Is this project an undergraduate, graduate, or faculty project?

Undergraduate

Project Type

group

Campus

Daytona Beach

Authors' Class Standing

Christopher Legon, Senior Pablo Robles, Junior Mohamed Ismail, Graduate Student

Lead Presenter's Name

Christopher Legon

Lead Presenter's College

DB College of Arts and Sciences

Faculty Mentor Name

Hugo Castillo

Abstract

Stimulation of soil native microflora to stabilize soils after wildfires

In nature ureolytic bacteria will use Urea as a carbon source. In the presence of Calcium, the ureolytic reaction will form Calcium Carbonate. This pathway is of interest because Calcium Carbonate will function as a bio-cementing molecule, stabilizing the soil in a process known as Microbial-Induced Calcite Precipitation (MICP). This study hypothesizes that amendment of soil with Urea will enrich the natural population of ureolytic bacteria which upon the addition of Calcium Chloride will result in the stabilization of the soil. For this purpose, burned and unburned soil will be treated with microbiological media to promote the growth of native ureolytic populations. We will then measure the enriched soil urease activity using a colorimetric assay, calcite precipitation with a gravimetric method after the acid dissolution of the calcite, and the compaction and stabilization of soil using ASTM standard methods. We will also isolate and identify ureolytic bacteria to be applied in future MICP experiments. This is a collaborative effort between students and faculty of the Aerospace Physiology and Civil Engineering programs.

Did this research project receive funding support (Spark, SURF, Research Abroad, Student Internal Grants, Collaborative, Climbing, or Ignite Grants) from the Office of Undergraduate Research?

Yes, Student Internal Grants

Share

COinS
 

Stimulation of soil native microflora to stabilize soils after wildfires

Stimulation of soil native microflora to stabilize soils after wildfires

In nature ureolytic bacteria will use Urea as a carbon source. In the presence of Calcium, the ureolytic reaction will form Calcium Carbonate. This pathway is of interest because Calcium Carbonate will function as a bio-cementing molecule, stabilizing the soil in a process known as Microbial-Induced Calcite Precipitation (MICP). This study hypothesizes that amendment of soil with Urea will enrich the natural population of ureolytic bacteria which upon the addition of Calcium Chloride will result in the stabilization of the soil. For this purpose, burned and unburned soil will be treated with microbiological media to promote the growth of native ureolytic populations. We will then measure the enriched soil urease activity using a colorimetric assay, calcite precipitation with a gravimetric method after the acid dissolution of the calcite, and the compaction and stabilization of soil using ASTM standard methods. We will also isolate and identify ureolytic bacteria to be applied in future MICP experiments. This is a collaborative effort between students and faculty of the Aerospace Physiology and Civil Engineering programs.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.