Date of Award

8-2017

Document Type

Dissertation - Open Access

Degree Name

Doctor of Philosophy in Aviation

Department

College of Aviation

Committee Chair

Haydee M. Cuevas, Ph.D.

First Committee Member

Andrew R. Dattel, Ph.D.

Second Committee Member

Robert E. Joslin, Ph.D.

Third Committee Member

David L. Still, Ph.D.

Abstract

A repeated-measures, within-subjects design was conducted on 58 participant pilots to assess mean differences on energy management situation awareness response time and response accuracy between a conventional electronic aircraft display, a primary flight display (PFD), and an ecological interface design aircraft display, the OZ concept display. Participants were associated with a small Midwestern aviation university, including student pilots, flight instructors, and faculty with piloting experience. Testing consisted of observing 15 static screenshots of each cockpit display type and then selecting applicable responses from 27 standardized responses for each screen.

A paired samples t-test was computed comparing accuracy and response time for the two displays. There was no significant difference in means between PFD Response Time and OZ Response Time. On average, mean PFD Accuracy was significantly higher than mean OZ Accuracy (MDiff = 13.17, SDDiff = 20.96), t(57) = 4.78, p < .001, d = 0.63. This finding showed operational potential for the OZ display, since even without first training to proficiency on the previously unseen OZ display, participant performance differences were not operationally remarkable.

There was no significant correlation between PFD Response Time and PFD Accuracy, but there was a significant correlation between OZ Response Time and OZ Accuracy, r (58) = .353, p < .01. These findings suggest the participant familiarity of the PFD resulted in accuracy scores unrelated to response time, compared to the participants unaccustomed with the OZ display where longer response times manifested in greater understanding of the OZ display.

PFD Response Time and PFD Accuracy were not correlated with pilot flight hours, which was not expected. It was thought that increased experience would translate into faster and more accurate assessment of the aircraft stimuli. OZ Response Time and OZ Accuracy were also not correlated with pilot flight hours, but this was expected. This was consistent with previous research that observed novice operators performing as well as experienced professional pilots on dynamic flight tasks with the OZ display. A demographic questionnaire and a feedback survey were included in the trial. An equivalent three-quarters majority of participants rated the PFD as “easy” and the OZ as “confusing”, yet performance accuracy and response times between the two displays were not operationally different.

Share

COinS