Faculty Mentor
Rafael Rodriguez
Abstract
The global population has grown by 6 billion people over the last century and is trending toward 9.7 billion people by the year 2050. Agriculture accounts for 70% of global fresh water usage. Technology must be developed to accommodate the increase of food production demanded by the growing global population and the subsequent increase in water usage. Aeroponic technology is a water-efficient vertical farming technology that can reduce water usage by 90% by suspending plant roots in air within a controlled chamber and supplying atomized droplets of a water-nutrient solution directly to the roots.
This study simultaneously tests six droplet sizes of 10 πm, 28 πm, 46 πm, 64 πm, 82 πm, and 100 πm in an experimental aeroponic system by growing butterhead lettuce over a span of 12 days under controlled conditions. After conducting three experiments, the findings indicated that the droplet range of 64 πm to 82 πm experienced the most growth under the reported test conditions by evaluating the change in total length and change in number of leaves growing from the plant stem.
Recommended Citation
Johnson, Taylor J.
(2025)
"Aeroponic System Optimization for Butterhead Lettuce Growth and Future Sustainability Using Flow Blurring Atomization: An Overview,"
Beyond: Undergraduate Research Journal: Vol. 8
, Article 11.
Available at:
https://commons.erau.edu/beyond/vol8/iss1/11
Included in
Agriculture Commons, Electro-Mechanical Systems Commons, Environmental Engineering Commons, Plant Sciences Commons
