/Civil Programs Assures Launch And Manufacturing Proficiency

We've Been Down This Path Before...

• Apollo/Saturn programs built upon incremental steps to achieve an extraordinary objective
• Saturn program built upon the solid achievements of much smaller precursor launch systems

Saturn Launch Vehicle Evolutionary Development

Spiral Development From Existing Systems Enabled Saturn V
Delta IV Can Meet Future Heavy-Lift Needs

- Flight-proven Delta IV provides significant near-term capability
- Delta IV provides a low cost mechanism to jump-start exploration
 - Candidate low-risk upgrades identified may enable up to 45-mT to LEO
 - NASA Exploration and USAF EELV program synergy
- Delta IV upgrades also can support alternate development solutions for super heavy-lift capability

Boeing has supported NASA Trade Studies

- ELV-Derived Solutions
- Shuttle-Derived (SSV, MDM)
- "Clean Sheet" (MMD, LML)

Boeing Space Exploration Systems Provides Integrated Perspective

Delta IV Provides Near-Term Benefits for Exploration

- Flight-proven Shuttle system could enable significant exploration capability
- Boeing is part of a collaborative Industry Study Team
- Shuttle-Derived Vehicle may provide a low development cost option for ~100-mT to LEO
 - SDV would greatly simplify operations and reduce costs
- Shuttle-Derived Vehicle supports spiral development of super heavy-lift capability

Focused On Providing Shuttle-Derived Options, Not Recommending A Preferred Configuration

Shuttle-Derived Vehicle Heavy-Lift Options

NGLT Funding Constrained “Clean Sheet” Study

- Launch Vehicles critically impact Exploration architecture development process
 - Drives destination sizing, cycle time and tonnage
 - Defines largest in-space transportation element
- Developed single Boeing Launch Vehicle database
- LV Database Trade Parameters
 - Life Cycle Cost
 - Performance
 - Spiral development
 - Ground infrastructure capabilities/constraints

Boeing Launch Vehicle Exploration Architecture Study

Boeing will provide NASA with our best independent launch vehicle assessment
Existing/growth Delta IV, Shuttle-Derived or "Clean Sheet" options could provide substantial Exploration capability. Detailed trade studies based on NASA's exploration requirements, funding and other considerations will be needed to identify the best solution.