•  
  •  
 

Publisher

Embry-Riddle Aeronautical University

Faculty Mentor

NA

Abstract

The Inter-Tropical Convergence Zone (ITCZ) is a zonal belt of intense convection, responsible for the genesis of over 80% of all tropical cyclones. This region of intense diabatic heating and shear results in a maximum of Ertel's potential vorticity (PV) meeting Rayleigh's necessary condition for barotropic instability. A fundamental issue is understanding the necessary precursor events leading to the breakdown of the ITCZ and subsequent formation of tropical cyclones. Our research examines the non-linear PV dynamics of the breakdown of both finite-length and infinite-length vorticity strips of varying widths and shapes, simulating the ITCZ found near the tropical eastern Pacific region. We have also introduced regularly and irregularly-spaced mass sinks embedded in the strips to simulate pockets of enhanced diabatic heating. To study the evolution, we have developed a shallow-water, normal-mode spectral model in Cartesian coordinates on the f-plane. Since the absolute vorticity divided by the fluid depth is materially conserved in the shallow water framework, we can draw an analogy to the evolution of Ertel's PV in a stratified fluid. While the analogy is not exact, it does offer insight into to the fundamental dynamics of PV rearrangement. Comparisons with linear stability theory and observed cases are made to determine the extent to which linear theory captures the non-linear dynamics.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.