Proposal / Submission Type
Peer Reviewed Paper
Location
Richmond, Virginia
Start Date
28-5-2014 1:00 PM
Abstract
Digital evidence plays a crucial role in child pornography investigations. However, in the following case study, the authors argue that the behavioral analysis or “profiling” of digital evidence can also play a vital role in child pornography investigations. The following case study assessed the Internet Browsing History (Internet Explorer Bookmarks, Mozilla Bookmarks, and Mozilla History) from a suspected child pornography user’s computer. The suspect in this case claimed to be conducting an ad hoc law enforcement investigation. After the URLs were classified (Neutral; Adult Porn; Child Porn; Adult Dating sites; Pictures from Social Networking Profiles; Chat Sessions; Bestiality; Data Cleaning; Gay Porn), the Internet history files were statistically analyzed to determine prevalence and trends in Internet browsing. First, a frequency analysis was used to determine a baseline of online behavior. Results showed 54% (n = 3205) of the URLs were classified as “neutral” and 38.8% (n = 2265) of the URLs were classified as a porn website. Only 10.8% of the URLs were classified as child pornography websites. However when the IE history file was analyzed by visit, or “hit,” count, the Pictures/Profiles (31.5%) category had the highest visit count followed by Neutral (19.3%), Gay Porn (17%), and Child Porn (16.6%). When comparing the frequency of URLs to the Hit Count for each pornography type, it was noted that the accused was accessing gay porn, child porn, chat rooms, and picture profiles (i.e., from Facebook) more often than adult porn and neutral websites. The authors concluded that the suspect in this case was in fact a child pornography user and not an ad hoc investigator, and the findings from the behavioral analysis were admitted as evidence in the sentencing hearing for this case. The authors believe this case study illustrates the ability to conduct a behavioral analysis of digital evidence. More work is required to further validate the behavioral analysis process described, but the ability to infer the predilection for being a consumer of child pornography based on Internet artifacts may prove to be a powerful tool for investigators.
Keywords: Internet child pornography, digital forensics, computer crime investigation, Internet artifacts, profiling, behavioral analysis
Scholarly Commons Citation
Rogers, Marcus K. and Seigfried-Spellar, Kathryn C., "Using Internet Artifacts to Profile a Child Pornography Suspect" (2014). Annual ADFSL Conference on Digital Forensics, Security and Law. 7.
https://commons.erau.edu/adfsl/2014/wednesday/7
Included in
Aviation Safety and Security Commons, Computer Law Commons, Defense and Security Studies Commons, Forensic Science and Technology Commons, Information Security Commons, National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, Social Control, Law, Crime, and Deviance Commons
Using Internet Artifacts to Profile a Child Pornography Suspect
Richmond, Virginia
Digital evidence plays a crucial role in child pornography investigations. However, in the following case study, the authors argue that the behavioral analysis or “profiling” of digital evidence can also play a vital role in child pornography investigations. The following case study assessed the Internet Browsing History (Internet Explorer Bookmarks, Mozilla Bookmarks, and Mozilla History) from a suspected child pornography user’s computer. The suspect in this case claimed to be conducting an ad hoc law enforcement investigation. After the URLs were classified (Neutral; Adult Porn; Child Porn; Adult Dating sites; Pictures from Social Networking Profiles; Chat Sessions; Bestiality; Data Cleaning; Gay Porn), the Internet history files were statistically analyzed to determine prevalence and trends in Internet browsing. First, a frequency analysis was used to determine a baseline of online behavior. Results showed 54% (n = 3205) of the URLs were classified as “neutral” and 38.8% (n = 2265) of the URLs were classified as a porn website. Only 10.8% of the URLs were classified as child pornography websites. However when the IE history file was analyzed by visit, or “hit,” count, the Pictures/Profiles (31.5%) category had the highest visit count followed by Neutral (19.3%), Gay Porn (17%), and Child Porn (16.6%). When comparing the frequency of URLs to the Hit Count for each pornography type, it was noted that the accused was accessing gay porn, child porn, chat rooms, and picture profiles (i.e., from Facebook) more often than adult porn and neutral websites. The authors concluded that the suspect in this case was in fact a child pornography user and not an ad hoc investigator, and the findings from the behavioral analysis were admitted as evidence in the sentencing hearing for this case. The authors believe this case study illustrates the ability to conduct a behavioral analysis of digital evidence. More work is required to further validate the behavioral analysis process described, but the ability to infer the predilection for being a consumer of child pornography based on Internet artifacts may prove to be a powerful tool for investigators.
Keywords: Internet child pornography, digital forensics, computer crime investigation, Internet artifacts, profiling, behavioral analysis