Date of Award


Access Type

Thesis - Open Access

Degree Name

Master of Science in Aerospace Engineering


Aerospace Engineering

Committee Chair

Richard Prazenica, Ph.D.

First Committee Member

Hever Moncayo, Ph.D.

Second Committee Member

Hamilton Hagar Jr, Ph.D.


In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology.

This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems.