May 24th, 1:45 PM

SpaceX Launch Vehicle Program

Lee Rosen
VP of Customer & Integration, SpaceX

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation
https://commons.erau.edu/space-congress-proceedings/proceedings-2016-44th/presentations-2016/26

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu, wolfe.309@erau.edu.
SpaceX Launch Vehicle Program
Lee Rosen, Vice President, Customer Ops & Integration
May 24, 2016
SpaceX Overview

• Founded in 2002 to revolutionize space technology, with the ultimate goal of enabling people to live on other planets

• Approximately 5,000 employees and growing

• Over 1.5 million sq ft of offices, manufacturing and production in Hawthorne, Calif.

• Offices in Washington, D.C.; Chantilly, Va.; and Houston, Texas

• Launch sites at Cape Canaveral Air Force Station, Fla., Kennedy Space Center, Fla.; Vandenberg Air Force Base, Calif.; and Brownsville, Texas (2018)

• Test facilities in McGregor, Texas
SpaceX Vehicles

Falcon 9

Falcon Heavy

Dragon
SpaceX Reusable Rocket Philosophy

“If one can figure out how to effectively reuse rockets just like airplanes, the cost of access to space will be reduced by as much as a factor of a hundred. A fully reusable vehicle has never been done before. That really is the fundamental breakthrough needed to revolutionize access to space.”

--Elon Musk
Reusability Benefits

- Improved Reliability
- Greater Flexibility
- Lower Launch Costs
Reusable Booster Components

Merlin Engines: Independent engine gimbaling and throttling for vehicle control

Landing Legs: Four legs made of carbon fiber with an aluminum honeycomb structure

Reaction Control System: Cold-gas thrusters to provide for three-axis stability control

Grid Fins: Four fins in an “X-Wing” configuration to control vehicle roll, pitch, and yaw
Reusable Booster Development Program

2013 - Grasshopper

2014 - Falcon 9 Reusable Development Vehicle

2015 - Falcon 9 Droneship Landing Attempts
The Falcon has landed!

Dec 21, 2015
First Successful Land Landing

April 8, 2016
First Successful Droneship Landing
What’s next?

2016 - First Falcon Heavy Launch

2017 - First Commercial Crew Mission

2018 - First Dragon on Mars
Questions?