Is this project an undergraduate, graduate, or faculty project?
Undergraduate
Project Type
group
Campus
Daytona Beach
Authors' Class Standing
Nicholas McGuire, Senior Ruben Rosa Polonia, Sophomore Benjamin Hufendick, Sophomore Nicholas Spadaro, Senior Deanna DeMattio, Graduate
Lead Presenter's Name
Nicholas McGuire
Faculty Mentor Name
Kevin Rigby
Loading...
Abstract
This research project is focused on providing future astronauts ways to grow a complete diet on a planet that does not receive as much sunlight as Earth does. We evaluated a deep-water culture indoor hydroponics system to grow Moringa Oleifera, a nutrient- and antioxidant-rich plant with leaves containing all nine essential amino acids. After initial aquaponics growth and 3 prior harvests, the lighting intensity was set to 590 W/m^2 in a twelve hour on/off cycle. This simulates an ambient light collection and reflection system on Mars. 32 plants were harvested 17 times over a 9 month period at regular intervals, when plant heights reached an average of 0.9 m and we found consumable leaf yield averaged 0.18g per plant, per day. Data suggests using Moringa Oleifera as a perennial hydroponic crop is possible under reduced illumination, and is a candidate food source for Mars explorers. Preliminary research has expanded to utilizing natural light, additional plants, three more hydroponic systems, and solar power. Currently, a solar powered 8x12ft greenhouse is being used to hydroponically grow Goji Berries, Moringa Oleifera, Bamboo, Kale, Chia, and Sweet Potatoes. Combined, these foods contain a complete set of nutrients needed for a balanced human diet. The greenhouse and solar panels receive 590 W/m^2 by utilizing shade cloths. In conclusion, the project demonstrates that astronauts will have great potential in future missions to Mars to maximize the growth of superfoods using natural light, with a focus on a hydroponics system as the preferred farming method for space.
Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?
Yes, Ignite Grant
Project HOME
This research project is focused on providing future astronauts ways to grow a complete diet on a planet that does not receive as much sunlight as Earth does. We evaluated a deep-water culture indoor hydroponics system to grow Moringa Oleifera, a nutrient- and antioxidant-rich plant with leaves containing all nine essential amino acids. After initial aquaponics growth and 3 prior harvests, the lighting intensity was set to 590 W/m^2 in a twelve hour on/off cycle. This simulates an ambient light collection and reflection system on Mars. 32 plants were harvested 17 times over a 9 month period at regular intervals, when plant heights reached an average of 0.9 m and we found consumable leaf yield averaged 0.18g per plant, per day. Data suggests using Moringa Oleifera as a perennial hydroponic crop is possible under reduced illumination, and is a candidate food source for Mars explorers. Preliminary research has expanded to utilizing natural light, additional plants, three more hydroponic systems, and solar power. Currently, a solar powered 8x12ft greenhouse is being used to hydroponically grow Goji Berries, Moringa Oleifera, Bamboo, Kale, Chia, and Sweet Potatoes. Combined, these foods contain a complete set of nutrients needed for a balanced human diet. The greenhouse and solar panels receive 590 W/m^2 by utilizing shade cloths. In conclusion, the project demonstrates that astronauts will have great potential in future missions to Mars to maximize the growth of superfoods using natural light, with a focus on a hydroponics system as the preferred farming method for space.