Luca Guida Ryan J. Reynolds Mariel Lares Martiz Terry Oswalt
Gyrochronology postulates that the age of stars similar in mass to our Sun can be approximated based on their rotational period. With this in mind, determining accurate rotation periods using photomet..
Gyrochronology postulates that the age of stars similar in mass to our Sun can be approximated based on their rotational period. With this in mind, determining accurate rotation periods using photometry data from missions such as Kepler, K2, and TESS is vital for accurate stellar age estimates. Blended light curves pose a particular problem: When conducting simple aperture photometry, neighboring targets can taint the resulting light curve. In most cases, this issue makes the data unusable for unambiguous determination of stellar rotation periods. In this poster, we outline our research project, which aims to provide a solution to the issue of blended light curves. The project consists of computing a grid of simulated blended light curves and comparing them to observed blended photometric data from Kepler, K2, and TESS. Simulations will be computed using Butterpy, a Python package that yields the light curve of a particular model of starspots evolving through the stellar surface. We expect to quantitatively match any simulation from the grid to any of the blended light curves in our sample. Success in the project results will significantly impact other fields of astronomy that also use photometric data by facilitating a new collection of previously unusable data.