•  
  •  
 

Abstract

As small unmanned aircraft systems (sUAS) continue to proliferate in the National Airspace System (NAS), near midair collisions are becoming more common. In late 2017, the National Transportation Safety Board released a report detailing the first confirmed midair collision between a sUAS and manned aircraft in the United States. In February 2018, a video of a sUAS maneuvering around a passenger jetliner on approach to a Las Vegas airport went viral on YouTube. Just months later, a helicopter instructor pilot reported performing evasive maneuvers to avoid colliding with a sUAS, resulting in a non-fatal crash. From 2014 to 2018 the Federal Aviation Administration (FAA) recorded 6,117 reports of near encounters between manned and unmanned aircraft within the NAS (Government Accountability Office [GAO], 2018). In their report, the GAO (2018) highlighted the need for additional operational data to aid the FAA’s management of safety risks posed by unmanned aircraft. The purpose of this study was to evaluate aviation interference and safety hazards caused by unmanned aircraft at an airport in Class C airspace. Using a passive RF sUAS detection device known as the AeroScope, the authors collected sUAS operations data for 13 days at Daytona Beach International Airport in Florida. While the study was limited to DJI-manufactured sUAS, the results yielded detailed operational information on 190 sUAS flights that had been conducted during the sampling period. The authors identified several operator behaviors including preferred sUAS models, flight days and times, common operating locations, and operational altitudes. Operational data was compared against published FAA UAS Facility Maps (UASFM) to examine potential risk areas. Additionally, sUAS detections were compared against historical ADS-B information to examine for potential midair collisions, yielding several notable case studies. The authors evaluated the effectiveness of existing geofencing infrastructure and provided recommendations for integration with the Low Altitude Authorization and Notification Capability (LAANC) system. The paper culminates with a proposal for integrating LAANC usage data into existing aviation information sharing infrastructure to improve manned pilot situational awareness of sUAS activity within the NAS.

DOI

https://doi.org/10.15394/ijaaa.2018.1268

Share

COinS