Loading...

Media is loading
 

Faculty Mentor Name

Michele Zanolin

Format Preference

Oral and Poster Presentation

Abstract

Memory is a low frequency signal produced in asymmetric core-collapse supernova explosions. The memory is dependent on three facets in the supernovae: the matter emission, the anisotropic neutrino emission, and the neutrino energy density. This low frequency component can be modeled by applying a long-term cosine to the end of simulated explosions. In order to make a detection (at either ground-based or space-based detectors) a complete understanding of the transfer functions at low frequencies is required, which involves the motion of the ground and harmonic oscillations from the suspensions. The memory is investigated by comparing a the previously mentioned toy model and the spherical harmonic decomposition of numerical simulation. Here we present our initial investigation of the toy model and numerical simulations.

Richardson, C.pptx (5879 kB)
Original Full-res PPT

Share

COinS
 

Gravitational Wave Memory from Core-Collapse Supernovae

Memory is a low frequency signal produced in asymmetric core-collapse supernova explosions. The memory is dependent on three facets in the supernovae: the matter emission, the anisotropic neutrino emission, and the neutrino energy density. This low frequency component can be modeled by applying a long-term cosine to the end of simulated explosions. In order to make a detection (at either ground-based or space-based detectors) a complete understanding of the transfer functions at low frequencies is required, which involves the motion of the ground and harmonic oscillations from the suspensions. The memory is investigated by comparing a the previously mentioned toy model and the spherical harmonic decomposition of numerical simulation. Here we present our initial investigation of the toy model and numerical simulations.